-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpvalue.py
79 lines (64 loc) · 2.44 KB
/
pvalue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import json
from scipy import stats
import numpy as np
from tqdm import tqdm
root = '/work/mayixiao/cutoff/results/sig'
files = os.listdir(root)
def sort_values(data_raw):
sorted_results = sorted(data_raw.items(), key=lambda x: x[0])
return [item[1] for item in sorted_results]
def fisher_rand(alist, blist):
assert(len(alist)==len(blist))
all = np.stack([alist,blist])
all = all.reshape(-1,2)
leng = len(alist)
randnum = 10000
posnum = 0
sumab = sum(alist) + sum(blist)
delta = sum(alist) - sum(blist)
for i in range(randnum):
rdn = np.random.randint(0,2,leng)
newa = [d[j] for d,j in zip(all,rdn)]
# print(sum(newa), sumab, delta)
if 2*sum(newa) - sumab > delta:
posnum += 1
# print(posnum/randnum)
return posnum/randnum
def get_pvalue(files, dataset, model, m):
all_score_list = []
cutoffs = ['bicut', 'choppy', 'attncut', 'lecut']
# cutoffs = ['lecut']
for cutoff in cutoffs:
name = cutoff + '_' + dataset + '_' + model
tem_files = [file_ for file_ in files if name in file_]
assert len(tem_files) == 1
all_score_list.append(sort_values(json.load(open(os.path.join(root, tem_files[0])))[m]))
# print(all_score_list[0])
ttests = []
for i in range(len(all_score_list[:-1])):
# print(sum(all_score_list[i]))
# print(stats.levene(all_score_list[-1], all_score_list[i]))
# print(stats.shapiro(all_score_list[i]))
# ttests.append(stats.ttest_ind(all_score_list[-1], all_score_list[i], equal_var=True).pvalue)
# ttests.append(stats.mannwhitneyu(all_score_list[-1], all_score_list[i], alternative='greater').pvalue)
# p = stats.wilcoxon(all_score_list[-1], all_score_list[i], correction=False, alternative='greater', mode='approx').pvalue
p = fisher_rand(all_score_list[-1], all_score_list[i])
ttests.append(p)
# if p < 0.01:
# ttests.append('dd')
# elif p < 0.05:
# ttests.append('d')
# else:
# ttests.append(0)
print(dataset, model, m, ttests)
return
datasets = ['LeCaRD', 'CAIL2021', 'COLIEE2020']
models = ['slr', 'bert', 'roberta']
ms = ['f1', 'dcg', 'nci']
for dataset in datasets[2:]:
for model in models[1:]:
for m in ms:
get_pvalue(files, dataset, model, m)
# if __name__ == '__main__':
# fisher_rand([1,0,3,0],[2,2,2,1])