-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMAGTFCM.m
2575 lines (2171 loc) · 163 KB
/
MAGTFCM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function [T,FL,QM,RESE]=MAGTFC(TTM,FLTM,FKTM,KLTM,RLTM,CPLTM,VXTM,VYTM,FRCPSTM,PATM)
%To iteratively solve energy and species conservation equations with finite
%volume method. Model, discretization and iteration can be found "A
%Continuum Model for Computer Simulation of Macrosegregations in Ingots
%during solidification" by Daming Xu 1989 and his companion papers in 1991
%Modified from TFCM.m for Xu Daming 1991
%Created on 2020-4-1
%Modified on 2020-7-1 for MAGTC3
%Modified for remelting 2021-4-9
%===== INPUT PARAMETERS ======
%TTM: temperature [K] [NIY+2,NIX+2]
%FLTM: liquid volume fraction [1] [NIY+2,NIX+2]
%FKTM: total solid thermal conductivity (total: minerals + volume fraction based) [W/m/K] [NIY+2,NIX+2]
%KLTM: liquid thermal conductivity [W/m/K] [NIY+2,NIX+2]
%RLTM: liquid density [kg/m^3] [NIY+2,NIX+2]
%CPLTM: liquid specific heat capacity [J/kg/K] [NIY+2,NIX+2]
%VSXTM: absolute solid velocity [m/sec] [NIY+2,NIX+1] structure
%VSYTM: absolute solid velocity [m/sec] [NIY+1,NIX+2] structure
%FRCPSTM: temporary FRCPS=FS*RS*CPS [J/m^3/K] [NIY+2,NIX+2] structure
global NIX
global NIY
global dx
global dy
global CE
global dtb
global TE
global FSE
global FSELOG
global MCL
global MCS
global TCL
global TCS
global TW
global FRCSMj
global FRCSTe
% global Majors
% global Minors
global RS
%RS has never been updated to RSN in this function
global RSN
%RSN has been updated by itself (i.e., RSN(iters_n+1)=RSN(iters_n)) in this function iteratively
global FS
global dFS
global CPS
%CPS has never been updated in this function
% global RFVX
% global RFVY
global HS
global dFSLH
global MCSN
global RLE
global CPLE
global RSE
global CPSE
global MISS
global TISS
global KP
global DL
global KST
global CL0
global TL0
err0dFSLH=1.0e-9;%controlled accuracy for dFSLH
err0TTM=1.0e-9;%controlled accuracy for T
err0CLTM=1.0e-9;%controlled accuracy for CL
NdFS=500;%max iterations allowed of dFS, T, CL
phi=0.5;%integration coefficient [0,1]
acc=0.5;%accelerator factor for dFS, TN, CLN,FLN
%======================= VERY IMPORTANT NOTE ==============================
%It is highly recommended the usage of packages for complex formulae, i.e.,
%temporary variables. These packages can be utilized repetedly, easily
%modified, and produce a concise numerical equation.
%======================= VERY IMPORTANT NOTE ==============================
%################################################################### ENERGY BALANCE #########################################################################
%% ================= DIFFUSION HEAT FLUX =========================
%------------- thermal conductivity on finite volume faces ----------------
%....................... all faces, x-axis [W/m/K] ........................
KX=zeros(NIY+2,NIX+1);
for i=1:NIX+1
for j=1:NIY+2
KX(j,i)=0.5*(FKTM(j,i)+FKTM(j,i+1)+FLTM(j,i)*KLTM(j,i)+FLTM(j,i+1)*KLTM(j,i+1));%[(FS*KS)+(FL*KL)]|(j+/-0.5,k)
end
end
%........................all faces, x-axis [W/m/K] ........................
%........................all faces, y-axis [W/m/K] ........................
KY=zeros(NIY+1,NIX+2);
for i=1:NIX+2
for j=1:NIY+1
KY(j,i)=0.5*(FKTM(j,i)+FKTM(j+1,i)+FLTM(j,i)*KLTM(j,i)+FLTM(j+1,i)*KLTM(j+1,i));%[(FS*KS)+(FL*KL)]|(j,k+/-0.5)
end
end
%KY(1,:)= top real boundary at T_radiation, constant composition and varied temperature, so its thermal conductivity changes with time
%NOTE: first row is complete solid, it serves as environment and KY(1,:) should be K of complete solid K(1,:). However, we use (K(1,:)+K(2,:))/2 as smoothed
%average.
%........................all faces, y-axis [W/m/K] ........................
%------------- thermal conductivity on finite volume faces ----------------
%----------------------------- T Gradient ---------------------------------
DTX=zeros(NIY+2,NIX+1);%T gradient between finite volumes in x-axis
for i=2:NIX
for j=1:NIY+2
DTX(j,i)=(TTM(j,i+1)-TTM(j,i))/(0.5*dx(i-1)+0.5*dx(i));%[K/m]
end
end
%Recheck boundary condition explicitly
for i=1:NIY+2
%TTM(1:NIY+2,1)==TTM(1:NIY+2,2) --> DTX(1:NIY+2,1)=0.0
DTX(i,1)=(TTM(i,2)-TTM(i,1))/(0.5*dx(1)+0.5*dx(1));%left insulated boundary
%TTM(1:NIY+2,NIX+2)==TTM(1:NIY+2,NIX+1) --> DTX(1:NIY+2,NIX+1)=0.0
DTX(i,NIX+1)=(TTM(i,NIX+2)-TTM(i,NIX+1))/(0.5*dx(NIX)+0.5*dx(NIX));%right insulated boundary
end
DTY=zeros(NIY+1,NIX+2);%T gradient between finite volumes in y-axis
for i=1:NIX+2
for j=2:NIY
DTY(j,i)=(TTM(j+1,i)-TTM(j,i))/(0.5*dy(j-1)+0.5*dy(j));%[K/m]
end
end
%Recheck boundary condition explicitly
for i=1:NIX+2
%TTM(1,1:NIX+2)!=TTM(2,1:NIX+2) --> DTY(1,1:NIX+2)!=0.0
DTY(1,i)=(TTM(2,i)-TTM(1,i))/(0.5*dy(1)+0.5*dy(1));%top cool boundary
%TTM(NIY+2,1:NIX+2)==TTM(NIY+1,1:NIX+2) --> DTY(NIY+1,1:NIX+1)=0
DTY(NIY+1,i)=(TTM(NIY+2,i)-TTM(NIY+1,i))/(0.5*dy(NIY)+0.5*dy(NIY));%bottom insulated boundary
%In Spera 1997, bottom temperature is set as constant.
end
%----------------------------- T gradient ---------------------------------
%----------------------------- Heat flux ----------------------------------
%heat flux on all x faces
TQDX=zeros(NIY+2,NIX+1);%T=T, Q=flux, D=Diffusion, X=x-axis
for i=1:NIX+1
for j=1:NIY+2
TQDX(j,i)=KX(j,i)*DTX(j,i);%[W/m^2]
end
end
%heat flux on all y faces
TQDY=zeros(NIY+1,NIX+2);%T=T, Q=flux, D=Diffusion, Y=y-axis
for i=1:NIX+2
for j=1:NIY+1
TQDY(j,i)=KY(j,i)*DTY(j,i);%[W/m^2]
end
end
%total heat flux of each finite volume
TQDT=zeros(NIY,NIX);%T=T, Q=flux, D=Diffusion, T=total
for i=1:NIX
for j=1:NIY
TQDT(j,i)=-(TQDX(j+1,i)-TQDX(j+1,i+1))*dtb/dx(i)-(TQDY(j,i+1)-TQDY(j+1,i+1))*dtb/dy(j);%[J/m^3]
end
end
%----------------------------- Heat flux ----------------------------------
%% =================== INTERNAL HEAT STORAGE =====================
IHS=zeros(NIY+2,NIX+2);%old T related Internal Heat Storage
for i=1:NIX+2
for j=1:NIY+2
IHS(j,i)=FRCPSTM(j,i)*TTM(j,i)+FLTM(j,i)*RLTM(j,i)*CPLTM(j,i)*TTM(j,i);%[J/m^3]
end
end
%% ================ LIQUID CONVECTION HEAT FLUX ==================
%------------------------ Part One: RFVX RFVY -----------------------------
% mass flux density
%x-axis velocity
% +-------+
% | |
% --> | * | -->
% | |
% +-------+
%NOTE: in fact, vx at top and bottom faces should be estimated,
%but they can be interpolated; so only vx normal to vertical faces are
%calculated!
