-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRunNioAbl.py
417 lines (349 loc) · 16.5 KB
/
RunNioAbl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import copy
import json
import os
import random
import sys
from timeit import default_timer as timer
import numpy as np
import pandas as pd
import torch
import torch.optim as optim
from GPUtil.GPUtil import getGPUs
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from NIOModules import NIOHelmPermInvAbl, NIOHeartPermAbl, NIORadPermAbl
from debug_tools import CudaMemoryDebugger
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
seed = 0
random.seed(seed) # python random generator
np.random.seed(seed) # numpy random generator
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
folder = sys.argv[1]
freq_print = 1
if len(sys.argv) == 5:
training_properties_ = {
"step_size": 15,
"gamma": 1,
"epochs": 2,
"batch_size": 256,
"learning_rate": 0.001,
"norm": "none",
"weight_decay": 0,
"reg_param": 0,
"reg_exponent": 1,
"inputs": 2,
"b_scale": 0.,
"retrain": 888,
"mapping_size_ff": 32,
"scheduler": "step"
}
branch_architecture_ = {
"n_hidden_layers": 3,
"neurons": 64,
"act_string": "leaky_relu",
"dropout_rate": 0.0,
"kernel_size": 3
}
trunk_architecture_ = {
"n_hidden_layers": 8,
"neurons": 256,
"act_string": "leaky_relu",
"dropout_rate": 0.0,
"n_basis": 50
}
fno_architecture_ = {
"width": 4,
"modes": 4,
"n_layers": 1,
}
denseblock_architecture_ = {
"n_hidden_layers": 4,
"neurons": 2000,
"act_string": "leaky_relu",
"retrain": 56,
"dropout_rate": 0.0
}
problem = sys.argv[2]
mod = sys.argv[3]
max_workers = int(sys.argv[4])
else:
training_properties_ = json.loads(sys.argv[2].replace("\'", "\""))
branch_architecture_ = json.loads(sys.argv[3].replace("\'", "\""))
trunk_architecture_ = json.loads(sys.argv[4].replace("\'", "\""))
fno_architecture_ = json.loads(sys.argv[5].replace("\'", "\""))
denseblock_architecture_ = json.loads(sys.argv[6].replace("\'", "\""))
problem = sys.argv[7]
mod = sys.argv[8]
max_workers = int(sys.argv[9])
if problem == "sine":
from Problems.PoissonSin import MyDataset
padding_frac = 1 / 4
elif problem == "helm":
from Problems.HelmNIO import MyDataset
padding_frac = 1 / 4
elif problem == "eit":
from Problems.HeartLungsEIT import MyDataset
padding_frac = 1 / 4
elif problem == "rad":
from Problems.AlbedoOperator import MyDataset
padding_frac = 1 / 4
if torch.cuda.is_available():
memory_avail = torch.cuda.get_device_properties(0).total_memory / 1024 ** 3
print("Running on ", torch.cuda.get_device_name(0), "Total memory: ", memory_avail, " GB")
print_mem = False
disable = False
full_training = False
step_size = training_properties_["step_size"]
gamma = training_properties_["gamma"]
norm = training_properties_["norm"]
epochs = training_properties_["epochs"]
batch_size = training_properties_["batch_size"]
learning_rate = training_properties_["learning_rate"]
weight_decay = training_properties_["weight_decay"]
reg_param = training_properties_["reg_param"]
reg_exponent = training_properties_["reg_exponent"]
inputs_bool = training_properties_["inputs"]
retrain_seed = training_properties_["retrain"]
b_scale = training_properties_["b_scale"]
mapping_size = training_properties_["mapping_size_ff"]
scheduler_string = training_properties_["scheduler"]
dict_hp = training_properties_.copy()
branch_architecture_copy = branch_architecture_.copy()
branch_architecture_copy["n_hidden_layers_b"] = branch_architecture_copy.pop("n_hidden_layers")
branch_architecture_copy["dropout_rate_b"] = branch_architecture_copy.pop("dropout_rate")
branch_architecture_copy["neurons_b"] = branch_architecture_copy.pop("neurons")
branch_architecture_copy["act_string_b"] = branch_architecture_copy.pop("act_string")
dict_hp.update(branch_architecture_copy)
dict_hp.update(trunk_architecture_)
dict_hp.update(fno_architecture_)
fno_input_dimension = denseblock_architecture_["neurons"]
cuda_debugger = CudaMemoryDebugger(print_mem)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_dataset = MyDataset(norm=norm, inputs_bool=inputs_bool, device=device, which="training", mod=mod)
test_dataset = MyDataset(norm=norm, inputs_bool=inputs_bool, device=device, which="validation", mod=mod)
inp_dim_branch = train_dataset.inp_dim_branch
n_fun_samples = train_dataset.n_fun_samples
grid = train_dataset.get_grid().squeeze(0)
if not os.path.isdir(folder):
print("Generated new folder")
os.mkdir(folder)
df = pd.DataFrame.from_dict([training_properties_]).T
