-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGetCurveData.py
97 lines (74 loc) · 2.59 KB
/
GetCurveData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import h5py
import matplotlib.pyplot as plt
import numpy as np
base_path = "CurveVel_A/"
hf = h5py.File('CurveVel_A/CurveVelData.h5', 'w')
hf.create_group("training")
hf.create_group("validation")
hf.create_group("testing")
mean_fun_inp = 0.
mean_fun_out = 0.
std_fun_inp = 0.
std_fun_out = 0.
k = 1
training_size = 22000
val_size = 2000
tot = training_size + val_size + 6000
min_inp = 10000
max_inp = 0
min_out = 10000
max_out = 0
for j in range(1, 61):
model_path = base_path + "model/model" + str(j) + ".npy"
data_path = base_path + "data/data" + str(j) + ".npy"
model = np.load(model_path)
data = np.load(data_path)
min_inp = min(np.min(data), min_inp)
min_out = min(np.min(model), min_out)
max_inp = max(np.max(data), max_inp)
max_out = max(np.max(model), max_out)
for i in range(data.shape[0]):
name = "sample_" + str(k - 1)
if k < training_size:
which = "training"
old_mean_inp = mean_fun_inp
old_mean_out = mean_fun_out
mean_fun_inp = mean_fun_inp * (k - 1) / k + data[i] / k
std_fun_inp = std_fun_inp + ((data[i] - mean_fun_inp) * (data[i] - old_mean_inp) - std_fun_inp) / k
mean_fun_out = mean_fun_out * (k - 1) / k + model[i, 0] / k
std_fun_out = std_fun_out + ((model[i, 0] - mean_fun_out) * (model[i, 0] - old_mean_out) - std_fun_out) / k
if training_size <= k < training_size + val_size:
which = "validation"
if k >= training_size + val_size:
which = "testing"
print(which, k)
hf[which].create_group(name)
hf[which][name].create_dataset("input", data=data[i])
hf[which][name].create_dataset("output", data=model[i, 0])
k = k + 1
print(std_fun_inp[std_fun_inp < 0])
std_fun_inp = std_fun_inp ** 0.5
print(std_fun_out[std_fun_out < 0])
std_fun_out = std_fun_out ** 0.5
print(min_inp, max_inp, min_out, max_out)
hf.create_dataset("mean_inp_fun", data=mean_fun_inp)
hf.create_dataset("mean_out_fun", data=mean_fun_out)
hf.create_dataset("std_inp_fun", data=std_fun_inp)
hf.create_dataset("std_out_fun", data=std_fun_out)
hf.create_dataset("min_inp", data=min_inp)
hf.create_dataset("min_out", data=min_out)
hf.create_dataset("max_inp", data=max_inp)
hf.create_dataset("max_out", data=max_out)
plt.figure()
plt.imshow(mean_fun_inp[2], aspect="auto")
plt.savefig("mean_inp.png")
plt.figure()
plt.imshow(mean_fun_out)
plt.savefig("mean_out.png")
plt.figure()
plt.imshow(std_fun_inp[2], aspect="auto")
plt.savefig("std_inp.png")
plt.figure()
plt.imshow(std_fun_out)
plt.savefig("std_out.png")
plt.show()