-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathrun_eval_test.sh
49 lines (45 loc) · 1.35 KB
/
run_eval_test.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
DATA_PATH=''
OUTPUT_PATH=""
MODEL_PATH=""
BASE_CMD="CUDA_VISIBLE_DEVICES=2,3,4,5,6,7 nohup accelerate launch --config_file rlhf/ds_config/ds_zero3.yaml main_train.py \
--train_data_path "$DATA_PATH" \
--model_name_or_path "$MODEL_PATH" \
--max_len 4096 \
--num_train_epochs 1 \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 8 \
--task_type "sft" \
--train_mode "full" \
--output_dir "$OUTPUT_PATH" \
--save_strategy "steps" \
--save_steps 100 \
--save_total_limit 3 \
--learning_rate 2e-5 \
--warmup_steps 16 \
--logging_steps 1 \
--lr_scheduler_type "cosine" \
--gradient_checkpointing True \
--report_to "wandb" \
--bf16 True \
--auto_adapt True"
# 评估相关参数(仅在use_eval_in_train为True时使用)
EVAL_ARGS="--use_eval_in_train True \
--test_datasets_path "data/test.jsonl" \
--max_new_tokens 4096 \
--freq 4 \
--metrics "code" \
--vllm_server_port 8001 \
--vllm_server_timeout 30 \
--save_best_checkpoints True \
--max_checkpoints 2 \
--start_update_best_checkpoints 4 \
--prompts_apply_chat True \
--use_vllm True"
# 根据是否需要评估来构建完整命令
if [ "$1" = "--eval" ]; then
FULL_CMD="$BASE_CMD $EVAL_ARGS"
else
FULL_CMD="$BASE_CMD --use_eval_in_train False"
fi
# 执行命令
eval $FULL_CMD