RFVX=zeros(NIY+2,NIX+1);%RL*FL*VX, all VX at volume faces
for i=2:NIX
%VX(1:NIY+2,1)=0.0 --> RFVX(1:NIY+2,1)=0.0 (left impermeable boundary)
%VX(1:NIY+2,NIX+1)=0.0 --> RFVX(1:NIY+2,NIX+1)=0.0 (right impermeable boundary)
for j=1:NIY+2
%VX(1,1:NIX+1)=-VX(2,1:NIX+1) --> RFVX(1,1:NIX+1)=-RFVX(2,1:NIX+1) (top NO SLIP boundary)
%VX(NIY+2,1:NIX+1)=-VX(NIY+1,1:NIX+1) --> RFVX(NIY+2,1:NIX+1)=-RFVX(NIY+1,1;NIX+1) (bottom NO SLIP boundary)
%VX(1,1:NIX+1)=VX(2,1:NIX+1) --> RFVX(1,1:NIX+1)=RFVX(2,1:NIX+1) (top FREE boundary)
%VX(NIY+2,1:NIX+1)=VX(NIY+1,1:NIX+1) --> RFVX(NIY+2,1:NIX+1)=RFVX(NIY+1,1;NIX+1) (bottom FREE boundary)
RFVX(j,i)=VXTM(j,i)*0.5*(RLTM(j,i)+RLTM(j,i+1))*0.5*(FLTM(j,i)+FLTM(j,i+1));%[kg/m^2/sec]
end
end
%Recheck boundary condition explicitly
for i=1:NIX+1
RFVX(1,i)=-RFVX(2,i);%top NO SLIP boundary
RFVX(NIY+2,i)=RFVX(NIY+1,i);%bottom FREE boundary
end
% for i=1:NIX+1
% RFVX(1,i)=RFVX(2,i);%top FREE boundary
% RFVX(NIY+2,i)=RFVX(NIY+1,i);%bottom FREE boundary
% end
%y-axis velocity
% ^
% |
% +-------+
% | |
% | * |
% | |
% +-------+
% ^
% |
%NOTE: in fact, vy at left and right faces should be estimated,
%but they can be interpolated; so only vy normal to horizontal faces are
%calculated!
RFVY=zeros(NIY+1,NIX+2);%RL*FL*VY, all VY faces
for i=1:NIX+2
%VY(1:NIY+1,1)=VY(1:NIY+1,2) --> RFVY(1:NIY+1,1)=RFVY(1:NIY+1,2) (left FREE VY)
%VY(1:NIY+1,NIX+2)=VY(1:NIY+1,NIX+1) --> RFVY(1:NIY+1,NIX+2)=RFVY(1:NIY+1,NIX+1) (right FREE VY)
%VY(1:NIY+1,1)=-VY(1:NIY+1,2) --> RFVY(1:NIY+1,1)=-RFVY(1:NIY+1,2) (left NO SLIP VY)
%VY(1:NIY+1,NIX+2)=-VY(1:NIY+1,NIX+1) --> RFVY(1:NIY+1,NIX+2)=-RFVY(1:NIY+1,NIX+1) (right NO SLIP VY)
for j=2:NIY
%VY(1,1:NIX+2)=0.0 --> RFVY(1,1:NIX+2)=0.0 (top impermeable boundary)
%VY(NIY+1,1:NIX+2)=0.0 --> RFVY(NIY+1,1:NIX+2)=0.0 (bottom impermeable boundary)
RFVY(j,i)=VYTM(j,i)*0.5*(RLTM(j,i)+RLTM(j+1,i))*0.5*(FLTM(j,i)+FLTM(j+1,i));%[kg/m^2/sec]
end
end
%Recheck boundary condition explicitly
for i=1:NIY+1
RFVY(i,1)=RFVY(i,2);%left FREE boundary
RFVY(i,NIX+2)=RFVY(i,NIX+1);%right FREE boundary
end
% for i=1:NIY+1
% RFVY(i,1)=-RFVY(i,2);%left NO SLIP boundary
% RFVY(i,NIX+2)=-RFVY(i,NIX+1);%right NO SLIP boundary
% end
%------------------------ Part One: RFVX RFVY -----------------------------
%----------------------- Part Two: TRFVX TRFVY ----------------------------
TRFVX=zeros(NIY+2,NIX+1);
for i=2:NIX
%VX(1:NIY+2,1)=0.0 --> TRFVX(1:NIY+2,1)=0.0 (left impermeable boundary)
%VX(1:NIY+2,NIX+1)=0.0 --> TRFVX(1:NIY+2,NIX+1)=0.0 (right impermeable boundary)
for j=1:NIY+2
TRFVX(j,i)=TTM(j,i)*max(RFVX(j,i),0.0)+TTM(j,i+1)*min(RFVX(j,i),0.0);%[kg.K/m^2/sec]
end
%TRFVX(1,:) and TRFVX(NIY+2,:) is useless, so its value doesn't matter
end
TRFVY=zeros(NIY+1,NIX+2);
for i=1:NIX+2
for j=2:NIY
%VY(1,1:NIX+2)=0.0 --> TRFVY(1,1:NIX+2)=0.0 (top impermeable boundary )
%VY(NIY+1,1:NIX+2)=0.0 --> TRFVY(NIY+1,1:NIX+2)=0.0 (bottom impermeable boundary)
TRFVY(j,i)=TTM(j,i)*max(RFVY(j,i),0.0)+TTM(j+1,i)*min(RFVY(j,i),0.0);%[kg.K/m^2/sec]
end
%TRFVY(1,:) and TRFVY(NIY+1,:) is useless, so its value doesn't matter
end
%Recheck boundary condition explicitly
for i=1:NIY+1
TRFVY(i,1)=TRFVY(i,2);%left FREE boundary --> Some heat transfered up and down by mass flow at left boundary
TRFVY(i,NIX+2)=TRFVY(i,NIX+1);%right FREE boundary --> Some heat transfered up and down by mass flow at right boundary
end
% for i=1:NIY+1
% TRFVY(i,1)=-TRFVY(i,2);%left NO SLIP boundary --> No heat transfered up and down by mass flow at left boundary
% TRFVY(i,NIX+2)=-TRFVY(i,NIX+1);%right NO SLIP boundary --> No heat transfered up and down by mass flow at right boundary
% end
%----------------------- Part Two: TRFVX TRFVY ----------------------------
%----------------------- Part Three: Heat flux ----------------------------
TQVX=zeros(NIY+2,NIX);%T=T, Q=flux, VX=VX
for i=1:NIX
for j=1:NIY+2
TQVX(j,i)=-dtb*CPLTM(j,i+1)*(TRFVX(j,i+1)-TRFVX(j,i))/dx(i);%[J/m^3]
end
%TQVX(1,:) and TQVX(NIY+2,:) is useless, its value doesn't matter
end
TQVY=zeros(NIY,NIX+2);%T=T, Q=flux, VY=VY
for i=1:NIX+2
for j=1:NIY
TQVY(j,i)=-dtb*CPLTM(j+1,i)*(TRFVY(j+1,i)-TRFVY(j,i))/dy(j);%[J/m^3]
end
%TQVY(:,1) and TQVY(:,NIX+2) is useless, its value doesn't matter
end
TQVT=zeros(NIY,NIX);%T=T, Q=flux, V=velocity, T=total
TQVT(1:NIY,1:NIX)=TQVX(2:NIY+1,1:NIX)+TQVY(1:NIY,2:NIX+1);%[J/m^3]
%------------------------ Part Three: Heat flux ---------------------------
%% ================ SOILD CONVECTION HEAT FLUX ===================
%------------------------- Part Three: Heat flux --------------------------
%################################################################## ENERGY BALANCE #######################################################################
%################################################################## SPECIES BALANCE ######################################################################
CLQDT=struct('SiO2',zeros(NIY,NIX),...
'TiO2',zeros(NIY,NIX),...
'Al2O3',zeros(NIY,NIX),...
'FeO',zeros(NIY,NIX),...
'Fe2O3',zeros(NIY,NIX),...
'MnO',zeros(NIY,NIX),...
'MgO',zeros(NIY,NIX),...
'CaO',zeros(NIY,NIX),...
'Na2O',zeros(NIY,NIX),...
'K2O',zeros(NIY,NIX),...
'P2O5',zeros(NIY,NIX),...
'H2O',zeros(NIY,NIX),...
'Sm',zeros(NIY,NIX),...
'Nd',zeros(NIY,NIX));%CL=CL, Q=flux, D=diffusion, T=total [kg/m^3]
% ISS=struct('SiO2',zeros(NIY+2,NIX+2),...
% 'TiO2',zeros(NIY+2,NIX+2),...
% 'Al2O3',zeros(NIY+2,NIX+2),...
% 'FeO',zeros(NIY+2,NIX+2),...
% 'Fe2O3',zeros(NIY+2,NIX+2),...
% 'MnO',zeros(NIY+2,NIX+2),...
% 'MgO',zeros(NIY+2,NIX+2),...
% 'CaO',zeros(NIY+2,NIX+2),...
% 'Na2O',zeros(NIY+2,NIX+2),...
% 'K2O',zeros(NIY+2,NIX+2),...
% 'P2O5',zeros(NIY+2,NIX+2),...
% 'H2O',zeros(NIY+2,NIX+2),...
% 'Sm',zeros(NIY+2,NIX+2),...
% 'Nd',zeros(NIY+2,NIX+2));%Internal Species Storage [kg/m^3]
CLQVT=struct('SiO2',zeros(NIY,NIX),...
'TiO2',zeros(NIY,NIX),...
'Al2O3',zeros(NIY,NIX),...
'FeO',zeros(NIY,NIX),...
'Fe2O3',zeros(NIY,NIX),...
'MnO',zeros(NIY,NIX),...
'MgO',zeros(NIY,NIX),...
'CaO',zeros(NIY,NIX),...
'Na2O',zeros(NIY,NIX),...
'K2O',zeros(NIY,NIX),...
'P2O5',zeros(NIY,NIX),...
'H2O',zeros(NIY,NIX),...
'Sm',zeros(NIY,NIX),...
'Nd',zeros(NIY,NIX));%CL=CL, Q=flux, V=liquid velocity, T=total [kg/m^3]
% CSQVT=struct('SiO2',zeros(NIY,NIX),...
% 'TiO2',zeros(NIY,NIX),...
% 'Al2O3',zeros(NIY,NIX),...
% 'FeO',zeros(NIY,NIX),...
% 'Fe2O3',zeros(NIY,NIX),...
