Skip to content

Commit 7d0d7e9

Browse files
authored
Merge branch 'master' into nest-server-mpi-logger
2 parents 72cb605 + 1275fce commit 7d0d7e9

20 files changed

+113
-29
lines changed

bin/nest-server-mpi

+2-2
Original file line numberDiff line numberDiff line change
@@ -77,5 +77,5 @@ else:
7777
logger.error("Failed to execute call")
7878
continue
7979

80-
log(call_name, f"sending response gather, data={response}")
81-
comm.gather(nest.serializable(response), root=0)
80+
log(call_name, f"sending reponse gather, data={response}")
81+
comm.gather(nest.serialize_data(response), root=0)

models/aeif_cond_alpha.h

+8-1
Original file line numberDiff line numberDiff line change
@@ -103,7 +103,14 @@ and
103103
For the reference implementation of this model, see
104104
`aeif_models_implementation <../model_details/aeif_models_implementation.ipynb>`_ notebook.
105105
106-
See also [1]_.
106+
107+
.. note::
108+
109+
The default refractory period for ``aeif`` models is zero, consistent with the model definition in
110+
Brette & Gerstner [1]_. Thus, an ``aeif`` neuron with default parameters can fire multiple spikes in a single
111+
time step, which can lead to exploding spike numbers and extreme slow-down of simulations.
112+
113+
To avoid such unphysiological behavior, you should set a refractory time ``t_ref > 0``.
107114
108115
Parameters
109116
++++++++++

models/aeif_cond_alpha_astro.h

+8-1
Original file line numberDiff line numberDiff line change
@@ -110,7 +110,14 @@ For implementation details of the adaptive exponential integrate-and-fire neuron
110110
model, see the
111111
`aeif_models_implementation <../model_details/aeif_models_implementation.ipynb>`_ notebook.
112112
113-
See also [1]_.
113+
114+
.. note::
115+
116+
The default refractory period for ``aeif`` models is zero, consistent with the model definition in
117+
Brette & Gerstner [1]_. Thus, an ``aeif`` neuron with default parameters can fire multiple spikes in a single
118+
time step, which can lead to exploding spike numbers and extreme slow-down of simulations.
119+
120+
To avoid such unphysiological behavior, you should set a refractory time ``t_ref > 0``.
114121
115122
Parameters
116123
++++++++++

models/aeif_cond_alpha_multisynapse.h

+16
Original file line numberDiff line numberDiff line change
@@ -96,6 +96,14 @@ When the neuron fires a spike, the adaptation current :math:`w <- w + b`.
9696
For implementation details see the
9797
`aeif_models_implementation <../model_details/aeif_models_implementation.ipynb>`_ notebook.
9898
99+
.. note::
100+
101+
The default refractory period for ``aeif`` models is zero, consistent with the model definition in
102+
Brette & Gerstner [1]_. Thus, an ``aeif`` neuron with default parameters can fire multiple spikes in a single
103+
time step, which can lead to exploding spike numbers and extreme slow-down of simulations.
104+
105+
To avoid such unphysiological behavior, you should set a refractory time ``t_ref > 0``.
106+
99107
Parameters
100108
++++++++++
101109
@@ -155,6 +163,14 @@ Receives
155163
156164
SpikeEvent, CurrentEvent, DataLoggingRequest
157165
166+
References
167+
++++++++++
168+
169+
.. [1] Brette R and Gerstner W (2005). Adaptive exponential
170+
integrate-and-fire model as an effective description of neuronal
171+
activity. Journal of Neurophysiology. 943637-3642
172+
DOI: https://doi.org/10.1152/jn.00686.2005
173+
158174
See also
159175
++++++++
160176

models/aeif_cond_beta_multisynapse.h

+16
Original file line numberDiff line numberDiff line change
@@ -113,6 +113,14 @@ When the neuron fires a spike, the adaptation current `w <- w + b`.
113113
For implementation details see the
114114
`aeif_models_implementation <../model_details/aeif_models_implementation.ipynb>`_ notebook.
115115
116+
.. note::
117+
118+
The default refractory period for ``aeif`` models is zero, consistent with the model definition in
119+
Brette & Gerstner [1]_. Thus, an ``aeif`` neuron with default parameters can fire multiple spikes in a single
120+
time step, which can lead to exploding spike numbers and extreme slow-down of simulations.
121+
122+
To avoid such unphysiological behavior, you should set a refractory time ``t_ref > 0``.
123+
116124
Parameters
117125
++++++++++
118126
@@ -172,6 +180,14 @@ Receives
172180
173181
SpikeEvent, CurrentEvent, DataLoggingRequest
174182
183+
References
184+
++++++++++
185+
186+
.. [1] Brette R and Gerstner W (2005). Adaptive exponential
187+
integrate-and-fire model as an effective description of neuronal
188+
activity. Journal of Neurophysiology. 943637-3642
189+
DOI: https://doi.org/10.1152/jn.00686.2005
190+
175191
See also
176192
++++++++
177193

