From 174305eec7ce7564bef5a6c120ef8561e8beb252 Mon Sep 17 00:00:00 2001 From: Brittni Lorton Date: Wed, 17 Aug 2022 08:19:45 -0600 Subject: [PATCH 1/2] Typos and bug fixes --- ...D_CCCS_Openstax_Calc1_C1-2016-002_03_85.pg | 2 +- ...CS_Openstax_Calculus_C1-2016-002_3_2_59.pg | 2 +- ...CCCS_Openstax_Calc1_C1-2016-002_3_6_224.pg | 32 ++++++++++++++----- ...CCCS_Openstax_Calc1_C1-2016-002_4_3_116.pg | 6 ++-- ..._Openstax_Calc1_C1-2016-002_4_7_332_334.pg | 4 +-- ...CCCS_Openstax_Calc1_C1-2016-002_5_2_106.pg | 2 +- ...CS_Openstax_Calc2_C1-2016-002_7_2_81-82.pg | 10 ++++++ 7 files changed, 42 insertions(+), 16 deletions(-) diff --git a/Contrib/CCCS/CalculusOne/02.3/CCD_CCCS_Openstax_Calc1_C1-2016-002_03_85.pg b/Contrib/CCCS/CalculusOne/02.3/CCD_CCCS_Openstax_Calc1_C1-2016-002_03_85.pg index 357831eae4..9f6b6b377e 100644 --- a/Contrib/CCCS/CalculusOne/02.3/CCD_CCCS_Openstax_Calc1_C1-2016-002_03_85.pg +++ b/Contrib/CCCS/CalculusOne/02.3/CCD_CCCS_Openstax_Calc1_C1-2016-002_03_85.pg @@ -61,7 +61,7 @@ $answer[1] = "sqrt($f_eval)"; BEGIN_PGML -Determine which limit law justify the step(s) then evaluate the limit. Give exact answers. +Determine which limit law justifies the step(s) then evaluate the limit. Give exact answers. [`\displaystyle \lim_{x \to [$x]} \sqrt{[$f]} = \sqrt{\lim_{x \to [$x]} ([$f])}`] [@ $popup1->menu() @]* diff --git a/Contrib/CCCS/CalculusOne/03.2/CCD_CCCS_Openstax_Calculus_C1-2016-002_3_2_59.pg b/Contrib/CCCS/CalculusOne/03.2/CCD_CCCS_Openstax_Calculus_C1-2016-002_3_2_59.pg index c263da2a1e..148bb8a727 100644 --- a/Contrib/CCCS/CalculusOne/03.2/CCD_CCCS_Openstax_Calculus_C1-2016-002_3_2_59.pg +++ b/Contrib/CCCS/CalculusOne/03.2/CCD_CCCS_Openstax_Calculus_C1-2016-002_3_2_59.pg @@ -35,7 +35,7 @@ $showPartialCorrectAnswers = 1; Context("Numeric"); #Context()->variables->add(x => 'Real'); -$a=random(0,16,1); +$a=random(1,16,1); $f = Formula("sqrt($a x)")->reduce; diff --git a/Contrib/CCCS/CalculusOne/03.6/CCD_CCCS_Openstax_Calc1_C1-2016-002_3_6_224.pg b/Contrib/CCCS/CalculusOne/03.6/CCD_CCCS_Openstax_Calc1_C1-2016-002_3_6_224.pg index d6e685f9d7..39562323f3 100644 --- a/Contrib/CCCS/CalculusOne/03.6/CCD_CCCS_Openstax_Calc1_C1-2016-002_3_6_224.pg +++ b/Contrib/CCCS/CalculusOne/03.6/CCD_CCCS_Openstax_Calc1_C1-2016-002_3_6_224.pg @@ -21,6 +21,7 @@ DOCUMENT(); loadMacros( "PGstandard.pl", "MathObjects.pl", +"answerComposition.pl", "AnswerFormatHelp.pl", "PGML.pl", "PGcourse.pl", @@ -49,20 +50,35 @@ $ans3=Formula("$a sec^2(sec($a x)) sec($a x) tan($a x)"); ########################### # Main text -BEGIN_PGML +#BEGIN_PGML -Decompose [`\displaystyle y=[$f]`] into two functions [`y=f(u)`] and [`u=g(x)`] such that [`y=f(g(x))`]. Then find `\frac{dy}{dx}`. +#Decompose [`\displaystyle y=[$f]`] into two functions [`y=f(u)`] and [`u=g(x)`] such that [`y=f(g(x))`]. Then find `\frac{dy}{dx}`. -[`f(u)=`][_______________]{$ans1} [@ AnswerFormatHelp("formulas") @]* +#[`f(u)=`][_______________] [@ AnswerFormatHelp("formulas") @]* -[`g(x)=`][_______________]{$ans2} [@ AnswerFormatHelp("formulas") @]* +#[`g(x)=`][_______________] [@ AnswerFormatHelp("formulas") @]* -`\frac{dy}{dx}=`[_______________]{$ans3} [@ AnswerFormatHelp("formulas") @]* +#`\frac{dy}{dx}=`[_______________] [@ AnswerFormatHelp("formulas") @]* +#END_PGML +Context()->texStrings; +BEGIN_TEXT +Decompose \( y=$f\) into two functions \(y=f(u)\) and \(u=g(x)\) such that \(y=f(g(x))\). Then find \( \frac{dy}{dx}\). +$BR +$BR +\( f(u) \) = \{ ans_rule(20) \} +\{ AnswerFormatHelp("formulas") \} +$BR +\( g(x) \) = \{ ans_rule(20) \} +$BR +END_TEXT +Context()->normalStrings; +COMPOSITION_ANS( $ans1, $ans2, vars=>['u','x'], showVariableHints=>1); - -END_PGML - +BEGIN_TEXT +\(\frac{dy}{dx}= \) \{ans_rule(20)\} +END_TEXT +ANS( $ans3->cmp() ); ############################ # Solution diff --git a/Contrib/CCCS/CalculusOne/04.3/CCD_CCCS_Openstax_Calc1_C1-2016-002_4_3_116.pg b/Contrib/CCCS/CalculusOne/04.3/CCD_CCCS_Openstax_Calc1_C1-2016-002_4_3_116.pg index 3b65cbbe76..cb541197ed 100644 --- a/Contrib/CCCS/CalculusOne/04.3/CCD_CCCS_Openstax_Calc1_C1-2016-002_4_3_116.pg +++ b/Contrib/CCCS/CalculusOne/04.3/CCD_CCCS_Openstax_Calc1_C1-2016-002_4_3_116.pg @@ -43,7 +43,7 @@ $showPartialCorrectAnswers = 1; $a=random(2,4,1); $ans1=Compute("2*$a*sin(x)*cos(x)")->reduce; -$ans3=List("0, pi/2, pi, 3pi/2, 2pi"); +$ans3=List("pi/2, pi, 3pi/2"); Context("Interval"); $ans2=Compute("(-infinity,infinity)"); @@ -53,13 +53,13 @@ $ans2=Compute("(-infinity,infinity)"); BEGIN_PGML -Find the domain of [`y=[$a] \sin^2(x)`] . Then find the critical points of [`y=[$a] \sin^2(x)`] that lie in the interval [`[0, 2\pi]`]. +Find the domain of [`y=[$a] \sin^2(x)`]. Then find the critical points of [`y=[$a] \sin^2(x)`] that lie in the interval [`(0, 2\pi)`]. a) Domain of [`y=[$a] \sin^2(x)`] is [________________]{($ans2)}[@ AnswerFormatHelp("intervals") @]* b) [`\frac{dy}{dx} = `] [__________________]{($ans1)} [@ AnswerFormatHelp("formulas") @]* -c) Critical point(s) of [`y=[$a] \sin^2(x)`] on the interval [`[0, 2\pi]`] are [`x=`] [__________________]{($ans3)} [@ AnswerFormatHelp("numbers") @]* (Use a comma to separate answers, enter "NONE" if there are no critical points in the domain) +c) Critical point(s) of [`y=[$a] \sin^2(x)`] on the interval [`(0, 2\pi)`] are [`x=`] [__________________]{($ans3)} [@ AnswerFormatHelp("numbers") @]* (Use a comma to separate answers, enter "NONE" if there are no critical points in the domain) END_PGML diff --git a/Contrib/CCCS/CalculusOne/04.7/CCD_CCCS_Openstax_Calc1_C1-2016-002_4_7_332_334.pg b/Contrib/CCCS/CalculusOne/04.7/CCD_CCCS_Openstax_Calc1_C1-2016-002_4_7_332_334.pg index d819f5d28c..198f547942 100644 --- a/Contrib/CCCS/CalculusOne/04.7/CCD_CCCS_Openstax_Calc1_C1-2016-002_4_7_332_334.pg +++ b/Contrib/CCCS/CalculusOne/04.7/CCD_CCCS_Openstax_Calc1_C1-2016-002_4_7_332_334.pg @@ -40,7 +40,7 @@ $showPartialCorrectAnswers = 1; ########################### # Setup -$a=random(4,20,4); +do{$a=random(4,20,4); $b=random(2,8,2); $d=random(5,25,5); $e=random(2,8,2); @@ -53,7 +53,7 @@ $ans4=Compute(($d-$f)/(2*$g)); $rev1=Compute("$a*x")->reduce; $rev2=Compute("$d*x")->reduce; $cost1=Compute("$b*x+x^2")->reduce; -$cost2=Compute("$e+$f*x+$g*x^2")->reduce; +$cost2=Compute("$e+$f*x+$g*x^2")->reduce;}until($ans3>0 and $ans4>0); ########################### diff --git a/Contrib/CCCS/CalculusOne/05.2/CCD_CCCS_Openstax_Calc1_C1-2016-002_5_2_106.pg b/Contrib/CCCS/CalculusOne/05.2/CCD_CCCS_Openstax_Calc1_C1-2016-002_5_2_106.pg index 5141b484f7..9b0c3570ab 100644 --- a/Contrib/CCCS/CalculusOne/05.2/CCD_CCCS_Openstax_Calc1_C1-2016-002_5_2_106.pg +++ b/Contrib/CCCS/CalculusOne/05.2/CCD_CCCS_Openstax_Calc1_C1-2016-002_5_2_106.pg @@ -54,7 +54,7 @@ $popup=PopUp(["?","$ans1","$ans3","$ans2"],"$ans3"); BEGIN_PGML Use the Comparison Theorem to show that [``\int_{0}^{[$c]}[$f1] dx \le \int_{0}^{[$c]}[$f2] dx``]. -[``\int_{0}^{[$c]}[$f1] dx \le \int_{0}^{[$c]}[$f2]``] [____________________]{$popup} +[``\int_{0}^{[$c]}[$f1] dx \le \int_{0}^{[$c]}[$f2] dx``] [____________________]{$popup} END_PGML diff --git a/Contrib/CCCS/CalculusTwo/07.2/CCD_CCCS_Openstax_Calc2_C1-2016-002_7_2_81-82.pg b/Contrib/CCCS/CalculusTwo/07.2/CCD_CCCS_Openstax_Calc2_C1-2016-002_7_2_81-82.pg index 8207d5ad90..e6022648e7 100644 --- a/Contrib/CCCS/CalculusTwo/07.2/CCD_CCCS_Openstax_Calc2_C1-2016-002_7_2_81-82.pg +++ b/Contrib/CCCS/CalculusTwo/07.2/CCD_CCCS_Openstax_Calc2_C1-2016-002_7_2_81-82.pg @@ -73,8 +73,14 @@ $x_ta=$x_t->eval(t=>$b); ##Y-COORD## $y_ta=$y_t->eval(t=>$b); +Context()->flags->set( +tolType => 'absolute', +tolerance => 0.0005, +); + ##y-intercept of tan line## $yint=Compute("$y_ta-$m*$x_ta")->reduce; +#$yint=Formula("$yint"); ##Folrmula for tangent line at the point determined by t=a*pi/4## $tanline=Formula("$m*x+$yint"); @@ -113,6 +119,7 @@ Find the equation of the tangent line at [`t=\frac{\pi}{4}`]. [`y=`] [_______________]{$tanline} [@ AnswerFormatHelp("formulas") @]* + END_PGML Section::End(); @@ -182,8 +189,11 @@ Section::Begin("Part 2 - 1 point"); BEGIN_PGML Find the equation of the tangent line at [`t=\frac{[$a]\pi}{4}`]. + [`y=`] [_______________]{$tanline} [@ AnswerFormatHelp("formulas") @]* + + END_PGML Section::End(); From 8c7a553dd124f88e393e024c5674dccebc6a59fb Mon Sep 17 00:00:00 2001 From: Brittni Lorton Date: Wed, 17 Aug 2022 09:14:02 -0600 Subject: [PATCH 2/2] clean up --- ...CCCS_Openstax_Calc1_C1-2016-002_3_6_224.pg | 35 ++++++------------- ..._Openstax_Calc1_C1-2016-002_4_7_332_334.pg | 20 ++++++----- 2 files changed, 23 insertions(+), 32 deletions(-) diff --git a/Contrib/CCCS/CalculusOne/03.6/CCD_CCCS_Openstax_Calc1_C1-2016-002_3_6_224.pg b/Contrib/CCCS/CalculusOne/03.6/CCD_CCCS_Openstax_Calc1_C1-2016-002_3_6_224.pg index 39562323f3..e58d3ea29e 100644 --- a/Contrib/CCCS/CalculusOne/03.6/CCD_CCCS_Openstax_Calc1_C1-2016-002_3_6_224.pg +++ b/Contrib/CCCS/CalculusOne/03.6/CCD_CCCS_Openstax_Calc1_C1-2016-002_3_6_224.pg @@ -8,7 +8,7 @@ ## DBsection(Chain rule (with trigonometric