% 'MnO',zeros(NIY,NIX),...
% 'MgO',zeros(NIY,NIX),...
% 'CaO',zeros(NIY,NIX),...
% 'Na2O',zeros(NIY,NIX),...
% 'K2O',zeros(NIY,NIX),...
% 'P2O5',zeros(NIY,NIX),...
% 'H2O',zeros(NIY,NIX),...
% 'Sm',zeros(NIY,NIX),...
% 'Nd',zeros(NIY,NIX));%CS=CS, Q=flux, V=solid velocity, T=total
[CLQDT.SiO2,CLQVT.SiO2]=Species(MCL.SiO2,DL.SiO2,FLTM,RLTM,RFVX,RFVY);
[CLQDT.TiO2,CLQVT.TiO2]=Species(MCL.TiO2,DL.TiO2,FLTM,RLTM,RFVX,RFVY);
[CLQDT.Al2O3,CLQVT.Al2O3]=Species(MCL.Al2O3,DL.Al2O3,FLTM,RLTM,RFVX,RFVY);
[CLQDT.FeO,CLQVT.FeO]=Species(MCL.FeO,DL.FeO,FLTM,RLTM,RFVX,RFVY);
[CLQDT.Fe2O3,CLQVT.Fe2O3]=Species(MCL.Fe2O3,DL.Fe2O3,FLTM,RLTM,RFVX,RFVY);
[CLQDT.MnO,CLQVT.MnO]=Species(MCL.MnO,DL.MnO,FLTM,RLTM,RFVX,RFVY);
[CLQDT.MgO,CLQVT.MgO]=Species(MCL.MgO,DL.MgO,FLTM,RLTM,RFVX,RFVY);
[CLQDT.CaO,CLQVT.CaO]=Species(MCL.CaO,DL.CaO,FLTM,RLTM,RFVX,RFVY);
[CLQDT.Na2O,CLQVT.Na2O]=Species(MCL.Na2O,DL.Na2O,FLTM,RLTM,RFVX,RFVY);
[CLQDT.K2O,CLQVT.K2O]=Species(MCL.K2O,DL.K2O,FLTM,RLTM,RFVX,RFVY);
[CLQDT.P2O5,CLQVT.P2O5]=Species(MCL.P2O5,DL.P2O5,FLTM,RLTM,RFVX,RFVY);
[CLQDT.H2O,CLQVT.H2O]=Species(MCL.H2O,DL.H2O,FLTM,RLTM,RFVX,RFVY);
[CLQDT.Sm,CLQVT.Sm]=Species(TCL.Sm,DL.Sm,FLTM,RLTM,RFVX,RFVY);
[CLQDT.Nd,CLQVT.Nd]=Species(TCL.Nd,DL.Nd,FLTM,RLTM,RFVX,RFVY);
%################################################################## SPECIES BALANCE ######################################################################
%################################################################ T-FS-CL ITERATION ########################################################################
TFN=zeros(NIY+2,NIX+2);%T Factor of Next step
TN=zeros(NIY+2,NIX+2);%T of Next step
TLTM=zeros(NIY+2,NIX+2);%Liquidus of old step
iters=zeros(NIY+2,NIX+2);
TTMBE=TTM;%old T before eutectic for eutectic T calculation
RSCPSdFSTM=zeros(NIY+2,NIX+2);
dFSLHN=struct('OL',zeros(NIY+2,NIX+2),...%New time step olivine volume fraction increment related to latent heat [1]
'OPX',zeros(NIY+2,NIX+2),...%New time step opx volume fraction increment related to latent heat [1]
'CPX',zeros(NIY+2,NIX+2),...%New time step cpx volume fraction increment related to latent heat [1]
'PL',zeros(NIY+2,NIX+2),...%New time step pl volume fraction increment related to latent heat [1]
'ILM',zeros(NIY+2,NIX+2));%New time step ilmentite volume fraction increment related to latent heat [1]
%dFSLHN.ANY(1,:) must be 0.0 to match real top cold boundary since RSCPSdFSTM, dFSLHT, TFN, LH.ANY and LHT depend on dFSLHN.ANY
dFSLHT=zeros(NIY+2,NIX+2);%total solid volume fraction increment related to latent heat
LHT=zeros(NIY+2,NIX+2);%total latent heat release in action [J/m^3]
LH=struct('OL',zeros(NIY+2,NIX+2),...%olivine latent heat released [J/m^3]
'OPX',zeros(NIY+2,NIX+2),...%opx latent heat released [J/m^3]
'CPX',zeros(NIY+2,NIX+2),...%cpx latent heat released [J/m^3]
'PL',zeros(NIY+2,NIX+2),...%pl latent heat released [J/m^3]
'ILM',zeros(NIY+2,NIX+2));%ilmentite latent heat released [J/m^3]
%TFN: T Factor of Next step
for i=1:NIX+2
for j=1:NIY+2
RSCPSdFSTM(j,i)=RS.OL(j,i)*CPS.OL(j,i)*dFSLHN.OL(j,i)+...
RS.OPX(j,i)*CPS.OPX(j,i)*dFSLHN.OPX(j,i)+...
RS.CPX(j,i)*CPS.CPX(j,i)*dFSLHN.CPX(j,i)+...
RS.PL(j,i)*CPS.PL(j,i)*dFSLHN.PL(j,i)+...
RS.ILM(j,i)*CPS.ILM(j,i)*dFSLHN.ILM(j,i);%[J/m^3/K]
dFSLHT(j,i)=dFSLHN.OL(j,i)+dFSLHN.OPX(j,i)+dFSLHN.CPX(j,i)+dFSLHN.PL(j,i)+dFSLHN.ILM(j,i);%[1]
TFN(j,i)=FRCPSTM(j,i)+FLTM(j,i)*RLTM(j,i)*CPLTM(j,i)+RSCPSdFSTM(j,i)-RLTM(j,i)*CPLTM(j,i)*dFSLHT(j,i);%[J/m^3/K]
LH.OL(j,i)=dFSLHN.OL(j,i)*RS.OL(j,i)*HS.OL(j,i);%[J/m^3]
LH.OPX(j,i)=dFSLHN.OPX(j,i)*RS.OPX(j,i)*HS.OPX(j,i);
LH.CPX(j,i)=dFSLHN.CPX(j,i)*RS.CPX(j,i)*HS.CPX(j,i);
LH.PL(j,i)=dFSLHN.PL(j,i)*RS.PL(j,i)*HS.PL(j,i);
LH.ILM(j,i)=dFSLHN.ILM(j,i)*RS.ILM(j,i)*HS.ILM(j,i);
LHT(j,i)=LH.OL(j,i)+LH.OPX(j,i)+LH.CPX(j,i)+LH.PL(j,i)+LH.ILM(j,i);%[J/m^3]
end
end
%RSCPSdFSTM: RS*CPS at n step, as approxiamation of RS*CPS at n+1 step
%RLTM, CPLTM: RS*CPL at n step, as approxiamation of RS*CPL at n+1 step
%----------------------------- STEP ONE -----------------------------------
%energy loss due to diffusion and convection [J/m^3]
dQ=zeros(NIY+2,NIX+2);
%Let the initial value of dFSLH.ANY equal zero and calculate the approximation of TN.
for i=2:NIX+1
for j=2:NIY+1
dQ(j,i)=TQDT(j-1,i-1)+TQVT(j-1,i-1);%[J/m^3]
TN(j,i)=(dQ(j,i)+IHS(j,i)+LHT(j,i))/TFN(j,i);%[J/m^3 divided by J/m^3/K == K]
end
end
TN(1,2:NIX+1)=2.0*TW-TN(2,2:NIX+1);%numerical top cool boundary
TN(NIY+2,2:NIX+1)=TN(NIY+1,2:NIX+1);%bottom insulated boundary
TN(1:NIY+2,1)=TN(1:NIY+2,2);%left insulated boundary
TN(1:NIY+2,NIX+2)=TN(1:NIY+2,NIX+1);%right insulted boundary
TTM=TN;
TTMAE=TN;%New T after eutectic for eutectic T calculation
%----------------------------- STEP ONE -----------------------------------
%Temporary CL of major elements in liquid
CLTM=struct('SiO2',zeros(NIY+2,NIX+2),...%SiO2 in liquid [1]
'TiO2',zeros(NIY+2,NIX+2),...%TiO2 in liquid [1]
'Al2O3',zeros(NIY+2,NIX+2),...%Al2O3 in liquid [1]
'FeO',zeros(NIY+2,NIX+2),...%FeO in liquid [1]
'Fe2O3',zeros(NIY+2,NIX+2),...%Fe2O3 in liquid [1]
'MnO',zeros(NIY+2,NIX+2),...%MnO in liquid [1]
'MgO',zeros(NIY+2,NIX+2),...%MgO in liquid [1]
'CaO',zeros(NIY+2,NIX+2),...%CaO in liquid [1]
'Na2O',zeros(NIY+2,NIX+2),...%Na2O in liquid [1]
'K2O',zeros(NIY+2,NIX+2),...%K2O in liquid [1]
'P2O5',zeros(NIY+2,NIX+2),...%P2O5 in liquid [1]
'H2O',zeros(NIY+2,NIX+2),...%H2O in liquid [1]
'Sm',zeros(NIY+2,NIX+2),...%Sm in liquid [1]
'Nd',zeros(NIY+2,NIX+2));%Nd in liquid [1]
CLTM=MCL;
%Critical Major element that represents system evolution, e.g., MgO in liquid of Di-An system [1; not wt%]
CLCM=MCL.MgO;
%NOTE: CLCM will be used to determine solidification stages
TLTM=-1.3351*(CLCM*100.0).^2+55.878*CLCM*100.0+813.9991+273.15;%old liquidus to determine superliquidus or subliquidus [K]
%logical variable for while loop
errdFS=ones(NIY+2,NIX+2);%initial error of dFS, to triger while loop
errTTM=ones(NIY+2,NIX+2);
errCLTM=ones(NIY+2,NIX+2);
err=zeros(NIY+2,NIX+2);
FSTTM=zeros(NIY+2,NIX+2);%old step total solid volume fraction of each cell
for i=1:NIX+2
for j=1:NIY+2
err(j,i)=logical((err0dFSLH<=errdFS(j,i))||(err0TTM<=errTTM(j,i))||(err0CLTM<=errCLTM(j,i)));
FSTTM(j,i)=FS.OL(j,i)+FS.OPX(j,i)+FS.CPX(j,i)+FS.PL(j,i)+FS.ILM(j,i);
end
end
%CL Factor of Next step
CLFN=struct('SiO2',zeros(NIY,NIX),...
