From f0a4e8b848a9c22d880ecab627ea65a295466286 Mon Sep 17 00:00:00 2001 From: Doug Torrance Date: Wed, 6 Jul 2022 17:28:37 -0400 Subject: [PATCH] Increase minimum z-score of normal approx. to binomial dist. problem The table in Stevens says to use P(Z < z) = 0.0001 for all z < -3.5, which isn't accurate when z is still near -3.5, so we avoid this making z >= -3.4. --- .../6-ContinuousProbabilityDistributions/6.5.13.pg | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Contrib/Piedmont/StevensStatistics/6-ContinuousProbabilityDistributions/6.5.13.pg b/Contrib/Piedmont/StevensStatistics/6-ContinuousProbabilityDistributions/6.5.13.pg index e908baebdd..89991cf680 100644 --- a/Contrib/Piedmont/StevensStatistics/6-ContinuousProbabilityDistributions/6.5.13.pg +++ b/Contrib/Piedmont/StevensStatistics/6-ContinuousProbabilityDistributions/6.5.13.pg @@ -34,7 +34,7 @@ $p = 0.48; $q = 1 - $p; $mu = Compute($n*$p); $sigma = Compute(sqrt($n*$p*$q)); -$x = random(round(-3.5*$sigma + $mu), round(-2*$sigma+$mu)); +$x = random(round(-3.4*$sigma + $mu), round(-2*$sigma+$mu)); $z = Compute(($x - $mu)/$sigma)->with( tolType => 'absolute',