-
Notifications
You must be signed in to change notification settings - Fork 159
Anomaly Detection Module
As part of the Network API development effort, it was decided that the production of a Java™ version of the Python NuPIC Network API Demo(s) (PNA) would be one of its downstream validating deliverables. One of the PNA Demo's dependencies was the as of yet uncompleted Anomaly/AnomalyLikelihood computation classes. As such, a giant segue (read sidetrack :-P) was born!
So as a result we now have a major piece of functionality added to the "Algorithms" package which contains the classes organized around CLA Classification.
There are 3 explicit modes in which anomaly functionality can be used:
Static call to obtain anomaly score.
Ex.int[] currentlyActiveColumns = { 3, 5, 7 }; // Array containing col indexes int[] predictedActiveColumns = { 2, 5, 6 }; double score = Anomaly.computeRawAnomalyScore(currentlyActiveColumns, predictedActiveColumns);
Factory instantiation of Anomaly instance. (Mode.PURE)
Ex.Map<String, Object> params = new HashMap<>(); params.put(KEY_MODE, **_Mode.PURE_**); // May be Mode.LIKELIHOOD params.put(KEY_USE_MOVING_AVG, true); // Instructs the Anomaly class to compute moving average params.put(KEY_WINDOW_SIZE, 10); // #of inputs over which to compute the moving average params.put(KEY_IS_WEIGHTED, true); // Use a weighted moving average or not Anomaly anomalyComputer = Anomaly.create(params); double score = anomalyComputer.compute(currentlyActiveColumns, predictedActiveColumns, 0, 0);
Factory instantiation of Anomaly instance. (Mode.LIKELIHOOD)
Ex.Map<String, Object> params = new HashMap<>(); params.put(KEY_MODE, **_Mode.LIKELIHOOD_**); params.put(KEY_USE_MOVING_AVG, true); params.put(KEY_WINDOW_SIZE, 10); params.put(KEY_IS_WEIGHTED, true); // Collect timestamp, input value (double), score (double) in a List\<Sample\> List\<Sample\> samples = ... // Where Sample = Sample(timestamp, value, score) Anomaly an = Anomaly.create(params); AnomalyLikelihoodMetrics metrics = an.estimateAnomalyLikelihoods(samples, 10, 0); // Above **AnomalyLikelihoodMetrics** contains many statistical goodies. **To update the anomaly computer with new Samples, call:** AnomalyLikelihoodMetrics metrics2 = an.updateAnomalyLikelihoods(\<new samples\>, **metrics.getParams()**);
For more information regarding usage, please see the tests.
For updates on the new Network API package development, monitor
- Introduction (Home)
- History & News Archives...
- Usability
- Architecture
- NAPI Quick Start Guide
- NAPI In Depth
- Saving Your Network: PersistenceAPI Serialization
- Roadmap
- Browse Java Docs
- Build Instructions
- Eclipse (Dev Setup)
- Anomaly Prediction
- Test Coverage Reports
- [Cortical.io Demos] (https://github.com/numenta/htm.java-examples/tree/master/src/main/java/org/numenta/nupic/examples/cortical_io)
- Hot Gym Demo
- Performance Benchmarks with jmh - blog
- BLOG: Join the "cogmission"