'TiO2',zeros(NIY,NIX),...
'Al2O3',zeros(NIY,NIX),...
'FeO',zeros(NIY,NIX),...
'Fe2O3',zeros(NIY,NIX),...
'MnO',zeros(NIY,NIX),...
'MgO',zeros(NIY,NIX),...
'CaO',zeros(NIY,NIX),...
'Na2O',zeros(NIY,NIX),...
'K2O',zeros(NIY,NIX),...
'P2O5',zeros(NIY,NIX),...
'H2O',zeros(NIY,NIX),...
'Sm',zeros(NIY,NIX),...
'Nd',zeros(NIY,NIX));
%CS factor of Next step
CLFNS=struct('SiO2',zeros(NIY,NIX),...
'TiO2',zeros(NIY,NIX),...
'Al2O3',zeros(NIY,NIX),...
'FeO',zeros(NIY,NIX),...
'Fe2O3',zeros(NIY,NIX),...
'MnO',zeros(NIY,NIX),...
'MgO',zeros(NIY,NIX),...
'CaO',zeros(NIY,NIX),...
'Na2O',zeros(NIY,NIX),...
'K2O',zeros(NIY,NIX),...
'P2O5',zeros(NIY,NIX),...
'H2O',zeros(NIY,NIX),...
'Sm',zeros(NIY,NIX),...
'Nd',zeros(NIY,NIX));
%Major CL of Next step
CLN=struct('SiO2',zeros(NIY+2,NIX+2),...%SiO2 in liquid [1]
'TiO2',zeros(NIY+2,NIX+2),...%TiO2 in liquid [1]
'Al2O3',zeros(NIY+2,NIX+2),...%Al2O3 in liquid [1]
'FeO',zeros(NIY+2,NIX+2),...%FeO in liquid [1]
'Fe2O3',zeros(NIY+2,NIX+2),...%Fe2O3 in liquid [1]
'MnO',zeros(NIY+2,NIX+2),...%MnO in liquid [1]
'MgO',zeros(NIY+2,NIX+2),...%MgO in liquid [1]
'CaO',zeros(NIY+2,NIX+2),...%CaO in liquid [1]
'Na2O',zeros(NIY+2,NIX+2),...%Na2O in liquid [1]
'K2O',zeros(NIY+2,NIX+2),...%K2O in liquid [1]
'P2O5',zeros(NIY+2,NIX+2),...%P2O5 in liquid [1]
'H2O',zeros(NIY+2,NIX+2),...%H2O in liquid [1]
'Sm',zeros(NIY+2,NIX+2),...%Sm in liquid [1]
'Nd',zeros(NIY+2,NIX+2));%Nd in liquid [1]
%Temporary MCL for VisCpRL.m
MCL0=struct('SiO2',0.0,...%SiO2 in liquid [1]
'TiO2',0.0,...%TiO2 in liquid [1]
'Al2O3',0.0,...%Al2O3 in liquid [1]
'FeO',0.0,...%FeO in liquid [1]
'Fe2O3',0.0,...%Fe2O3 in liquid [1]
'MnO',0.0,...%MnO in liquid [1]
'MgO',0.0,...%MgO in liquid [1]
'CaO',0.0,...%CaO in liquid [1]
'Na2O',0.0,...%Na2O in liquid [1]
'K2O',0.0,...%K2O in liquid [1]
'P2O5',0.0,...%P2O5 in liquid [1]
'H2O',0.0);%H2O in liquid [1]
FLN=zeros(NIY+2,NIX+2);%FL of Next step
RLN=zeros(NIY+2,NIX+2);%RL of Next step
TLN=zeros(NIY+2,NIX+2);%Liquidus of Next step
TEC=zeros(NIY+2,NIX+2);%New T for Energy Check
dFSLHTM=struct('OL',zeros(NIY+2,NIX+2),...%Temporary olivine volume fraction increment related to latent heat [1]
'OPX',zeros(NIY+2,NIX+2),...%Temporary opx volume fraction increment related to latent heat [1]
'CPX',zeros(NIY+2,NIX+2),...%Temporary cpx volume fraction increment related to latent heat [1]
'PL',zeros(NIY+2,NIX+2),...%Temporary pl volume fraction increment related to latent heat [1]
'ILM',zeros(NIY+2,NIX+2));%Temporary ilmentite volume fraction increment related to latent heat [1]
STLL=0.0;%Sensible heat Transform into Latent heat, temporarily used as Left hand side
STLR=0.0;%Sensible heat Transform into Latent heat, temporarily used as Right hand side
caseID=3*ones(NIY,NIX);%case ID
%dFSSEN=zeros(NIY+2,NIX+2);%used in energy check for sensible heat
%RSE=1.0/(0.599/RSE.CPX+0.401/RSE.PL);%eutectic mean solid density [kg/m^3]
%RSEHSE=0.599*RSE*HS.CPX+0.401*RSE*HS.PL;%total RSE*HSE
%Prapare for latent heat for energy check [J/m^3]
LAT=zeros(NIY,NIX);
%Prapare for sensible heat for energy check [J/m^3]
SEN=zeros(NIY,NIX);%sensible heat
modifymarker=0;
%New RS of Single point
RSNS=struct('OL',0.0,...%olivine density [kg/m^3]
'OPX',0.0,...%opx density [kg/m^3]
'CPX',0.0,...%cpx density [kg/m^3]
'PL',0.0,...%pl density [kg/m^3]
'ILM',0.0);%ilmentite density [kg/m^3]
dT=zeros(NIY+2,NIX+2);%CPX remelting to dT [K]
%------------------------ T-FS-CL MAIN LOOP ---------------------
for i=1:NIX
% i;
for j=1:NIY
% j;
QS=FS.CPX(j+1,i+1)*RS.CPX(j+1,i+1)*HS.CPX(j+1,i+1);%energy necessary to remelt CPX [J/m^3]
%Prepare Temporary MCL for VisCpRL.m
MCL0.SiO2=MCL.SiO2(j+1,i+1);
MCL0.TiO2=MCL.TiO2(j+1,i+1);
MCL0.Al2O3=MCL.Al2O3(j+1,i+1);
MCL0.FeO=MCL.FeO(j+1,i+1);
MCL0.Fe2O3=MCL.Fe2O3(j+1,i+1);
MCL0.MnO=MCL.MnO(j+1,i+1);
MCL0.MgO=MCL.MgO(j+1,i+1);
MCL0.CaO=MCL.CaO(j+1,i+1);
MCL0.Na2O=MCL.Na2O(j+1,i+1);
MCL0.K2O=MCL.K2O(j+1,i+1);
MCL0.P2O5=MCL.P2O5(j+1,i+1);
MCL0.H2O=MCL.H2O(j+1,i+1);
if(TN(j+1,i+1)<TE)
dFSLHPL=(FLTM(j+1,i+1)*RLE*CPLE+FRCPSTM(j+1,i+1))*(TE-TN(j+1,i+1))/...%total heat
(0.599*RSE.PL*HS.CPX(j+1,i+1)/0.401+RSE.PL*HS.PL(j+1,i+1)+...%latent heat
-0.599*RSE.PL*CPSE.CPX*TE/0.401-RSE.PL*CPSE.PL*TE+(1.0+0.599*RSE.PL/(0.401*RSE.CPX))*RLTM(j+1,i+1)*CPLTM(j+1,i+1)*TE);
%NOTE: In solid property change part, we use TE because TE>TN. TE>TN means dFSLHPL becomes smaller, and if smaller dFSLHPL+FSTTM>1.0, then
%dFSLHPL(TN)+FSTTM must be larger, that is, we use a smaller dFSLHPL+FSTTM to decide caseID
%dFSLHPL=(FLTM(j+1,i+1)*RLE*CPLE+FRCPSTM(j+1,i+1))*(TE-TN(j+1,i+1))/(0.599*RSE.PL*HS.CPX(j+1,i+1)/0.401+RSE.PL*HS.PL(j+1,i+1));%RLE==RLTM, CPLE==CPLTM
dFSLHCPX=0.599*dFSLHPL*RSE.PL/(0.401*RSE.CPX);
dFSLHCAL=dFSLHPL+dFSLHCPX;
%ORIGINALLY AS: dFSCAL=(FLTM(j+1,i+1)*RLE*CPLE+FRCPSTM(j+1,i+1))*(TE-TN(j+1,i+1))/(RSEHSE-(RSCPSTM(j+1,i+1)-RLTM(j+1,i+1)*CPLTM(j+1,i+1))*TE);%Eq.(14)
%This equation is a first guess of dFSLH in SITUATION 4&5 where T(n)=TE and T(n+1)_first_guess=TN <TE
