-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathDESCRIPTION
49 lines (49 loc) · 1.71 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Package: deepregression
Title: Fitting Deep Distributional Regression
Version: 2.2.0
Authors@R: c(
person("David", "Ruegamer", , "[email protected]", role = c("aut", "cre")),
person("Christopher", "Marquardt", , "[email protected]", role = c("ctb")),
person("Laetitia", "Frost", , "[email protected] ", role = c("ctb")),
person("Florian", "Pfisterer", , "[email protected]", role = c("ctb")),
person("Philipp", "Baumann", , "[email protected]", role = c("ctb")),
person("Chris", "Kolb", , "[email protected]", role = c("ctb")),
person("Lucas", "Kook", , "[email protected]", role = c("ctb")))
Description:
Allows for the specification of semi-structured deep distributional regression models which are fitted in a neural network as
proposed by Ruegamer et al. (2023) <doi:10.18637/jss.v105.i02>.
Predictors can be modeled using structured (penalized) linear effects, structured non-linear effects or using an unstructured deep network model.
Config/reticulate:
list(
packages = list(
list(package = "six", pip = TRUE),
list(package = "tensorflow", version = "2.15", pip = TRUE),
list(package = "tensorflow_probability", version = "0.23", pip = TRUE),
list(package = "keras", version = "2.15", pip = TRUE))
)
Depends:
R (>= 4.0.0),
tensorflow (>= 2.2.0),
tfprobability,
keras (>= 2.2.0)
Suggests:
testthat,
knitr,
covr
Imports:
mgcv,
dplyr,
R6,
reticulate (>= 1.14),
Matrix,
magrittr,
tfruns,
methods,
coro (>= 1.0.3),
torchvision (>= 0.5.1),
luz (>= 0.4.0),
torch
License: GPL-3
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.3.2