functions)) ## Date(05/11/2018) ## Institution(Colorado Community College System) -## Author(Eric Fleming) +## Author(Eric Fleming-updated to use Composition_Ans by Brittni Lorton August 2022) ## MO(1) ## KEYWORDS('chain rule', 'trig', 'trigonometric functions', 'tan', 'tangent', 'tan(x)', 'sec', 'secant', 'sec(x)') @@ -40,7 +40,6 @@ $a=random(2,9,1); $b=random(2,20,1); $c=random(2,20,1); - $f=Formula("tan(sec($a x))"); $ans1=Formula("tan(u)"); @@ -50,35 +49,23 @@ $ans3=Formula("$a sec^2(sec($a x)) sec($a x) tan($a x)"); ########################### # Main text -#BEGIN_PGML +BEGIN_PGML -#Decompose [`\displaystyle y=[$f]`] into two functions [`y=f(u)`] and [`u=g(x)`] such that [`y=f(g(x))`]. Then find `\frac{dy}{dx}`. +Decompose [`\displaystyle y=[$f]`] into two functions [`y=f(u)`] and [`u=g(x)`] such that [`y=f(g(x))`]. Then find `\frac{dy}{dx}`. -#[`f(u)=`][_______________] [@ AnswerFormatHelp("formulas") @]* +[`f(u)=`][_______________] [@ AnswerFormatHelp("formulas") @]* -#[`g(x)=`][_______________] [@ AnswerFormatHelp("formulas") @]* +[`g(x)=`][_______________] [@ AnswerFormatHelp("formulas") @]* -#`\frac{dy}{dx}=`[_______________] [@ AnswerFormatHelp("formulas") @]* +END_PGML -#END_PGML -Context()->texStrings; -BEGIN_TEXT -Decompose \( y=$f\) into two functions \(y=f(u)\) and \(u=g(x)\) such that \(y=f(g(x))\). Then find \( \frac{dy}{dx}\). -$BR -$BR -\( f(u) \) = \{ ans_rule(20) \} -\{ AnswerFormatHelp("formulas") \} -$BR -\( g(x) \) = \{ ans_rule(20) \} -$BR -END_TEXT -Context()->normalStrings; COMPOSITION_ANS( $ans1, $ans2, vars=>['u','x'], showVariableHints=>1); +BEGIN_PGML + +`\frac{dy}{dx}=`[_______________]{$ans3} [@ AnswerFormatHelp("formulas") @]* + +END_PGML -BEGIN_TEXT -\(\frac{dy}{dx}= \) \{ans_rule(20)\} -END_TEXT -ANS( $ans3->cmp() ); ############################ # Solution diff --git a/Contrib/CCCS/CalculusOne/04.7/CCD_CCCS_Openstax_Calc1_C1-2016-002_4_7_332_334.pg b/Contrib/CCCS/CalculusOne/04.7/CCD_CCCS_Openstax_Calc1_C1-2016-002_4_7_332_334.pg index 198f547942..89904c268c 100644 --- a/Contrib/CCCS/CalculusOne/04.7/CCD_CCCS_Openstax_Calc1_C1-2016-002_4_7_332_334.pg +++ b/Contrib/CCCS/CalculusOne/04.7/CCD_CCCS_Openstax_Calc1_C1-2016-002_4_7_332_334.pg @@ -39,22 +39,26 @@ $showPartialCorrectAnswers = 1; ########################### # Setup +$ans1=Compute("-b+ax-cx-dx^2"); +$ans2=Compute("(a-c)/(2d)"); do{$a=random(4,20,4); -$b=random(2,8,2); -$d=random(5,25,5); +$b=random(2,8,2);} +until($a>$b); +$ans3=Compute(($a-$b)/(2)); + +do{$d=random(5,25,5); $e=random(2,8,2); $f=random(1,3,1); -$g=random(.2,2,.2); -$ans1=Compute("-b+ax-cx-dx^2"); -$ans2=Compute("(a-c)/(2d)"); -$ans3=Compute(($a-$b)/(2)); +$g=random(.2,2,.2);} +until($d>$f); $ans4=Compute(($d-$f)/(2*$g)); + + $rev1=Compute("$a*x")->reduce; $rev2=Compute("$d*x")->reduce; $cost1=Compute("$b*x+x^2")->reduce; -$cost2=Compute("$e+$f*x+$g*x^2")->reduce;}until($ans3>0 and $ans4>0); - +$cost2=Compute("$e+$f*x+$g*x^2")->reduce; ########################### # Main text