%(FLTM(j+1,i+1)*RLE*CPLE+FRCPSTM(j+1,i+1))*(TE-TN(j+1,i+1)) is minus total energy loss of system;
%RSE*HSE is heat source while RSCPSTM-RLCPLTM is heat sink since the heat storage capacity of solid
%is better than that of liquid, meaning solid keeps more energy
else
dFSLHPL=0.0;
dFSLHCPX=0.0;
dFSLHCAL=0.0;
end
%IMPORTANT NOTE: Compare T, FS and CLCM with TE, FSE and CE to determine Flags of condition
%SITUATION 3: MUSHY --> EUTECTIC
%0<FSTTM(j+1,i+1)<FSE, TTM9j+1,i+1)==TLTM(j+1,i+1)>TE, TN(j+1,i+1)<TE, TLN(j+1,i+1)<TE
caseID(j,i)=3;
if((TN(j+1,i+1)>TLTM(j+1,i+1))&&(TN(j+1,i+1)>TE)&&(TTM(j+1,i+1)>TLTM(j+1,i+1))&&(FSTTM(j+1,i+1)<=0.0)&&(dQ(j+1,i+1)<0.0)&&(CLCM(j+1,i+1)>=CL0))
%SITUATION 1: SUPERLIQUIDUS --> SUPERLIQUIDUS COOLING
caseID(j,i)=1;
end
if((TN(j+1,i+1)>TLTM(j+1,i+1))&&(TN(j+1,i+1)>TE)&&(TTM(j+1,i+1)>=TLTM(j+1,i+1))&&(FSTTM(j+1,i+1)<=0.0)&&(dQ(j+1,i+1)>0.0)&&(CLCM(j+1,i+1)>=CL0))
%SITUATION 11: SUPERLIQUIDUS --> SUPERLIQUIDUS HEATING
caseID(j,i)=11;
end
if((CLCM(j+1,i+1)>=CE.MgO)&&(CLCM(j+1,i+1)<=CL0)&&(TN(j+1,i+1)>=TE)&&(TN(j+1,i+1)<TLTM(j+1,i+1))&&(FSTTM(j+1,i+1)>=0.0)&&(TTM(j+1,i+1)>=TLTM(j+1,i+1))&&(dQ(j+1,i+1)<0.0))
%CLCM=MCL.MgO: Critical Major element that represents system evolution, e.g., MgO in liquid of Di-An system [1]
%SITUATION 2: SUPERLIQUIDUS --> MUSHY REGION COOLING
caseID(j,i)=2;
end
if((CLCM(j+1,i+1)>CE.MgO)&&(CLCM(j+1,i+1)<CL0)&&(TN(j+1,i+1)>TE)&&(TN(j+1,i+1)>TLTM(j+1,i+1))&&(TN(j+1,i+1)<=TL0)&&(FSTTM(j+1,i+1)>0.0)&&(TTM(j+1,i+1)>=TE)&&(dQ(j+1,i+1)>0.0)&&(dQ(j+1,i+1)<=QS))
%CLCM=MCL.MgO: Critical Major element that represents system evolution, e.g., MgO in liquid of Di-An system [1]
%SITUATION 21: MUSHY REGION --> MUSHY REGION REMELTING
%local heating but can not heats up to superliquidus
caseID(j,i)=21;
end
if((CLCM(j+1,i+1)>CE.MgO)&&(CLCM(j+1,i+1)<CL0)&&(TN(j+1,i+1)>TE)&&(TN(j+1,i+1)>TLTM(j+1,i+1))&&(TN(j+1,i+1)>TL0)&&(FSTTM(j+1,i+1)>0.0)&&(TTM(j+1,i+1)>=TE)&&(dQ(j+1,i+1)>0.0)&&(dQ(j+1,i+1)>QS))
%CLCM=MCL.MgO: Critical Major element that represents system evolution, e.g., MgO in liquid of Di-An system [1]
%SITUATION 22: MUSHY REGION --> SUPERLIQUIDUS REMELTING
%local heating up to superliquidus
caseID(j,i)=22;
end
if((CLCM(j+1,i+1)>CE.MgO)&&(FSTTM(j+1,i+1)>0.0)&&(TN(j+1,i+1)<TE)&&(TTM(j+1,i+1)>TE)&&(dQ(j+1,i+1)<0.0))
%CLCM=MCL.MgO: Critical Major element that represents system evolution, e.g., MgO in liquid of Di-An system [1]
%SITUATION 3: MUSHY --> EUTECTIC COOLING
caseID(j,i)=3;
end
if((CLCM(j+1,i+1)==CE.MgO)&&(FSTTM(j+1,i+1)>0.0)&&(TN(j+1,i+1)>TE)&&(TTM(j+1,i+1)==TE)&&(dQ(j+1,i+1)>0.0)&&(dQ(j+1,i+1)>=HS.CPX*MS.CPX+HS.PL*MS.PL))
%CLCM=MCL.MgO: Critical Major element that represents system evolution, e.g., MgO in liquid of Di-An system [1]
%SITUATION 31: EUTECTIC --> MUSHY HEATING
%local heating up to mushy region from eutectic
caseID(j,i)=31;
end
if((CLCM(j+1,i+1)<=CE.MgO)&&(FSTTM(j+1,i+1)+dFSLHCAL<=1.0)&&(TN(j+1,i+1)<TE)&&(TTM(j+1,i+1)==TE)&&(dQ(j+1,i+1)<0.0))
%CLCM=MCL.MgO: Critical Major element that represents system evolution, e.g., MgO in liquid of Di-An system [1]
%SITUATION 4: EUTECTIC --> EUTECTIC COOLING
caseID(j,i)=4;
end
if((CLCM(j+1,i+1)==CE.MgO)&&(FSTTM(j+1,i+1)>0.0)&&(TN(j+1,i+1)>TE)&&(TTM(j+1,i+1)==TE)&&(dQ(j+1,i+1)>0.0)&&(dQ(j+1,i+1)<HS.CPX*MS.CPX+HS.PL*MS.PL))
%CLCM=MCL.MgO: Critical Major element that represents system evolution, e.g., MgO in liquid of Di-An system [1]
%SITUATION 41: EUTECTIC --> EUTECTIC HEATING
%local heating to eutectic from eutectic
caseID(j,i)=41;
end
if((CLCM(j+1,i+1)==CE.MgO)&&(TTM(j+1,i+1)==TE)&&(FSTTM(j+1,i+1)<1.0)&&(TN(j+1,i+1)<TE)&&(dFSLHCAL+FSTTM(j+1,i+1)>1.0)&&(dQ(j+1,i+1)<0.0))
%SITUATION 5: EUTECTIC --> COMPLETE SOLID
caseID(j,i)=5;
end
if((CLCM(j+1,i+1)==CE.MgO)&&(TTM(j+1,i+1)<TE)&&(FSTTM(j+1,i+1)==1.0)&&(TN(j+1,i+1)>TE)&&(dQ(j+1,i+1)>0.0)&&(dQ(j+1,i+1)>HS.CPX*MS.CPX+HS.PL*MS.PL))
%SITUATION 51: COMPLETE SOLID --> EUTECTIC HEATING
caseID(j,i)=51;
end
if((CLCM(j+1,i+1)==CE.MgO)&&(TTM(j+1,i+1)<TE)&&(FSTTM(j+1,i+1)==1.0)&&(TN(j+1,i+1)>TE)&&(dQ(j+1,i+1)>0.0)&&(dQ(j+1,i+1)>HS.CPX*MS.CPX+HS.PL*MS.PL+0))
%SITUATION 52: COMPLETE SOLID --> MUSHY HEATING
caseID(j,i)=52;
end
if((FSTTM(j+1,i+1)>=1.0)&&(TTM(j+1,i+1)<=TE)&&(TN(j+1,i+1)<=TE))
%SITUATION 6: SOLID --> SOLID COOLING & SOLID --> SOLID HEATING
caseID(j,i)=6;
end
switch caseID(j,i)
case 1 %SITUATION 1: SUPERLIQUIDUS --> SUPERLIQUIDUS COOLING
%For superliquidus, we do nothing about dFSLH since no crystals is formed, i.e., dFSLH.ANY=0.0
dFSLHN.OL(j+1,i+1)=0.0;
dFSLHN.OPX(j+1,i+1)=0.0;
dFSLHN.CPX(j+1,i+1)=0.0;
dFSLHN.PL(j+1,i+1)=0.0;
dFSLHN.ILM(j+1,i+1)=0.0;
dFSLHT(j+1,i+1)=dFSLHN.OL(j+1,i+1)+dFSLHN.OPX(j+1,i+1)+dFSLHN.CPX(j+1,i+1)+dFSLHN.PL(j+1,i+1)+dFSLHN.ILM(j+1,i+1);
FLN(j+1,i+1)=FLTM(j+1,i+1)-dFSLHT(j+1,i+1);
CLN.SiO2(j+1,i+1)=MCL.SiO2(j+1,i+1);
CLN.TiO2(j+1,i+1)=MCL.TiO2(j+1,i+1);
CLN.Al2O3(j+1,i+1)=MCL.Al2O3(j+1,i+1);
CLN.FeO(j+1,i+1)=MCL.FeO(j+1,i+1);
CLN.Fe2O3(j+1,i+1)=MCL.Fe2O3(j+1,i+1);
CLN.MnO(j+1,i+1)=MCL.MnO(j+1,i+1);
CLN.MgO(j+1,i+1)=MCL.MgO(j+1,i+1);
