|
| 1 | +"""Module containing the BaseMetric definition for Openlayer.""" |
| 2 | + |
| 3 | +from __future__ import annotations |
| 4 | + |
| 5 | +import abc |
| 6 | +import argparse |
| 7 | +import json |
| 8 | +import os |
| 9 | +from dataclasses import asdict, dataclass, field |
| 10 | +from typing import Any, Dict, List, Optional, Union |
| 11 | + |
| 12 | +import pandas as pd |
| 13 | + |
| 14 | + |
| 15 | +@dataclass |
| 16 | +class MetricReturn: |
| 17 | + """The return type of the `run` method in the BaseMetric.""" |
| 18 | + |
| 19 | + value: Union[float, int, bool] |
| 20 | + """The value of the metric.""" |
| 21 | + |
| 22 | + unit: Optional[str] = None |
| 23 | + """The unit of the metric.""" |
| 24 | + |
| 25 | + meta: Dict[str, Any] = field(default_factory=dict) |
| 26 | + """Any useful metadata in a JSON serializable dict.""" |
| 27 | + |
| 28 | + |
| 29 | +@dataclass |
| 30 | +class Dataset: |
| 31 | + """A dataset object containing the configuration, data and dataset outputs path.""" |
| 32 | + |
| 33 | + name: str |
| 34 | + """The name of the dataset.""" |
| 35 | + |
| 36 | + config: dict |
| 37 | + """The configuration of the dataset.""" |
| 38 | + |
| 39 | + df: pd.DataFrame |
| 40 | + """The dataset as a pandas DataFrame.""" |
| 41 | + |
| 42 | + output_path: str |
| 43 | + """The path to the dataset outputs.""" |
| 44 | + |
| 45 | + |
| 46 | +class MetricRunner: |
| 47 | + """A class to run a list of metrics.""" |
| 48 | + |
| 49 | + def __init__(self): |
| 50 | + self.config_path: str = "" |
| 51 | + self.config: Dict[str, Any] = {} |
| 52 | + self.datasets: List[Dataset] = [] |
| 53 | + self.selected_metrics: Optional[List[str]] = None |
| 54 | + |
| 55 | + def run_metrics(self, metrics: List[BaseMetric]) -> None: |
| 56 | + """Run a list of metrics.""" |
| 57 | + |
| 58 | + # Parse arguments from the command line |
| 59 | + self._parse_args() |
| 60 | + |
| 61 | + # Load the openlayer.json file |
| 62 | + self._load_openlayer_json() |
| 63 | + |
| 64 | + # Load the datasets from the openlayer.json file |
| 65 | + self._load_datasets() |
| 66 | + |
| 67 | + # TODO: Auto-load all the metrics in the current directory |
| 68 | + |
| 69 | + self._compute_metrics(metrics) |
| 70 | + |
| 71 | + def _parse_args(self) -> None: |
| 72 | + parser = argparse.ArgumentParser(description="Compute custom metrics.") |
| 73 | + parser.add_argument( |
| 74 | + "--config-path", |
| 75 | + type=str, |
| 76 | + required=False, |
| 77 | + default="", |
| 78 | + help="The path to your openlayer.json. Uses working dir if not provided.", |
| 79 | + ) |
| 80 | + |
| 81 | + # Parse the arguments |
| 82 | + args = parser.parse_args() |
| 83 | + self.config_path = args.config_path |
| 84 | + |
| 85 | + def _load_openlayer_json(self) -> None: |
| 86 | + """Load the openlayer.json file.""" |
| 87 | + |
| 88 | + if not self.config_path: |
| 89 | + openlayer_json_path = os.path.join(os.getcwd(), "openlayer.json") |
| 90 | + else: |
| 91 | + openlayer_json_path = self.config_path |
| 92 | + |
| 93 | + with open(openlayer_json_path, "r", encoding="utf-8") as f: |
| 94 | + self.config = json.load(f) |
| 95 | + |
| 96 | + # Extract selected metrics |
| 97 | + if "metrics" in self.config and "settings" in self.config["metrics"]: |
| 98 | + self.selected_metrics = [ |
| 99 | + metric["key"] for metric in self.config["metrics"]["settings"] if metric["selected"] |
| 100 | + ] |
| 101 | + |
| 102 | + def _load_datasets(self) -> None: |
| 103 | + """Compute the metric from the command line.""" |
| 104 | + |
| 105 | + datasets: List[Dataset] = [] |
| 106 | + |
| 107 | + # Check first for a model. If it exists, use the output of the model |
| 108 | + if "model" in self.config: |
| 109 | + model = self.config["model"] |
| 110 | + datasets_list = self.config["datasets"] |
