-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVPBA.m
1952 lines (1692 loc) · 79.4 KB
/
VPBA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function [VX,VY,P,RESM] = VPBA(VXOTM,VYOTM,PDTM,MUOTM,MUNTM,FLOTM,FLNTM,RLOTM,RLNTM,RSOTM,RSNTM,dFSTM,RLOGTM,RLNGTM)
%To solve V-P momentum conservation
%Created on 2019-10-20
%Modified for iteration logical 2019-11-10
%Modified for boundary condition settings 2019-11-13
%Modified for old terms corrected from new terms 2020-2-14
%Modified for mass check 2020-2-16
%Modified for dynamic pressure and gravity term 2020-3-26
%Modified for crystal movement 2020-7-9
%Add full comments on boundary condition 2020-8-12
%O==Old
%N==New
%BA-->Boussinesq Approximation
global NIX
global NIY
global dx
global dy
global g
global RL0
global dtb
global P0
global FSCR1
global FS
global RS
global FSO
global RSO
global dFS
global K0
%======================= VERY IMPORTANT NOTE ==============================
%It is highly recommended the usage of packages for complex formulae, i.e.,
%compound variables. These packages can be utilized repeteadly, easily
%modified, and produce a concise numerical equation.
%======================= VERY IMPORTANT NOTE ==============================
%We add the following boundary cells. Dummy coefficients FLNTM(1,:)==0.0 and FLOTM(1,:)==0.0 because real top boundary is cold and pure solid. FLNTM(1,:)=0.0
%and FLOTM(1,:) have been used in pgysical properties calculation, so we modified them here temporarily to make a ghost cell to make boundary conditions
%resonable.
FLNTM(1,:)=FLNTM(2,:);
FLOTM(1,:)=FLOTM(2,:);
FLErr=1.0e-16;%shreshold of error for determining FL=0.0, i.e., if FLNTM(j,i)<=FLErr, then FLNTM(j,i)=0.0. In most cases, FLO(j,i)<1.0e-4 then FLN==0.0!
VErr=1.0e-16;%shreshold of error for determining VX, VY=0.0
%% ======================= DFLP COEFFICIENT MATRIX =========================
%--------------------------- Permeability K -------------------------------
FSNTM=1.0-FLNTM;
FSOTM=1.0-FLOTM;
%Permeability in Porus Region and Free-Moving Region [m^2]
KFLTM=zeros(NIY+2,NIX+2);
% Xudaming 1991
% for i=1:NIX+2
% for j=1:NIY+2
% if(FLNTM(j,i)>=1.0/3.0)
% KFLTM(j,i)=2.6e-5*(1.923e-2*FLNTM(j,i)^2+(4.0+3.0*FSNTM(j,i)-3.0*real(sqrt(FSNTM(j,i)*(8.0-3.0*FSNTM(j,i)))))/FSNTM(j,i));%[mm^2]
% else
% KFLTM(j,i)=5.0e-7*FLNTM(j,i)^2;%[mm^2]
% end
% end
% end
% KFLTM=KFLTM*10^-6;%[m^2]
% Blake-Kozeny-Carman
for i=1:NIX+2
for j=1:NIY+2
Ga=1.0;%(0.5+atan(100.0*(1.0-FSCR1-FLNTM(j,i)))/pi)^-5;%rheology transition factor is 5, Ga should be omitted here since no solid motion.
KFLTM(j,i)=Ga*K0*(FLNTM(j,i)^3/(1.0-FLNTM(j,i))^2);
end
end
%--------------------------- Permeability K -------------------------------
%------------------- mu*FL/(RL*K) in denomenator --------------------------
UFRKY=zeros(NIY+1,NIX+2);%Y==y-axis
for i=1:NIX+2
for j=1:NIY+1
%IMPORTANT NOTE: at first, 1.0e-16 is added to prevent devision by 0, this
%helps when FL=0.0; but this addition is discarded and emplaced by
%the following.
