-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdouble_dueling_dqn_agent.py
137 lines (113 loc) · 4.72 KB
/
double_dueling_dqn_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
import random
from collections import namedtuple, deque
from model import DuelingDQN
from replay_buffer import ReplayBuffer
import torch
import torch.nn.functional as F
import torch.optim as optim
BUFFER_SIZE = int(1e5) # replay buffer size
BATCH_SIZE = 64 # minibatch size
GAMMA = 0.99 # discount factor
LR = 5e-4 # learning rate
UPDATE_EVERY = 4 # how often to update the network
TAU = 1e-3 # soft update
class Agent():
"""Interacts with and learns from the environment."""
def __init__(self,
state_size,
action_size,
seed,
gamma=GAMMA,
buffer_size=BUFFER_SIZE,
batch_size=BATCH_SIZE,
update_every=UPDATE_EVERY,
lr=LR,
tau=TAU
):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
seed (int): random seed
"""
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(seed)
self.gamma = gamma
self.batch_size = batch_size
# Q-Network
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.model_local = DuelingDQN(state_size, action_size, seed).to(self.device)
self.model_target = DuelingDQN(state_size, action_size, seed).to(self.device)
self.optimizer = optim.Adam(self.model_local.parameters(), lr=LR)
# Replay memory
self.memory = ReplayBuffer(
action_size=action_size,
buffer_size=BUFFER_SIZE,
batch_size=BATCH_SIZE,
seed=seed,
device=self.device
)
# Initialize time step (for updating every UPDATE_EVERY steps)
self.t_step = 0
def step(self, state, action, reward, next_state, done):
# Save experience in replay memory
self.memory.add(state, action, reward, next_state, done)
# Learn every UPDATE_EVERY time steps.
self.t_step = (self.t_step + 1) % UPDATE_EVERY
if self.t_step == 0:
# If enough samples are available in memory, get random subset and learn
if len(self.memory) > self.batch_size:
experiences = self.memory.sample()
self.update(experiences)
def act(self, state, eps=0.):
"""Returns actions for given state as per current policy.
Params
======
state (array_like): current state
eps (float): epsilon, for epsilon-greedy action selection
"""
state = torch.FloatTensor(state).float().unsqueeze(0).to(self.device)
self.model_local.eval()
with torch.no_grad():
qvals = self.model_local.forward(state)
self.model_local.train()
# Epsilon-greedy action selection
if random.random() > eps:
action = np.argmax(qvals.cpu().detach().numpy())
return action
else:
return random.choice(np.arange(self.action_size))
def update(self, batch):
"""Update value parameters using given batch of experience tuples.
Params
======
batch (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
states, actions, rewards, next_states, dones = batch
# Get expected Q values from local model
curr_Q = self.model_local.forward(states).gather(1, actions)
# curr_Q = curr_Q.squeeze(1)
# Get max predicted Q values (for next states) from target model
max_next_Q = self.model_target.forward(next_states).detach().max(1)[0].unsqueeze(1)
expected_Q = rewards + (self.gamma * max_next_Q * (1 - dones))
loss = F.mse_loss(curr_Q, expected_Q)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# update target model
self.update_target(self.model_local, self.model_target, TAU)
def update_target(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model (PyTorch model): weights will be copied from
target_model (PyTorch model): weights will be copied to
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)