CLN.CaO(j+1,i+1)=MCL.CaO(j+1,i+1);
CLN.Na2O(j+1,i+1)=MCL.Na2O(j+1,i+1);
CLN.K2O(j+1,i+1)=MCL.K2O(j+1,i+1);
CLN.P2O5(j+1,i+1)=MCL.P2O5(j+1,i+1);
CLN.H2O(j+1,i+1)=MCL.H2O(j+1,i+1);
CLN.Sm(j+1,i+1)=TCL.Sm(j+1,i+1);
CLN.Nd(j+1,i+1)=TCL.Nd(j+1,i+1);
iters(j+1,i+1)=1;
LH.OL(j+1,i+1)=dFSLHN.OL(j+1,i+1)*RS.OL(j+1,i+1)*HS.OL(j+1,i+1);
LH.OPX(j+1,i+1)=dFSLHN.OPX(j+1,i+1)*RS.OPX(j+1,i+1)*HS.OPX(j+1,i+1);
LH.CPX(j+1,i+1)=dFSLHN.CPX(j+1,i+1)*RS.CPX(j+1,i+1)*HS.CPX(j+1,i+1);
LH.PL(j+1,i+1)=dFSLHN.PL(j+1,i+1)*RS.PL(j+1,i+1)*HS.PL(j+1,i+1);
LH.ILM(j+1,i+1)=dFSLHN.ILM(j+1,i+1)*RS.ILM(j+1,i+1)*HS.ILM(j+1,i+1);
LHT(j+1,i+1)=LH.OL(j+1,i+1)+LH.OPX(j+1,i+1)+LH.CPX(j+1,i+1)+LH.PL(j+1,i+1)+LH.ILM(j+1,i+1);%total latent heat [J/m^3]
%latent heat for energy check [J/m^3]
LAT(j,i)=LHT(j+1,i+1);
%sensible heat for energy check [J/m^3]
SEN(j,i)=(FRCPSTM(j+1,i+1)+FLTM(j+1,i+1)*RLTM(j+1,i+1)*CPLTM(j+1,i+1))*(TN(j+1,i+1)-TTMBE(j+1,i+1))+(RSCPSdFSTM(j+1,i+1)-RLTM(j+1,i+1)*CPLTM(j+1,i+1)*dFSLHT(j+1,i+1))*TN(j+1,i+1);
%NOTE: RSCPSdFSTM has been calculated in the first guess of TN
%T for energy check [K]
TEC(j+1,i+1)=TN(j+1,i+1);
case 11 %SITUATION 11: SUPERLIQUIDUS --> SUPERLIQUIDUS HEATING
%For superliquidus, we do nothing about dFSLH since no crystals is formed, i.e., dFSLH.ANY=0.0
dFSLHN.OL(j+1,i+1)=0.0;
dFSLHN.OPX(j+1,i+1)=0.0;
dFSLHN.CPX(j+1,i+1)=0.0;
dFSLHN.PL(j+1,i+1)=0.0;
dFSLHN.ILM(j+1,i+1)=0.0;
dFSLHT(j+1,i+1)=dFSLHN.OL(j+1,i+1)+dFSLHN.OPX(j+1,i+1)+dFSLHN.CPX(j+1,i+1)+dFSLHN.PL(j+1,i+1)+dFSLHN.ILM(j+1,i+1);
FLN(j+1,i+1)=FLTM(j+1,i+1)-dFSLHT(j+1,i+1);
CLN.SiO2(j+1,i+1)=MCL.SiO2(j+1,i+1);
CLN.TiO2(j+1,i+1)=MCL.TiO2(j+1,i+1);
CLN.Al2O3(j+1,i+1)=MCL.Al2O3(j+1,i+1);
CLN.FeO(j+1,i+1)=MCL.FeO(j+1,i+1);
CLN.Fe2O3(j+1,i+1)=MCL.Fe2O3(j+1,i+1);
CLN.MnO(j+1,i+1)=MCL.MnO(j+1,i+1);
CLN.MgO(j+1,i+1)=MCL.MgO(j+1,i+1);
CLN.CaO(j+1,i+1)=MCL.CaO(j+1,i+1);
CLN.Na2O(j+1,i+1)=MCL.Na2O(j+1,i+1);
CLN.K2O(j+1,i+1)=MCL.K2O(j+1,i+1);
CLN.P2O5(j+1,i+1)=MCL.P2O5(j+1,i+1);
CLN.H2O(j+1,i+1)=MCL.H2O(j+1,i+1);
CLN.Sm(j+1,i+1)=TCL.Sm(j+1,i+1);
CLN.Nd(j+1,i+1)=TCL.Nd(j+1,i+1);
iters(j+1,i+1)=1;
LH.OL(j+1,i+1)=dFSLHN.OL(j+1,i+1)*RS.OL(j+1,i+1)*HS.OL(j+1,i+1);
LH.OPX(j+1,i+1)=dFSLHN.OPX(j+1,i+1)*RS.OPX(j+1,i+1)*HS.OPX(j+1,i+1);
LH.CPX(j+1,i+1)=dFSLHN.CPX(j+1,i+1)*RS.CPX(j+1,i+1)*HS.CPX(j+1,i+1);
LH.PL(j+1,i+1)=dFSLHN.PL(j+1,i+1)*RS.PL(j+1,i+1)*HS.PL(j+1,i+1);
LH.ILM(j+1,i+1)=dFSLHN.ILM(j+1,i+1)*RS.ILM(j+1,i+1)*HS.ILM(j+1,i+1);
LHT(j+1,i+1)=LH.OL(j+1,i+1)+LH.OPX(j+1,i+1)+LH.CPX(j+1,i+1)+LH.PL(j+1,i+1)+LH.ILM(j+1,i+1);%total latent heat [J/m^3]
%latent heat for energy check [J/m^3]
LAT(j,i)=LHT(j+1,i+1);
%sensible heat for energy check [J/m^3]
SEN(j,i)=(FRCPSTM(j+1,i+1)+FLTM(j+1,i+1)*RLTM(j+1,i+1)*CPLTM(j+1,i+1))*(TN(j+1,i+1)-TTMBE(j+1,i+1))+(RSCPSdFSTM(j+1,i+1)-RLTM(j+1,i+1)*CPLTM(j+1,i+1)*dFSLHT(j+1,i+1))*TN(j+1,i+1);
%NOTE: RSCPSdFSTM has been calculated in the first guess of TN
%T for energy check [K]
TEC(j+1,i+1)=TN(j+1,i+1);
case 2 %SITUATION 2: SUPERLIQUIDUS --> MUSHY REGION COOLING
%0.0<=FST<FSE, TE<=TN<=TLTM --> CLCM>CE, TE<=TN<=TLTM
%Once some cell are subliquidus, we mark T has been
%solved by T-FS-CL iteration. Even one cell!
modifymarker=modifymarker+1;
%----------------------------- STEP TWO -----------------------------------
%Take the approximations TN and CLCM(n) as the initial values of temperature and
%liquid composition for time n+1, and calculate the approximation of CLCM(n+1) using Eq.
%(9) and the approximate liquidus temperature at n+1 from Eq. (3).
%FL of Next step
FLN(j+1,i+1)=FLTM(j+1,i+1)-dFSLHT(j+1,i+1);
%NOTE: new T has effect on RL,RS
%New RL (=RLN) updated by new T, MCL
[~,~,RLN(j+1,i+1)]=VisCpRL(TN(j+1,i+1),PATM(j+1,i+1),MCL0);
%New CS updated by new T; originally New KP and then New CS in Xudaming
[~]=SYSEOS('Di');%MCSN
%New RS (=RSN) updated by new T
RSNS=SolidDensity(TN(j+1,i+1),PATM(j+1,i+1));%solid phase density [kg/m^3]
RSN.OL(j+1,i+1)=RSNS.OL;
RSN.OPX(j+1,i+1)=RSNS.OPX;
RSN.CPX(j+1,i+1)=RSNS.CPX;
RSN.PL(j+1,i+1)=RSNS.PL;
RSN.ILM(j+1,i+1)=RSNS.ILM;
%CLFNS--Factor ahead CL(n+1) for solid part: RSN, MCSN are updated of old RS, MCS; dFSLHTM==dFSLHN==0.0 for the first ste
%It should be:
%RSN.Fo(j+1,i+1)*NCSN.SiO2.Fo(j+1,i+1)*0.5*dFSLHTM.Fo(j+1,i+1)+RS.Fo(j+1,i+1)*NCS.SiO2.Fo(j+1,i+1)*0.5*dFSLHTM.Fo(j+1,i+1)+...
%Try TWM, LPUM by pMELTS
CLFNS.SiO2(j,i)=RSN.OL(j+1,i+1)*MCSN.SiO2.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+RS.OL(j+1,i+1)*MCS.SiO2.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+...
RSN.OPX(j+1,i+1)*MCSN.SiO2.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+RS.OPX(j+1,i+1)*MCS.SiO2.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+...
RSN.CPX(j+1,i+1)*MCSN.SiO2.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+RS.CPX(j+1,i+1)*MCS.SiO2.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+...
RSN.PL(j+1,i+1)*MCSN.SiO2.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+RS.PL(j+1,i+1)*MCS.SiO2.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+...
