-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
207 lines (149 loc) · 5.94 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset
from dataloader.emnist import Emnist
import torchvision
import matplotlib.pyplot as plt
import numpy as np
from torchvision import datasets, transforms, models
from gan.generator import generator
from gan.discriminator import discriminator
import argparse
from tqdm import tqdm
import os
from PIL import Image
import PIL
# nets with cifar https://github.com/chenyaofo/pytorch-cifar-models
import pytorch_cifar_models.pytorch_cifar_models.resnet as resnet
# nets with cifar https://github.com/kuangliu/pytorch-cifar
import pytorch_cifar
from utils import *
from utils2 import *
def forward_discriminator(gen, disc, data, y, criterion):
mini_batch = data.size()[0]
D_real = torch.ones((mini_batch,1))#.cuda()
D_fake = torch.zeros((mini_batch,1))#.cuda()
D_result = disc(data)
D_real_loss = criterion(D_result, D_real)
#noise = torch.randn((mini_batch, 10))#.cuda()
G_sample = gen(y)
D_result = disc(G_sample)
D_fake_loss = criterion(D_result, D_fake)
D_train_loss = D_real_loss + D_fake_loss
return D_train_loss
def eval_model(gen):
test = []
for i in range(14):
arr = np.zeros((14,))
arr[i] = 1.
test.append(arr)
test = torch.from_numpy(np.array(test))
out = gen(test)
out = out.view(-1, 1, 28, 28)
imshow(torchvision.utils.make_grid(out.detach()))
def forward_generator(gen, disc, data, y, criterion, crit):
mini_batch = data.size()[0]
#noise = torch.randn((mini_batch, 10))#.cuda()
out = torch.ones((mini_batch,1)).cuda()
G_result = gen(y)
D_result = disc(G_result)
G_train_loss = criterion(D_result, out)
G_real_loss = crit(G_result, data)
G_loss = 0.1 * G_train_loss + G_real_loss
return G_loss
def train_gan(epochs, lr, dataset_dir):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=0.5, std=0.5)
])
train_loader = torch.utils.data.DataLoader(Emnist(root_dir='./data/mnist', transforms=transform), batch_size=8)
print('here')
gen = generator(input_size=14, n_class=28*28)
#gen.cuda()
disc = discriminator(input_size=28*28, n_class=1)
#disc#.cuda()
gen_optimizer = optim.Adam(gen.parameters(), lr=lr)
disc_optimizer = optim.Adam(disc.parameters(), lr=lr)
criterion = torch.nn.BCELoss()
crit = torch.nn.MSELoss()
last_d = np.inf
last_g = np.inf
for epoch in tqdm(range(epochs)):
for load_data, y in train_loader:
#imshow(torchvision.utils.make_grid(load_data), f'{y}')
load_data = load_data.view(-1, 28 * 28)#.cuda()
disc.zero_grad()
if last_d > 0.2 * last_g:
D_train_loss = forward_discriminator(gen, disc, load_data, y, criterion)
D_train_loss.backward()
disc_optimizer.step()
last_d = D_train_loss.item()
gen.zero_grad()
G_train_loss = forward_generator(gen, disc, load_data, y, criterion, crit)
G_train_loss.backward()
gen_optimizer.step()
last_g = G_train_loss.item()
print(f'[{epoch+1}/{epochs}]: loss_d: {last_d}, loss_g: {last_g}', end='\r')
if epoch % 500 == 0:
eval_model(gen)
def classify_images():
preds = []
model = getattr(resnet, f"cifar100_resnet32")()
checkpoint = torch.load('cifar_mode/cifar100_resnet20-23dac2f1.pt')
model.load_state_dict(checkpoint)
model.eval()
transform = transform.Compose([transform.ToTensor()])
dataset = torchvision.datasets.CIFAR100("dataset/cifar", train=True, transforms=transforms, download=True)
train_loader = torch.utils.data.DataLoader(dataset, batch_len=8)
files = os.listdir('./images/infer')
for filename in sorted(files):
img = transform(PIL.Image.open(filename))
out = model(x)
out = torch.argmax(out, dim=-1)
pred = out.item()
label = cifar_labels['fine_label_names'][pred]
preds.append([pred, label])
print(f'{filename} -> prediction [{pred}: {label}]')
# for x, y in train_loader:
# x = torch.unsqueeze(img, dim=0)
# out = model(x)
# out = torch.argmax(out, dim=-1)
# for i in range(len(out)):
# torchvision.utils.save_image(x[i], f"infer_images/{out[i]}.png")
# input()
return preds
def generate_message_from_encode(encode):
encode_pred = [ pred for pred, label in encode ]
print(f'\n{encode_pred}')
gen = generator(input_size=14, n_class=28*28)
checkpoint = torch.load('./gan_pretrainedgenerator_emnist.pt', map_location=torch.device('cpu'))
gen.load_state_dict(checkpoint['model_state_dict'])
one_hot = torch.from_numpy(num_to_one_hot_vector(encode_pred))
out = gen(one_hot)
out = out.view(-1, 1, 28, 28)
imshow(torchvision.utils.make_grid(out.detach()))
def decode_message_from_images():
print('Predicting images class with ResNet20...')
encode = classify_images()
print('\nOutput predictions: ', encode)
encode_num = encode_label_from_pred(encode)
encode_to_one_hot(encode_num)
a = np.array(encode_num)
encode_one_hot = np.zeros((a.size, a.max()+1))
encode_one_hot[np.arange(a.size),a] = 1
generate_message_from_encode(encode)
parser = argparse.ArgumentParser(description="GAN")
parser.add_argument("--dataset_dir", type=str, default="EMNIST",
help="which dataset")
parser.add_argument("--num_epochs", type=int, default=10,
help="number of epochs to train (default: 10)")
parser.add_argument("--lr", type=float, default=0.0002,
help="learning rate for training (default: 0.0002)")
args = parser.parse_args()
dataset_dir = args.dataset_dir
epochs = args.num_epochs
lr = args.lr
train_gan(epochs, lr, dataset_dir)
decode_message_from_images()