| 111 | + dataset_names = [dataset["name"] for dataset in datasets_list] |
| 112 | + output_directory = model["outputDirectory"] |
| 113 | + # Read the outputs directory for dataset folders. For each, load |
| 114 | + # the config.json and the dataset.json files into a dict and a dataframe |
| 115 | + |
| 116 | + for dataset_folder in os.listdir(output_directory): |
| 117 | + if dataset_folder not in dataset_names: |
| 118 | + continue |
| 119 | + dataset_path = os.path.join(output_directory, dataset_folder) |
| 120 | + config_path = os.path.join(dataset_path, "config.json") |
| 121 | + with open(config_path, "r", encoding="utf-8") as f: |
| 122 | + dataset_config = json.load(f) |
| 123 | + |
| 124 | + # Load the dataset into a pandas DataFrame |
| 125 | + if os.path.exists(os.path.join(dataset_path, "dataset.csv")): |
| 126 | + dataset_df = pd.read_csv(os.path.join(dataset_path, "dataset.csv")) |
| 127 | + elif os.path.exists(os.path.join(dataset_path, "dataset.json")): |
| 128 | + dataset_df = pd.read_json(os.path.join(dataset_path, "dataset.json"), orient="records") |
| 129 | + else: |
| 130 | + raise ValueError(f"No dataset found in {dataset_folder}.") |
| 131 | + |
| 132 | + datasets.append( |
| 133 | + Dataset(name=dataset_folder, config=dataset_config, df=dataset_df, output_path=dataset_path) |
| 134 | + ) |
| 135 | + else: |
| 136 | + raise ValueError("No model found in the openlayer.json file. Cannot compute metric.") |
| 137 | + |
| 138 | + if not datasets: |
| 139 | + raise ValueError("No datasets found in the openlayer.json file. Cannot compute metric.") |
| 140 | + |
| 141 | + self.datasets = datasets |
| 142 | + |
| 143 | + def _compute_metrics(self, metrics: List[BaseMetric]) -> None: |
| 144 | + """Compute the metrics.""" |
| 145 | + for metric in metrics: |
| 146 | + if self.selected_metrics and metric.key not in self.selected_metrics: |
| 147 | + print(f"Skipping metric {metric.key} as it is not a selected metric.") |
| 148 | + continue |
| 149 | + metric.compute(self.datasets) |
| 150 | + |
| 151 | + |
| 152 | +class BaseMetric(abc.ABC): |
| 153 | + """Interface for the Base metric. |
| 154 | +
|
| 155 | + Your metric's class should inherit from this class and implement the compute method. |
| 156 | + """ |
| 157 | + |
| 158 | + @property |
| 159 | + def key(self) -> str: |
| 160 | + """Return the key of the metric.""" |
| 161 | + return self.__class__.__name__ |
| 162 | + |
| 163 | + def compute(self, datasets: List[Dataset]) -> None: |
| 164 | + """Compute the metric on the model outputs.""" |
| 165 | + for dataset in datasets: |
| 166 | + metric_return = self.compute_on_dataset(dataset.config, dataset.df) |
| 167 | + metric_value = metric_return.value |
| 168 | + if metric_return.unit: |
| 169 | + metric_value = f"{metric_value} {metric_return.unit}" |
| 170 | + print(f"Metric ({self.key}) value for {dataset.name}: {metric_value}") |
| 171 | + |
| 172 | + output_dir = os.path.join(dataset.output_path, "metrics") |
| 173 | + self._write_metric_return_to_file(metric_return, output_dir) |
| 174 | + |
| 175 | + @abc.abstractmethod |
| 176 | + def compute_on_dataset(self, config: dict, df: pd.DataFrame) -> MetricReturn: |
| 177 | + """Compute the metric on a specific dataset.""" |
| 178 | + pass |
| 179 | + |
| 180 | + def _write_metric_return_to_file(self, metric_return: MetricReturn, output_dir: str) -> None: |
| 181 | + """Write the metric return to a file.""" |
| 182 | + |
| 183 | + # Create the directory if it doesn't exist |
| 184 | + os.makedirs(output_dir, exist_ok=True) |
| 185 | + |
| 186 | + with open(os.path.join(output_dir, f"{self.key}.json"), "w", encoding="utf-8") as f: |
| 187 | + json.dump(asdict(metric_return), f, indent=4) |
| 188 | + print(f"Metric ({self.key}) value written to {output_dir}/{self.key}.json") |
0 commit comments