|
| 1 | +"""Point-set structures |
| 2 | +
|
| 3 | +Imaging data are sampled at points in space, and these points |
| 4 | +can be described by coordinates. |
| 5 | +These structures are designed to enable operations on sets of |
| 6 | +points, as opposed to the data sampled at those points. |
| 7 | +
|
| 8 | +Abstractly, a point set is any collection of points, but there are |
| 9 | +two types that warrant special consideration in the neuroimaging |
| 10 | +context: grids and meshes. |
| 11 | +
|
| 12 | +A *grid* is a collection of regularly-spaced points. The canonical |
| 13 | +examples of grids are the indices of voxels and their affine |
| 14 | +projection into a reference space. |
| 15 | +
|
| 16 | +A *mesh* is a collection of points and some structure that enables |
| 17 | +adjacent points to be identified. A *triangular mesh* in particular |
| 18 | +uses triplets of adjacent vertices to describe faces. |
| 19 | +""" |
| 20 | +from __future__ import annotations |
| 21 | + |
| 22 | +import math |
| 23 | +import typing as ty |
| 24 | +from dataclasses import dataclass, replace |
| 25 | + |
| 26 | +import numpy as np |
| 27 | + |
| 28 | +from nibabel.casting import able_int_type |
| 29 | +from nibabel.fileslice import strided_scalar |
| 30 | +from nibabel.spatialimages import SpatialImage |
| 31 | + |
| 32 | +if ty.TYPE_CHECKING: # pragma: no cover |
| 33 | + from typing_extensions import Self |
| 34 | + |
| 35 | + _DType = ty.TypeVar('_DType', bound=np.dtype[ty.Any]) |
| 36 | + |
| 37 | + |
| 38 | +class CoordinateArray(ty.Protocol): |
| 39 | + ndim: int |
| 40 | + shape: tuple[int, int] |
| 41 | + |
| 42 | + @ty.overload |
| 43 | + def __array__(self, dtype: None = ..., /) -> np.ndarray[ty.Any, np.dtype[ty.Any]]: |
| 44 | + ... # pragma: no cover |
| 45 | + |
| 46 | + @ty.overload |
| 47 | + def __array__(self, dtype: _DType, /) -> np.ndarray[ty.Any, _DType]: |
| 48 | + ... # pragma: no cover |
| 49 | + |
| 50 | + |
| 51 | +@dataclass |
| 52 | +class Pointset: |
| 53 | + """A collection of points described by coordinates. |
| 54 | +
|
| 55 | + Parameters |
| 56 | + ---------- |
| 57 | + coords : array-like |
| 58 | + (*N*, *n*) array with *N* being points and columns their *n*-dimensional coordinates |
| 59 | + affine : :class:`numpy.ndarray` |
| 60 | + Affine transform to be applied to coordinates array |
| 61 | + homogeneous : :class:`bool` |
| 62 | + Indicate whether the provided coordinates are homogeneous, |
| 63 | + i.e., homogeneous 3D coordinates have the form ``(x, y, z, 1)`` |
| 64 | + """ |
| 65 | + |
| 66 | + coordinates: CoordinateArray |
| 67 | + affine: np.ndarray |
| 68 | + homogeneous: bool = False |
| 69 | + |
| 70 | + # Force use of __rmatmul__ with numpy arrays |
| 71 | + __array_priority__ = 99 |
| 72 | + |
| 73 | + def __init__( |
| 74 | + self, |
| 75 | + coordinates: CoordinateArray, |
| 76 | + affine: np.ndarray | None = None, |
| 77 | + homogeneous: bool = False, |
| 78 | + ): |
| 79 | + self.coordinates = coordinates |
| 80 | + self.homogeneous = homogeneous |
| 81 | + |
| 82 | + if affine is None: |
| 83 | + self.affine = np.eye(self.dim + 1) |
| 84 | + else: |
| 85 | + self.affine = np.asanyarray(affine) |
| 86 | + |
| 87 | + if self.affine.shape != (self.dim + 1,) * 2: |
| 88 | + raise ValueError(f'Invalid affine for {self.dim}D coordinates:\n{self.affine}') |
| 89 | + if np.any(self.affine[-1, :-1] != 0) or self.affine[-1, -1] != 1: |
| 90 | + raise ValueError(f'Invalid affine matrix:\n{self.affine}') |
| 91 | + |
| 92 | + @property |
| 93 | + def n_coords(self) -> int: |
| 94 | + """Number of coordinates |
| 95 | +
|
| 96 | + Subclasses should override with more efficient implementations. |
| 97 | + """ |
| 98 | + return self.coordinates.shape[0] |
| 99 | + |
| 100 | + @property |
| 101 | + def dim(self) -> int: |