models/aeif_cond_exp.h

+8-1
Original file line numberDiff line numberDiff line change
@@ -105,7 +105,14 @@ setting V_peak too high.
105105
For implementation details see the
106106
`aeif_models_implementation <../model_details/aeif_models_implementation.ipynb>`_ notebook.
107107
108-
See also [1]_.
108+
109+
.. note::
110+
111+
The default refractory period for ``aeif`` models is zero, consistent with the model definition in
112+
Brette & Gerstner [1]_. Thus, an ``aeif`` neuron with default parameters can fire multiple spikes in a single
113+
time step, which can lead to exploding spike numbers and extreme slow-down of simulations.
114+
115+
To avoid such unphysiological behavior, you should set a refractory time ``t_ref > 0``.
109116
110117
111118
Parameters:

models/aeif_psc_alpha.h

+7-1
Original file line numberDiff line numberDiff line change
@@ -95,7 +95,13 @@ Here :math:`H(t)` is the Heaviside step function and `k` indexes incoming spikes
9595
For implementation details see the
9696
`aeif_models_implementation <../model_details/aeif_models_implementation.ipynb>`_ notebook.
9797
98-
See also [1]_.
98+
.. note::
99+
100+
The default refractory period for ``aeif`` models is zero, consistent with the model definition in
101+
Brette & Gerstner [1]_. Thus, an ``aeif`` neuron with default parameters can fire multiple spikes in a single
102+
time step, which can lead to exploding spike numbers and extreme slow-down of simulations.
103+
104+
To avoid such unphysiological behavior, you should set a refractory time ``t_ref > 0``.
99105
100106
Parameters
101107
++++++++++

models/aeif_psc_delta.h

+7-1
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,13 @@ the value of `J` after a spike.
9797
For implementation details see the
9898
`aeif_models_implementation <../model_details/aeif_models_implementation.ipynb>`_ notebook.
9999
100-
See also [1]_.
100+
.. note::
101+
102+
The default refractory period for ``aeif`` models is zero, consistent with the model definition in
103+
Brette & Gerstner [1]_. Thus, an ``aeif`` neuron with default parameters can fire multiple spikes in a single
104+
time step, which can lead to exploding spike numbers and extreme slow-down of simulations.
105+
106+
To avoid such unphysiological behavior, you should set a refractory time ``t_ref > 0``.
101107
102108
Parameters
103109
++++++++++

models/aeif_psc_delta_clopath.h

+13
Original file line numberDiff line numberDiff line change
@@ -93,6 +93,14 @@ For implementation details see the
9393
9494
See also [2]_.
9595
96+
.. note::
97+
98+
The default refractory period for ``aeif`` models is zero, consistent with the model definition in
99+
Brette & Gerstner [4]_. Thus, an ``aeif`` neuron with default parameters can fire multiple spikes in a single
100+
time step, which can lead to exploding spike numbers and extreme slow-down of simulations.
101+
102+
To avoid such unphysiological behavior, you should set a refractory time ``t_ref > 0``.
103+
96104
Parameters
97105
++++++++++
98106
@@ -190,6 +198,11 @@ References
190198
.. [3] Voltage-based STDP synapse (Clopath et al. 2010) on ModelDB
191199
https://modeldb.science/144566?tab=1
192200
201+
.. [4] Brette R and Gerstner W (2005). Adaptive exponential
202+
integrate-and-fire model as an effective description of neuronal
203+
activity. Journal of Neurophysiology. 943637-3642
204+
DOI: https://doi.org/10.1152/jn.00686.2005
205+
193206
See also
194207
++++++++
195208

models/aeif_psc_exp.h

+7-1
Original file line numberDiff line numberDiff line change
@@ -95,7 +95,13 @@ Here :math:`H(t)` is the Heaviside step function and `k` indexes incoming spikes
9595
For implementation details see the
9696
`aeif_models_implementation <../model_details/aeif_models_implementation.ipynb>`_ notebook.
9797
98-
See also [1]_.
98+
.. note::
99+
100+
The default refractory period for ``aeif`` models is zero, consistent with the model definition in
101+
Brette & Gerstner [1]_. Thus, an ``aeif`` neuron with default parameters can fire multiple spikes in a single
102+
time step, which can lead to exploding spike numbers and extreme slow-down of simulations.
103+
104+
To avoid such unphysiological behavior, you should set a refractory time ``t_ref > 0``.
99105
100106
Parameters
101107
++++++++++