df.to_csv(folder + '/training_properties.txt', header=False, index=True, mode='a')
df = pd.DataFrame.from_dict([branch_architecture_]).T
df.to_csv(folder + '/branch_architecture.txt', header=False, index=True, mode='a')
df = pd.DataFrame.from_dict([trunk_architecture_]).T
df.to_csv(folder + '/trunk_architecture.txt', header=False, index=True, mode='a')
df = pd.DataFrame.from_dict([fno_architecture_]).T
df.to_csv(folder + '/fno_architecture.txt', header=False, index=True, mode='a')
df = pd.DataFrame.from_dict([denseblock_architecture_]).T
df.to_csv(folder + '/denseblock_architecture.txt', header=False, index=True, mode='a')
print("Using FCNIO")
if problem == "sine" or problem == "helm" or problem == "step":
model = NIOHelmPermInvAbl(input_dimensions_branch=inp_dim_branch,
input_dimensions_trunk=grid.shape[2],
network_properties_branch=branch_architecture_,
network_properties_trunk=trunk_architecture_,
fno_architecture=fno_architecture_,
device=device,
retrain_seed=retrain_seed,
fno_input_dimension=fno_input_dimension)
elif problem == "eit":
model = NIOHeartPermAbl(input_dimensions_branch=inp_dim_branch,
input_dimensions_trunk=2,
network_properties_branch=branch_architecture_,
network_properties_trunk=trunk_architecture_,
fno_architecture=fno_architecture_,
device=device,
retrain_seed=retrain_seed,
fno_input_dimension=fno_input_dimension)
elif problem == "rad":
model = NIORadPermAbl(input_dimensions_branch=inp_dim_branch,
input_dimensions_trunk=1,
network_properties_branch=branch_architecture_,
network_properties_trunk=trunk_architecture_,
fno_architecture=fno_architecture_,
device=device,
retrain_seed=retrain_seed,
fno_input_dimension=fno_input_dimension)
start_epoch = 0
best_model_testing_error = 100
best_model = None
print("Using", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
else:
print("Folder already exists! Looking for the model")
if os.path.isfile(folder + "/model.pkl"):
print("Found and loading existing model")
model = torch.load(folder + "/model.pkl")
errors = pd.read_csv(folder + "/errors.txt", header=None, sep=":", index_col=0)
errors = errors.transpose().reset_index().drop("index", 1)
start_epoch = int(errors["Current Epoch"].values[0]) + 1
best_model_testing_error = float(errors["Best Testing Error"].values[0])
best_model = copy.deepcopy(model)
else:
print("Found no model. Creating a new one")
if problem == "sine" or problem == "helm" or problem == "step":
model = NIOHelmPermInvAbl(input_dimensions_branch=inp_dim_branch,
input_dimensions_trunk=grid.shape[2],
network_properties_branch=branch_architecture_,
network_properties_trunk=trunk_architecture_,
fno_architecture=fno_architecture_,
device=device,
retrain_seed=retrain_seed,
fno_input_dimension=fno_input_dimension)
elif problem == "eit":
model = NIOHeartPermAbl(input_dimensions_branch=inp_dim_branch,
input_dimensions_trunk=2,
network_properties_branch=branch_architecture_,
network_properties_trunk=trunk_architecture_,
fno_architecture=fno_architecture_,
device=device,
retrain_seed=retrain_seed,
fno_input_dimension=fno_input_dimension)
elif problem == "rad":
model = NIORadPermAbl(input_dimensions_branch=inp_dim_branch,
input_dimensions_trunk=1,
network_properties_branch=branch_architecture_,
network_properties_trunk=trunk_architecture_,
fno_architecture=fno_architecture_,
device=device,
retrain_seed=retrain_seed,
fno_input_dimension=fno_input_dimension)
start_epoch = 0
best_model_testing_error = 100
best_model = None
model.to(device)
size = model.print_size()
f = open(folder + "/size.txt", "w")
print(size, file=f)
batch_acc = 16
if torch.cuda.is_available():
batch_acc = batch_acc * torch.cuda.device_count()
print("Maximum number of workers: ", max_workers)
training_set = DataLoader(train_dataset, batch_size=batch_acc, shuffle=True, num_workers=max_workers, pin_memory=True)
testing_set = DataLoader(test_dataset, batch_size=40, shuffle=True, num_workers=max_workers, pin_memory=True)
n_iter_per_epoch = int((train_dataset.length + 1) / batch_size)
optimizer = optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
if scheduler_string == "cyclic":
scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=0.0001, max_lr=0.001, cycle_momentum=False, step_size_up=int(n_iter_per_epoch / 2) * epochs, mode="triangular2")
elif scheduler_string == "step":
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=n_iter_per_epoch, gamma=gamma)
else:
raise ValueError