| 102 | + """The dimensionality of the space the coordinates are in""" |
| 103 | + return self.coordinates.shape[1] - self.homogeneous |
| 104 | + |
| 105 | + def __rmatmul__(self, affine: np.ndarray) -> Self: |
| 106 | + """Apply an affine transformation to the pointset |
| 107 | +
|
| 108 | + This will return a new pointset with an updated affine matrix only. |
| 109 | + """ |
| 110 | + return replace(self, affine=np.asanyarray(affine) @ self.affine) |
| 111 | + |
| 112 | + def _homogeneous_coords(self): |
| 113 | + if self.homogeneous: |
| 114 | + return np.asanyarray(self.coordinates) |
| 115 | + |
| 116 | + ones = strided_scalar( |
| 117 | + shape=(self.coordinates.shape[0], 1), |
| 118 | + scalar=np.array(1, dtype=self.coordinates.dtype), |
| 119 | + ) |
| 120 | + return np.hstack((self.coordinates, ones)) |
| 121 | + |
| 122 | + def get_coords(self, *, as_homogeneous: bool = False): |
| 123 | + """Retrieve the coordinates |
| 124 | +
|
| 125 | + Parameters |
| 126 | + ---------- |
| 127 | + as_homogeneous : :class:`bool` |
| 128 | + Return homogeneous coordinates if ``True``, or Cartesian |
| 129 | + coordiantes if ``False``. |
| 130 | +
|
| 131 | + name : :class:`str` |
| 132 | + Select a particular coordinate system if more than one may exist. |
| 133 | + By default, `None` is equivalent to `"world"` and corresponds to |
| 134 | + an RAS+ coordinate system. |
| 135 | + """ |
| 136 | + ident = np.allclose(self.affine, np.eye(self.affine.shape[0])) |
| 137 | + if self.homogeneous == as_homogeneous and ident: |
| 138 | + return np.asanyarray(self.coordinates) |
| 139 | + coords = self._homogeneous_coords() |
| 140 | + if not ident: |
| 141 | + coords = (self.affine @ coords.T).T |
| 142 | + if not as_homogeneous: |
| 143 | + coords = coords[:, :-1] |
| 144 | + return coords |
| 145 | + |
| 146 | + |
| 147 | +class Grid(Pointset): |
| 148 | + r"""A regularly-spaced collection of coordinates |
| 149 | +
|
| 150 | + This class provides factory methods for generating Pointsets from |
| 151 | + :class:`~nibabel.spatialimages.SpatialImage`\s and generating masks |
| 152 | + from coordinate sets. |
| 153 | + """ |
| 154 | + |
| 155 | + @classmethod |
| 156 | + def from_image(cls, spatialimage: SpatialImage) -> Self: |
| 157 | + return cls(coordinates=GridIndices(spatialimage.shape[:3]), affine=spatialimage.affine) |
| 158 | + |
| 159 | + @classmethod |
| 160 | + def from_mask(cls, mask: SpatialImage) -> Self: |
| 161 | + mask_arr = np.bool_(mask.dataobj) |
| 162 | + return cls( |
| 163 | + coordinates=np.c_[np.nonzero(mask_arr)].astype(able_int_type(mask.shape)), |
| 164 | + affine=mask.affine, |
| 165 | + ) |
| 166 | + |
| 167 | + def to_mask(self, shape=None) -> SpatialImage: |
| 168 | + if shape is None: |
| 169 | + shape = tuple(np.max(self.coordinates, axis=0)[: self.dim] + 1) |
| 170 | + mask_arr = np.zeros(shape, dtype='bool') |
| 171 | + mask_arr[tuple(np.asanyarray(self.coordinates)[:, : self.dim].T)] = True |
| 172 | + return SpatialImage(mask_arr, self.affine) |
| 173 | + |
| 174 | + |
| 175 | +class GridIndices: |
| 176 | + """Class for generating indices just-in-time""" |
| 177 | + |
| 178 | + __slots__ = ('gridshape', 'dtype', 'shape') |
| 179 | + ndim = 2 |
| 180 | + |
| 181 | + def __init__(self, shape, dtype=None): |
| 182 | + self.gridshape = shape |
| 183 | + self.dtype = dtype or able_int_type(shape) |
| 184 | + self.shape = (math.prod(self.gridshape), len(self.gridshape)) |
| 185 | + |
| 186 | + def __repr__(self): |
| 187 | + return f'<{self.__class__.__name__}{self.gridshape}>' |
| 188 | + |
| 189 | + def __array__(self, dtype=None): |
| 190 | + if dtype is None: |
| 191 | + dtype = self.dtype |
| 192 | + |
| 193 | + axes = [np.arange(s, dtype=dtype) for s in self.gridshape] |
| 194 | + return np.reshape(np.meshgrid(*axes, copy=False, indexing='ij'), (len(axes), -1)).T |
0 commit comments