pynest/examples/EI_clustered_network/network_EI.py

+20-12
Original file line numberDiff line numberDiff line change
@@ -147,14 +147,18 @@ def create_populations(self):
147147
"t_ref": self._params["t_ref"],
148148
"V_th": self._params["V_th_E"],
149149
"V_reset": self._params["V_r"],
150-
"I_e": I_xE
151-
if self._params["delta_I_xE"] == 0
152-
else I_xE * nest.random.uniform(1 - self._params["delta_I_xE"] / 2, 1 + self._params["delta_I_xE"] / 2),
150+
"I_e": (
151+
I_xE
152+
if self._params["delta_I_xE"] == 0
153+
else I_xE * nest.random.uniform(1 - self._params["delta_I_xE"] / 2, 1 + self._params["delta_I_xE"] / 2)
154+
),
153155
"tau_syn_ex": self._params["tau_syn_ex"],
154156
"tau_syn_in": self._params["tau_syn_in"],
155-
"V_m": self._params["V_m"]
156-
if not self._params["V_m"] == "rand"
157-
else self._params["V_th_E"] - 20 * nest.random.lognormal(0, 1),
157+
"V_m": (
158+
self._params["V_m"]
159+
if not self._params["V_m"] == "rand"
160+
else self._params["V_th_E"] - 20 * nest.random.lognormal(0, 1)
161+
),
158162
}
159163
I_neuron_params = {
160164
"E_L": self._params["E_L"],
@@ -163,14 +167,18 @@ def create_populations(self):
163167
"t_ref": self._params["t_ref"],
164168
"V_th": self._params["V_th_I"],
165169
"V_reset": self._params["V_r"],
166-
"I_e": I_xI
167-
if self._params["delta_I_xE"] == 0
168-
else I_xI * nest.random.uniform(1 - self._params["delta_I_xE"] / 2, 1 + self._params["delta_I_xE"] / 2),
170+
"I_e": (
171+
I_xI
172+
if self._params["delta_I_xE"] == 0
173+
else I_xI * nest.random.uniform(1 - self._params["delta_I_xE"] / 2, 1 + self._params["delta_I_xE"] / 2)
174+
),
169175
"tau_syn_ex": self._params["tau_syn_ex"],
170176
"tau_syn_in": self._params["tau_syn_in"],
171-
"V_m": self._params["V_m"]
172-
if not self._params["V_m"] == "rand"
173-
else self._params["V_th_I"] - 20 * nest.random.lognormal(0, 1),
177+
"V_m": (
178+
self._params["V_m"]
179+
if not self._params["V_m"] == "rand"
180+
else self._params["V_th_I"] - 20 * nest.random.lognormal(0, 1)
181+
),
174182
}
175183

176184
# iaf_psc_exp allows stochasticity, if not used - don't supply the parameters and use

pynest/examples/lin_rate_ipn_network.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -74,7 +74,7 @@
7474
# time constant of neuronal dynamics in ms
7575
"mu": 2.0,
7676
# mean input
77-
"sigma": 5.0
77+
"sigma": 5.0,
7878
# noise parameter
7979
}
8080

testsuite/pytests/test_erfc_neuron.py

-1
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,6 @@ def activation_function_theory(sigma, theta):
7171

7272

7373
class ErfcNeuronTheoryTestCase(unittest.TestCase):
74-
7574
"""Compare results to theoretical predictions"""
7675

7776
def setUp(self):

testsuite/pytests/test_rate_copy_model.py

-1
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,6 @@
2727

2828
@nest.ll_api.check_stack
2929
class RateCopyModelTestCase(unittest.TestCase):
30-
3130
"""
3231
Test whether a rate connection created by copy model behaves
3332
identical to the original version

testsuite/pytests/test_rate_instantaneous_and_delayed.py

-1
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,6 @@
2727

2828
@nest.ll_api.check_stack
2929
class RateInstantaneousAndDelayedTestCase(unittest.TestCase):
30-
3130
"""
3231
Test whether delayed rate connections have same properties as
3332
instantaneous connections but with the correct delay

testsuite/pytests/test_rate_neuron.py

-1
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,6 @@
3333

3434
@nest.ll_api.check_stack
3535
class RateNeuronTestCase(unittest.TestCase):
36-
3736
"""Check rate_neuron"""
3837

3938
def setUp(self):

testsuite/pytests/test_rate_neuron_communication.py

-1
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,6 @@ def H(x):
3434

3535
@nest.ll_api.check_stack
3636
class RateNeuronCommunicationTestCase(unittest.TestCase):
37-
3837
"""Check rate_neuron"""
3938

4039
def setUp(self):

testsuite/pytests/test_sp/test_growth_curves.py

-1
Original file line numberDiff line numberDiff line change
@@ -217,7 +217,6 @@ def growth_curve(self, t):
217217

218218

219219
class SigmoidNumericSEI(SynapticElementIntegrator):
220-
221220
"""
222221
Compute the number of synaptic element corresponding to a
223222
sigmoid growth curve

testsuite/pytests/test_step_rate_generator.py

-1
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,6 @@
2727

2828
@nest.ll_api.check_stack
2929
class StepRateGeneratorTestCase(unittest.TestCase):
30-
3130
"""
3231
Test whether the step_rate_generator produces and
3332
communicates the desired rates

testsuite/pytests/test_vogels_sprekeler_synapse.py

-1
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,6 @@
2929

3030
@nest.ll_api.check_stack
3131
class VogelsSprekelerConnectionTestCase(unittest.TestCase):
32-
3332
"""Check vogels_sprekeler_synapse model properties."""
3433

3534
def setUp(self):

0 commit comments

Comments
 (0)