This repository has been archived by the owner on Oct 25, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
78 lines (65 loc) · 2.79 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms.functional as TF
class TwiceConv(nn.Module):
def __init__(self,input_channels,output_channels):
super(TwiceConv, self).__init__()
self.conv_pair = nn.Sequential(
nn.Conv2d(input_channels,output_channels,3,1,1,bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU(inplace = True),
nn.Conv2d(output_channels,output_channels,3,1,1,bias=False),
nn.ReLU(inplace = True)
)
def forward(self,x):
return self.conv_pair(x)
class Unet_Generator(nn.Module):
def __init__(self,input_channels=3,output_channels=3,feature_list=[64,128,256,512]):
super(Unet_Generator,self).__init__()
self.encoder_list = nn.ModuleList()
self.decoder_list = nn.ModuleList()
self.pool = nn.MaxPool2d(2,2)
# encoder part OR Down Part
len_feature_list = len(feature_list)
for idx in range(len_feature_list):
self.encoder_list.append( TwiceConv(input_channels,feature_list[idx]) )
input_channels = feature_list[idx]
# decoder part OR Up Part
for idx in range(1,len_feature_list+1): # reading feature_list in reverse order
self.decoder_list.append(
nn.ConvTranspose2d(
feature_list[len_feature_list-idx]*2,feature_list[len_feature_list-idx],kernel_size=2,stride=2
)
)
self.decoder_list.append(
TwiceConv(feature_list[len_feature_list-idx]*2,feature_list[len_feature_list-idx])
)
self.bridge = TwiceConv(feature_list[-1],feature_list[-1]*2)
self.decoder_last_conv = nn.Conv2d(feature_list[0],output_channels,kernel_size=1)
def forward(self,x):
skipconnection_list = []
for elem in self.encoder_list:
x = elem(x)
skipconnection_list.append(x)
x = self.pool(x)
x = self.bridge(x)
skipconnection_list = skipconnection_list[::-1]
for idx in range(0, len(self.decoder_list), 2): ## our decoder_list was appended twice !!
x = self.decoder_list[idx](x)
skipconnection = skipconnection_list[idx//2]
if x.shape != skipconnection.shape:
x = TF.resize(x, size=skipconnection.shape[2:])
concat_skipconnection = torch.cat((skipconnection,x),dim=1)
x = self.decoder_list[idx +1](concat_skipconnection)
return self.decoder_last_conv(x)
class Discriminator(nn.Module): # input image size: 3 x 128 x 128, here 3 represents number of channels i.e. r,g,b
def __init__(self, total_classes=1):
super(Discriminator,self).__init__()
self.resnet_model = torchvision.models.resnet18(pretrained=True)
self.resnet_model.fc = nn.Sequential(nn.Linear(512,total_classes))
self.sigmoid = nn.Sigmoid()
def forward(self,x):
x = self.resnet_model(x)
output = self.sigmoid(x)
return output