RSN.ILM(j+1,i+1)*MCSN.SiO2.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1)+RS.ILM(j+1,i+1)*MCS.SiO2.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1);%[kg/m^3]
CLFNS.TiO2(j,i)=RSN.OL(j+1,i+1)*MCSN.TiO2.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+RS.OL(j+1,i+1)*MCS.TiO2.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+...
RSN.OPX(j+1,i+1)*MCSN.TiO2.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+RS.OPX(j+1,i+1)*MCS.TiO2.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+...
RSN.CPX(j+1,i+1)*MCSN.TiO2.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+RS.CPX(j+1,i+1)*MCS.TiO2.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+...
RSN.PL(j+1,i+1)*MCSN.TiO2.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+RS.PL(j+1,i+1)*MCS.TiO2.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+...
RSN.ILM(j+1,i+1)*MCSN.TiO2.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1)+RS.ILM(j+1,i+1)*MCS.TiO2.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1);%[kg/m^3]
CLFNS.Al2O3(j,i)=RSN.OL(j+1,i+1)*MCSN.Al2O3.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+RS.OL(j+1,i+1)*MCS.Al2O3.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+...
RSN.OPX(j+1,i+1)*MCSN.Al2O3.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+RS.OPX(j+1,i+1)*MCS.Al2O3.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+...
RSN.CPX(j+1,i+1)*MCSN.Al2O3.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+RS.CPX(j+1,i+1)*MCS.Al2O3.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+...
RSN.PL(j+1,i+1)*MCSN.Al2O3.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+RS.PL(j+1,i+1)*MCS.Al2O3.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+...
RSN.ILM(j+1,i+1)*MCSN.Al2O3.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1)+RS.ILM(j+1,i+1)*MCS.Al2O3.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1);%[kg/m^3]
CLFNS.FeO(j,i)=RSN.OL(j+1,i+1)*MCSN.FeO.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+RS.OL(j+1,i+1)*MCS.FeO.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+...
RSN.OPX(j+1,i+1)*MCSN.FeO.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+RS.OPX(j+1,i+1)*MCS.FeO.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+...
RSN.CPX(j+1,i+1)*MCSN.FeO.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+RS.CPX(j+1,i+1)*MCS.FeO.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+...
RSN.PL(j+1,i+1)*MCSN.FeO.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+RS.PL(j+1,i+1)*MCS.FeO.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+...
RSN.ILM(j+1,i+1)*MCSN.FeO.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1)+RS.ILM(j+1,i+1)*MCS.FeO.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1);%[kg/m^3]
CLFNS.Fe2O3(j,i)=RSN.OL(j+1,i+1)*MCSN.Fe2O3.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+RS.OL(j+1,i+1)*MCS.Fe2O3.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+...
RSN.OPX(j+1,i+1)*MCSN.Fe2O3.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+RS.OPX(j+1,i+1)*MCS.Fe2O3.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+...
RSN.CPX(j+1,i+1)*MCSN.Fe2O3.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+RS.CPX(j+1,i+1)*MCS.Fe2O3.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+...
RSN.PL(j+1,i+1)*MCSN.Fe2O3.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+RS.PL(j+1,i+1)*MCS.Fe2O3.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+...
RSN.ILM(j+1,i+1)*MCSN.Fe2O3.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1)+RS.ILM(j+1,i+1)*MCS.Fe2O3.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1);%[kg/m^3]
CLFNS.MnO(j,i)=RSN.OL(j+1,i+1)*MCSN.MnO.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+RS.OL(j+1,i+1)*MCS.MnO.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+...
RSN.OPX(j+1,i+1)*MCSN.MnO.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+RS.OPX(j+1,i+1)*MCS.MnO.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+...
RSN.CPX(j+1,i+1)*MCSN.MnO.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+RS.CPX(j+1,i+1)*MCS.MnO.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+...
RSN.PL(j+1,i+1)*MCSN.MnO.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+RS.PL(j+1,i+1)*MCS.MnO.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+...
RSN.ILM(j+1,i+1)*MCSN.MnO.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1)+RS.ILM(j+1,i+1)*MCS.MnO.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1);%[kg/m^3]
CLFNS.MgO(j,i)=RSN.OL(j+1,i+1)*MCSN.MgO.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+RS.OL(j+1,i+1)*MCS.MgO.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+...
RSN.OPX(j+1,i+1)*MCSN.MgO.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+RS.OPX(j+1,i+1)*MCS.MgO.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+...
RSN.CPX(j+1,i+1)*MCSN.MgO.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+RS.CPX(j+1,i+1)*MCS.MgO.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+...
RSN.PL(j+1,i+1)*MCSN.MgO.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+RS.PL(j+1,i+1)*MCS.MgO.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+...
RSN.ILM(j+1,i+1)*MCSN.MgO.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1)+RS.ILM(j+1,i+1)*MCS.MgO.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1);%[kg/m^3]
CLFNS.CaO(j,i)=RSN.OL(j+1,i+1)*MCSN.CaO.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+RS.OL(j+1,i+1)*MCS.CaO.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+...
RSN.OPX(j+1,i+1)*MCSN.CaO.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+RS.OPX(j+1,i+1)*MCS.CaO.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+...
RSN.CPX(j+1,i+1)*MCSN.CaO.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+RS.CPX(j+1,i+1)*MCS.CaO.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+...
RSN.PL(j+1,i+1)*MCSN.CaO.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+RS.PL(j+1,i+1)*MCS.CaO.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+...
RSN.ILM(j+1,i+1)*MCSN.CaO.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1)+RS.ILM(j+1,i+1)*MCS.CaO.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1);%[kg/m^3]
CLFNS.Na2O(j,i)=RSN.OL(j+1,i+1)*MCSN.Na2O.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+RS.OL(j+1,i+1)*MCS.Na2O.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+...
RSN.OPX(j+1,i+1)*MCSN.Na2O.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+RS.OPX(j+1,i+1)*MCS.Na2O.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+...
RSN.CPX(j+1,i+1)*MCSN.Na2O.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+RS.CPX(j+1,i+1)*MCS.Na2O.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+...
RSN.PL(j+1,i+1)*MCSN.Na2O.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+RS.PL(j+1,i+1)*MCS.Na2O.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+...
RSN.ILM(j+1,i+1)*MCSN.Na2O.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1)+RS.ILM(j+1,i+1)*MCS.Na2O.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1);%[kg/m^3]
CLFNS.K2O(j,i)=RSN.OL(j+1,i+1)*MCSN.K2O.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+RS.OL(j+1,i+1)*MCS.K2O.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+...
RSN.OPX(j+1,i+1)*MCSN.K2O.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+RS.OPX(j+1,i+1)*MCS.K2O.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+...
RSN.CPX(j+1,i+1)*MCSN.K2O.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+RS.CPX(j+1,i+1)*MCS.K2O.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+...
RSN.PL(j+1,i+1)*MCSN.K2O.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+RS.PL(j+1,i+1)*MCS.K2O.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+...
RSN.ILM(j+1,i+1)*MCSN.K2O.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1)+RS.ILM(j+1,i+1)*MCS.K2O.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1);%[kg/m^3]
CLFNS.P2O5(j,i)=RSN.OL(j+1,i+1)*MCSN.P2O5.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+RS.OL(j+1,i+1)*MCS.P2O5.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+...
RSN.OPX(j+1,i+1)*MCSN.P2O5.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+RS.OPX(j+1,i+1)*MCS.P2O5.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+...
RSN.CPX(j+1,i+1)*MCSN.P2O5.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+RS.CPX(j+1,i+1)*MCS.P2O5.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+...
RSN.PL(j+1,i+1)*MCSN.P2O5.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+RS.PL(j+1,i+1)*MCS.P2O5.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+...
RSN.ILM(j+1,i+1)*MCSN.P2O5.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1)+RS.ILM(j+1,i+1)*MCS.P2O5.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1);%[kg/m^3]
CLFNS.H2O(j,i)=RSN.OL(j+1,i+1)*MCSN.H2O.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+RS.OL(j+1,i+1)*MCS.H2O.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+...
RSN.OPX(j+1,i+1)*MCSN.H2O.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+RS.OPX(j+1,i+1)*MCS.H2O.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+...
RSN.CPX(j+1,i+1)*MCSN.H2O.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+RS.CPX(j+1,i+1)*MCS.H2O.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+...
RSN.PL(j+1,i+1)*MCSN.H2O.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+RS.PL(j+1,i+1)*MCS.H2O.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+...
RSN.ILM(j+1,i+1)*MCSN.H2O.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1)+RS.ILM(j+1,i+1)*MCS.H2O.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1);%[kg/m^3]
%NOTE: For Trace elements, we use TCSN==TCS as approximation.
CLFNS.Sm(j,i)=RSN.OL(j+1,i+1)*TCS.Sm.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+RS.OL(j+1,i+1)*TCS.Sm.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+...
RSN.OPX(j+1,i+1)*TCS.Sm.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+RS.OPX(j+1,i+1)*TCS.Sm.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+...
RSN.CPX(j+1,i+1)*TCS.Sm.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+RS.CPX(j+1,i+1)*TCS.Sm.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+...
RSN.PL(j+1,i+1)*TCS.Sm.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+RS.PL(j+1,i+1)*TCS.Sm.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+...