if os.path.isfile(folder + "/optimizer_state.pkl"):
checkpoint = torch.load(folder + "/optimizer_state.pkl")
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
p = 1
if p == 2:
my_loss = torch.nn.MSELoss()
elif p == 1:
my_loss = torch.nn.L1Loss()
else:
raise ValueError("Choose p = 1 or p=2")
loss_eval = torch.nn.L1Loss()
writer = SummaryWriter(log_dir=folder)
cuda_debugger.print("Beginning")
lr_all = list()
training_all = list()
counter = 0
patience = int(0.1 * epochs)
time_per_epoch = 0
for epoch in range(start_epoch, epochs + start_epoch):
bar = tqdm(unit="batch", disable=disable)
with bar as tepoch:
start = timer()
tepoch.set_description(f"Epoch {epoch}")
train_mse = 0.0
running_relative_train_mse = 0.0
model.train()
grid = grid.to(device, non_blocking=True)
optimizer.zero_grad(set_to_none=True)
for step, (input_batch, output_batch) in enumerate(training_set):
if torch.cuda.is_available():
mem = str(round(getGPUs()[0].memoryUtil, 2) * 100) + "%"
else:
mem = str(0.) + "%"
tepoch.update(1)
input_batch = input_batch.to(device, non_blocking=True)
output_batch = output_batch.to(device, non_blocking=True)
cuda_debugger.print("Loading")
pred_train = model(input_batch, grid)
cuda_debugger.print("Forward")
loss_f = my_loss(pred_train, output_batch) / torch.mean(abs(output_batch) ** p) ** (1 / p)
if reg_param != 0:
loss_f += reg_param * model.regularization(reg_exponent)
cuda_debugger.print("Loss Computation")
loss_f.backward()
cuda_debugger.print("Backward")
########################################################################################
# Evaluation
########################################################################################
train_mse = train_mse * step / (step + 1) + loss_f / (step + 1)
tepoch.set_postfix({'Batch': step + 1,
'Train loss (in progress)': train_mse.item(),
'lr': scheduler.get_last_lr()[0],
"GPU Mem": mem,
"Patience:": counter,
})
if (step + 1) % int(batch_size / batch_acc) == 0 or (step + 1) == len(training_set):
optimizer.step() # Now we can do an optimizer step
scheduler.step()
optimizer.zero_grad(set_to_none=True)
if p == 1:
writer.add_scalar("train_loss/L1 Error", train_mse, epoch)
if p == 2:
writer.add_scalar("train_loss/L2 Error", train_mse, epoch)
end = timer()
elapsed = end - start
########################################################################################
# Evaluation
########################################################################################
if epoch % freq_print == 0:
if not full_training:
running_relative_test_mse = 0.0
model.eval()
with torch.no_grad():
for step, (input_batch, output_batch) in enumerate(testing_set):
input_batch = input_batch.to(device, non_blocking=True)
output_batch = output_batch.to(device, non_blocking=True)
pred_test = model(input_batch, grid)
pred_test = train_dataset.denormalize(pred_test)
output_batch = train_dataset.denormalize(output_batch)
loss_test = loss_eval(pred_test, output_batch) / loss_eval(torch.zeros_like(output_batch).to(device), output_batch)
running_relative_test_mse = running_relative_test_mse * step / (step + 1) + loss_test.item() ** (1 / p) * 100 / (step + 1)
writer.add_scalar("val_loss/Relative Testing Error", running_relative_test_mse, epoch)
else:
running_relative_test_mse = train_mse.item()
if running_relative_test_mse < best_model_testing_error:
best_model_testing_error = running_relative_test_mse
torch.save(model, folder + "/model.pkl")
writer.add_scalar("val_loss/Best Relative Testing Error", best_model_testing_error, epoch)
writer.add_scalar("time/Elapsed", elapsed, epoch)
counter = 0
else:
counter += 1
else:
torch.save(model, folder + "/model.pkl")
time_per_epoch = time_per_epoch * epoch / (epoch + 1) + elapsed / (epoch + 1)
with open(folder + '/errors.txt', 'w') as file:
file.write("Training Error: " + str(running_relative_train_mse) + "\n")
file.write("Testing Error: " + str(running_relative_test_mse) + "\n")
file.write("Best Testing Error: " + str(best_model_testing_error) + "\n")
file.write("Current Epoch: " + str(epoch) + "\n")
file.write("Time per Epoch: " + str(time_per_epoch) + "\n")
file.write("Workers: " + str(max_workers) + "\n")
torch.save({'optimizer_state_dict': optimizer.state_dict(), 'scheduler_state_dict': scheduler.state_dict()}, folder + "/optimizer_state.pkl")
tepoch.set_postfix({"Val loss": running_relative_test_mse})
tepoch.close()
if counter > patience:
print("Early stopping:", epoch, counter)
break
writer.flush()
writer.close()