diff --git a/OpenProblemLibrary/Rochester/setAlgebra28ExpFunctions/ur_le_1_5.pg b/OpenProblemLibrary/Rochester/setAlgebra28ExpFunctions/ur_le_1_5.pg index 7e7f7b1952..73f1119b78 100644 --- a/OpenProblemLibrary/Rochester/setAlgebra28ExpFunctions/ur_le_1_5.pg +++ b/OpenProblemLibrary/Rochester/setAlgebra28ExpFunctions/ur_le_1_5.pg @@ -20,6 +20,7 @@ DOCUMENT(); # This should be the first executable line in the problem. loadMacros( "PGstandard.pl", + "PGML.pl", "PGchoicemacros.pl", "PGgraphmacros.pl", "PGnumericalmacros.pl", @@ -47,19 +48,15 @@ add_functions($graph1, $fn, $pt0, $pt1); $label_0 = new Label ( 0.5,$a,"(0,$a)",'black','left','middle'); $graph1->lb($label_0); $label_1 = new Label ( 1.5,$y,"(1,$y)",'black','left','middle'); $graph1->lb($label_1); -BEGIN_TEXT +BEGIN_PGML +Find the exponential function [`f(x)=a\cdot 2^{b x}`] whose graph is shown below -Find the exponential function \(f(x)=a\cdot 2^{b x}\) whose graph is shown below -$BR -\{ image(insertGraph($graph1), width=>200, height=>200) \} -$BR -\(a=\) \{ans_rule(20)\} $BR -\(b=\) \{ans_rule(20)\} +[!Graph of exponential function passing through points (0,[$a]) and (1,[$y])!]{$graph1}{width=>200, height=>200} -END_TEXT +* [`a=`][____________________]{$a} +* [`b=`][____________________]{$b} -ANS(num_cmp($a)); -ANS(num_cmp($b)); +END_PGML ENDDOCUMENT(); # This should be the last executable line in the problem.