RSN.ILM(j+1,i+1)*TCS.Sm.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1)+RS.ILM(j+1,i+1)*TCS.Sm.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1);%[kg/m^3]
CLFNS.Nd(j,i)=RSN.OL(j+1,i+1)*TCS.Nd.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+RS.OL(j+1,i+1)*TCS.Nd.OL(j+1,i+1)*0.5*dFSLHTM.OL(j+1,i+1)+...
RSN.OPX(j+1,i+1)*TCS.Nd.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+RS.OPX(j+1,i+1)*TCS.Nd.OPX(j+1,i+1)*0.5*dFSLHTM.OPX(j+1,i+1)+...
RSN.CPX(j+1,i+1)*TCS.Nd.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+RS.CPX(j+1,i+1)*TCS.Nd.CPX(j+1,i+1)*0.5*dFSLHTM.CPX(j+1,i+1)+...
RSN.PL(j+1,i+1)*TCS.Nd.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+RS.PL(j+1,i+1)*TCS.Nd.PL(j+1,i+1)*0.5*dFSLHTM.PL(j+1,i+1)+...
RSN.ILM(j+1,i+1)*TCS.Nd.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1)+RS.ILM(j+1,i+1)*TCS.Nd.ILM(j+1,i+1)*0.5*dFSLHTM.ILM(j+1,i+1);%[kg/m^3]
%CLFN--Factor ahead CL(n+1) of liquid: FL, RL should use NEW values FLN, RLN
CLFN.SiO2(j,i)=FLN(j+1,i+1)*RLN(j+1,i+1);%[kg/m^3]
CLFN.TiO2(j,i)=FLN(j+1,i+1)*RLN(j+1,i+1);%[kg/m^3]
CLFN.Al2O3(j,i)=FLN(j+1,i+1)*RLN(j+1,i+1);%[kg/m^3]
CLFN.FeO(j,i)=FLN(j+1,i+1)*RLN(j+1,i+1);%[kg/m^3]
CLFN.Fe2O3(j,i)=FLN(j+1,i+1)*RLN(j+1,i+1);%[kg/m^3]
CLFN.MnO(j,i)=FLN(j+1,i+1)*RLN(j+1,i+1);%[kg/m^3]
CLFN.MgO(j,i)=FLN(j+1,i+1)*RLN(j+1,i+1);%[kg/m^3]
CLFN.CaO(j,i)=FLN(j+1,i+1)*RLN(j+1,i+1);%[kg/m^3]
CLFN.Na2O(j,i)=FLN(j+1,i+1)*RLN(j+1,i+1);%[kg/m^3]
CLFN.K2O(j,i)=FLN(j+1,i+1)*RLN(j+1,i+1);%[kg/m^3]
CLFN.P2O5(j,i)=FLN(j+1,i+1)*RLN(j+1,i+1);%[kg/m^3]
CLFN.H2O(j,i)=FLN(j+1,i+1)*RLN(j+1,i+1);%[kg/m^3]
CLFN.Sm(j,i)=FLN(j+1,i+1)*RLN(j+1,i+1);%[kg/m^3]
CLFN.Nd(j,i)=FLN(j+1,i+1)*RLN(j+1,i+1);%[kg/m^3]
%New major element CL of Next step in liquid
CLN.SiO2(j+1,i+1)=(MISS.SiO2(j+1,i+1)+CLQVT.SiO2(j,i)+CLQDT.SiO2(j,i)-CLFNS.SiO2(j,i))/CLFN.SiO2(j,i);%[kg/m^3 divided by kg/m^3 ==1]
CLN.TiO2(j+1,i+1)=(MISS.TiO2(j+1,i+1)+CLQVT.TiO2(j,i)+CLQDT.TiO2(j,i)-CLFNS.TiO2(j,i))/CLFN.TiO2(j,i);
CLN.Al2O3(j+1,i+1)=(MISS.Al2O3(j+1,i+1)+CLQVT.Al2O3(j,i)+CLQDT.Al2O3(j,i)-CLFNS.Al2O3(j,i))/CLFN.Al2O3(j,i);
CLN.FeO(j+1,i+1)=(MISS.FeO(j+1,i+1)+CLQVT.FeO(j,i)+CLQDT.FeO(j,i)-CLFNS.FeO(j,i))/CLFN.FeO(j,i);
CLN.Fe2O3(j+1,i+1)=(MISS.Fe2O3(j+1,i+1)+CLQVT.Fe2O3(j,i)+CLQDT.Fe2O3(j,i)-CLFNS.Fe2O3(j,i))/CLFN.Fe2O3(j,i);
CLN.MnO(j+1,i+1)=(MISS.MnO(j+1,i+1)+CLQVT.MnO(j,i)+CLQDT.MnO(j,i)-CLFNS.MnO(j,i))/CLFN.MnO(j,i);
CLN.MgO(j+1,i+1)=(MISS.MgO(j+1,i+1)+CLQVT.MgO(j,i)+CLQDT.MgO(j,i)-CLFNS.MgO(j,i))/CLFN.MgO(j,i);
CLN.CaO(j+1,i+1)=(MISS.CaO(j+1,i+1)+CLQVT.CaO(j,i)+CLQDT.CaO(j,i)-CLFNS.CaO(j,i))/CLFN.CaO(j,i);
CLN.Na2O(j+1,i+1)=(MISS.Na2O(j+1,i+1)+CLQVT.Na2O(j,i)+CLQDT.Na2O(j,i)-CLFNS.Na2O(j,i))/CLFN.Na2O(j,i);
CLN.K2O(j+1,i+1)=(MISS.K2O(j+1,i+1)+CLQVT.K2O(j,i)+CLQDT.K2O(j,i)-CLFNS.K2O(j,i))/CLFN.K2O(j,i);
CLN.P2O5(j+1,i+1)=(MISS.P2O5(j+1,i+1)+CLQVT.P2O5(j,i)+CLQDT.P2O5(j,i)-CLFNS.P2O5(j,i))/CLFN.P2O5(j,i);
CLN.H2O(j+1,i+1)=(MISS.H2O(j+1,i+1)+CLQVT.H2O(j,i)+CLQDT.H2O(j,i)-CLFNS.H2O(j,i))/CLFN.H2O(j,i);
CLN.Sm(j+1,i+1)=(TISS.Sm(j+1,i+1)+CLQVT.Sm(j,i)+CLQDT.Sm(j,i)-CLFNS.Sm(j,i))/CLFN.Sm(j,i);
CLN.Nd(j+1,i+1)=(TISS.Nd(j+1,i+1)+CLQVT.Nd(j,i)+CLQDT.Nd(j,i)-CLFNS.Nd(j,i))/CLFN.Nd(j,i);
%Relative error of major elements in liquid [1]
errCLTM(j+1,i+1)=max([abs((CLN.SiO2(j+1,i+1)-CLTM.SiO2(j+1,i+1))/CLN.SiO2(j+1,i+1)),...
abs((CLN.TiO2(j+1,i+1)-CLTM.TiO2(j+1,i+1))/CLN.TiO2(j+1,i+1)),...
abs((CLN.Al2O3(j+1,i+1)-CLTM.Al2O3(j+1,i+1))/CLN.Al2O3(j+1,i+1)),...
abs((CLN.FeO(j+1,i+1)-CLTM.FeO(j+1,i+1))/CLN.FeO(j+1,i+1)),...
abs((CLN.Fe2O3(j+1,i+1)-CLTM.Fe2O3(j+1,i+1))/CLN.Fe2O3(j+1,i+1)),...
abs((CLN.MnO(j+1,i+1)-CLTM.MnO(j+1,i+1))/CLN.MnO(j+1,i+1)),...
abs((CLN.MgO(j+1,i+1)-CLTM.MgO(j+1,i+1))/CLN.MgO(j+1,i+1)),...
abs((CLN.CaO(j+1,i+1)-CLTM.CaO(j+1,i+1))/CLN.CaO(j+1,i+1)),...
abs((CLN.Na2O(j+1,i+1)-CLTM.Na2O(j+1,i+1))/CLN.Na2O(j+1,i+1)),...
abs((CLN.K2O(j+1,i+1)-CLTM.K2O(j+1,i+1))/CLN.K2O(j+1,i+1)),...
abs((CLN.P2O5(j+1,i+1)-CLTM.P2O5(j+1,i+1))/CLN.P2O5(j+1,i+1)),...
abs((CLN.H2O(j+1,i+1)-CLTM.H2O(j+1,i+1))/CLN.H2O(j+1,i+1))]);
CLTM.SiO2(j+1,i+1)=CLN.SiO2(j+1,i+1);
CLTM.TiO2(j+1,i+1)=CLN.TiO2(j+1,i+1);
CLTM.Al2O3(j+1,i+1)=CLN.Al2O3(j+1,i+1);
CLTM.FeO(j+1,i+1)=CLN.FeO(j+1,i+1);
CLTM.Fe2O3(j+1,i+1)=CLN.Fe2O3(j+1,i+1);
CLTM.MnO(j+1,i+1)=CLN.MnO(j+1,i+1);
CLTM.MgO(j+1,i+1)=CLN.MgO(j+1,i+1);
CLTM.CaO(j+1,i+1)=CLN.CaO(j+1,i+1);
CLTM.Na2O(j+1,i+1)=CLN.Na2O(j+1,i+1);
CLTM.K2O(j+1,i+1)=CLN.K2O(j+1,i+1);
CLTM.P2O5(j+1,i+1)=CLN.P2O5(j+1,i+1);
CLTM.H2O(j+1,i+1)=CLN.H2O(j+1,i+1);
CLTM.Sm(j+1,i+1)=CLN.Sm(j+1,i+1);