-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenerateNewAirfoils.py
151 lines (111 loc) · 4.5 KB
/
GenerateNewAirfoils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import tensorflow as tf
from tensorflow.keras import layers
from numpy import *
from scipy import *
import matplotlib.pyplot as plt
import os
import time
import sys
arguments = len(sys.argv)-1
pos = 1
while(arguments >= pos):
arg = sys.argv[pos]
is_restart = sys.argv[pos+1]
print ("Parameter %i: %s %s"%(pos,sys.argv[pos],is_restart))
pos = pos+2
arg = sys.argv[pos]
is_training = sys.argv[pos+1]
print ("Parameter %i: %s %s"%(pos,sys.argv[pos],is_training))
pos = pos+2
NOISE_DIM = 50
EPOCHS = 30
noise_dim = NOISE_DIM
num_examples_to_generate = 32
#get one sample airfoil data and check for size
datafilename='./NACA_4digitGenerator/geometries/geomshift%04d.txt'%0
data = loadtxt(datafilename)
npoints = size(data[:,0])
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(npoints*2*32, use_bias=False, input_shape=(NOISE_DIM,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((npoints, 2, 32)))
assert model.output_shape == (None, npoints, 2, 32) # Note: None is the batch size
model.add(layers.Conv2DTranspose(16, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, npoints, 2, 16)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(16, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, npoints, 2, 16)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(1, (5, 5), strides=(1, 1), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, npoints, 2, 1)
return model
generator = make_generator_model()
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Conv2D(64, (5, 5), strides=(1, 1), padding='same',
input_shape=[npoints, 2, 1]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(1))
return model
discriminator = make_discriminator_model()
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
checkpoint_dir = './Checkpoint_AirfoilGenerator'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator)
if(float(is_restart) == 1):
status = checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
def train(epochs):
for epoch in range(epochs):
print epoch
seed1 = tf.random.normal([num_examples_to_generate, noise_dim])
seed2 = tf.random.normal([num_examples_to_generate, noise_dim])
seed = (3*seed1+8*seed2)/11.0
for i in arange(0,num_examples_to_generate,1):
filename = './GenerateData/NoiseInput/noiseinput%03d.txt'%(i+epoch*num_examples_to_generate)
file = open(filename,'w')
for ptindx in arange(0,noise_dim,1):
file.write("%f\n"%seed[i,ptindx])
file.close()
start = time.time()
generate_and_save_images(generator,
epoch,
seed)
# Save the model every 15 epochs
if (epoch + 1) % 5 == 0:
checkpoint.save(file_prefix = checkpoint_prefix)
fig = plt.figure(figsize=(4,8))
def generate_and_save_images(model, epoch, test_input):
# Notice `training` is set to False.
# This is so all layers run in inference mode (batchnorm).
predictions = model(test_input, training=False)
for i in range(predictions.shape[0]):
filename = './GenerateData/Airfoils/genairfoil%03d.txt'%(i+epoch*num_examples_to_generate)
file = open(filename,'w')
for ptindx in arange(0,npoints,1):
file.write("%f %f \n" % (predictions[i,ptindx,0,0],predictions[i,ptindx,1,0]))
file.close()
plt.subplot(4, 8, i+1)
#plt.axis('equal')
plt.plot(predictions[i,:,0,0],predictions[i,:,1,0],linewidth=2)
plt.xlim([0,1])
plt.ylim([-0.2,0.2])
plt.suptitle('Epoch = %03d'%epoch,fontsize=20)
#plt.draw()
#plt.pause(0.001)
plt.savefig('./Images/image_at_epoch_{:04d}.png'.format(epoch))
#plt.show()
plt.clf()
train(EPOCHS)