diff --git a/OpenProblemLibrary/Rochester/setAlgebra28ExpFunctions/ur_le_1_5.pg b/OpenProblemLibrary/Rochester/setAlgebra28ExpFunctions/ur_le_1_5.pg index e924860f7d..73f1119b78 100644 --- a/OpenProblemLibrary/Rochester/setAlgebra28ExpFunctions/ur_le_1_5.pg +++ b/OpenProblemLibrary/Rochester/setAlgebra28ExpFunctions/ur_le_1_5.pg @@ -20,6 +20,7 @@ DOCUMENT(); # This should be the first executable line in the problem. loadMacros( "PGstandard.pl", + "PGML.pl", "PGchoicemacros.pl", "PGgraphmacros.pl", "PGnumericalmacros.pl", @@ -30,8 +31,7 @@ TEXT(beginproblem()); $showPartialCorrectAnswers = 1; $a = random(2,5,1); -$y = random(2,5,1); -if ($y == $a) {$y = $y+1;} +do {$y = random(2,5,1);} until ($y != $a); $s = random(-1,1,2); $b = ln($y/$a)/ln(2); $a = $a*$s; @@ -48,19 +48,15 @@ add_functions($graph1, $fn, $pt0, $pt1); $label_0 = new Label ( 0.5,$a,"(0,$a)",'black','left','middle'); $graph1->lb($label_0); $label_1 = new Label ( 1.5,$y,"(1,$y)",'black','left','middle'); $graph1->lb($label_1); -BEGIN_TEXT +BEGIN_PGML +Find the exponential function [`f(x)=a\cdot 2^{b x}`] whose graph is shown below -Find the exponential function \(f(x)=a\cdot 2^{b x}\) whose graph is shown below -$BR -\{ image(insertGraph($graph1), width=>200, height=>200) \} -$BR -\(a=\) \{ans_rule(20)\} $BR -\(b=\) \{ans_rule(20)\} +[!Graph of exponential function passing through points (0,[$a]) and (1,[$y])!]{$graph1}{width=>200, height=>200} -END_TEXT +* [`a=`][____________________]{$a} +* [`b=`][____________________]{$b} -ANS(num_cmp($a)); -ANS(num_cmp($b)); +END_PGML ENDDOCUMENT(); # This should be the last executable line in the problem.