UFRKY(j,i)=0.5*(MUNTM(j,i)+MUNTM(j+1,i))*0.5*(FLNTM(j,i)+FLNTM(j+1,i))/(0.5*(RLNTM(j,i)+RLNTM(j+1,i))*0.5*(KFLTM(j,i)+KFLTM(j+1,i)));%[1/sec]
%solid cell at (j,i), set UFRKY as 0.0 mandatorily
if((FLNTM(j,i)<=FLErr)&&(FLNTM(j+1,i)<=FLErr))
UFRKY(j,i)=0.0;
end
%For free-moving region, no Darcy damping force, set UFRKY as 0.0 mandatorily
if(0.5*(FSNTM(j,i)+FSNTM(j+1,i))<=FSCR1)
UFRKY(j,i)=0.0;
end
end
end
UFRKX=zeros(NIY+2,NIX+1);%X==x-axis
for i=1:NIX+1
for j=1:NIY+2
%IMPORTANT NOTE: at first, 1.0e-16 is added to prevent devision of 0, this
%helps when FL=0.0; but this addition is discarded and emplaced by
%the following.
UFRKX(j,i)=0.5*(MUNTM(j,i)+MUNTM(j,i+1))*0.5*(FLNTM(j,i)+FLNTM(j,i+1))/(0.5*(RLNTM(j,i)+RLNTM(j,i+1))*0.5*(KFLTM(j,i)+KFLTM(j,i+1)));%[1/sec]
%solid cell at (j,i), set UFRKX as 0.0 mandatorily
if((FLNTM(j,i)<=FLErr)&&(FLNTM(j,i+1)<=FLErr))
UFRKX(j,i)=0.0;
end
%For free-moving region, no Darcy damping force, set UFRKX as 0.0 mandatorily
if(0.5*(FSNTM(j,i)+FSNTM(j,i+1))<=FSCR1)
UFRKX(j,i)=0.0;
end
end
end
%------------------- mu*FL/(RL*K) in denomenator --------------------------
%x-axis parameter in matrix
AX=zeros(NIY,NIX+1);
for i=2:NIX
for j=1:NIY
AX(j,i)=2.0*dy(j)/((dx(i-1)+dx(i))*(1.0+dtb*UFRKX(j+1,i)));%main domain [1]
end
end
for i=1:NIY
AX(i,1)=2.0*dy(i)/(2.0*dx(1)*(1.0+dtb*UFRKX(i+1,1)));%1st column [1]
AX(i,NIX+1)=2.0*dy(i)/(2.0*dx(NIX)*(1.0+dtb*UFRKX(i+1,NIX+1)));%last column [1]
end
%y-axis parameter in matrix
AY=zeros(NIY+1,NIX);
for i=1:NIX
for j=2:NIY
AY(j,i)=2.0*dx(i)/((dy(j)+dy(j-1))*(1.0+dtb*UFRKY(j,i+1)));%main domain [1]
end
end
for i=1:NIX
AY(1,i)=2.0*dx(i)/(2.0*dy(1)*(1.0+dtb*UFRKY(1,i+1)));%1st row [1]
AY(NIY+1,i)=2.0*dx(i)/(2.0*dy(NIY)*(1.0+dtb*UFRKY(NIY+1,i+1)));%last row [1]
end
%=========================== [A] MATRIX ===============================
%NOTE: In [A][X]=[B], [A], [X] and [B] have dimension of [NIY]*[NIX]; to solve this 2D
%matrix, we reshape [X] and [B] into vector of length [NIX*NIY], this will give a
%large sparse matrix of [A] of dimension [NIX*NIY]*[NIX*NIY]
k=0;
%coefficient matrix, a(j,k), a(j+0.5,k), a(j-0.5,k), a(j,k-0.5), a(j,k+0.5)
A=zeros(NIY*NIX,NIX*NIY);
for i=2:NIX-1
for j=2:NIY-1
k=(i-1)*NIY+j;
A(k,k-NIY)=-AX(j,i);%[1]
A(k,k-1)=-AY(j,i);%[1]
A(k,k)=AX(j,i)+AY(j,i)+AY(j+1,i)+AX(j,i+1);%[1]
A(k,k+1)=-AY(j+1,i);%[1]
A(k,k+NIY)=-AX(j,i+1);%[1]
end
end
%special boundary condition at [1,1]
% A(1,1)=AX(1,2)+AY(2,1);%[1]
% A(1,2)=-AY(2,1)*0.0;%[1]
% A(1,NIY+1)=-AX(1,2)*0.0;%[1]
% A(1,1)=1.0;
A(1,1)=AX(1,2)+AY(2,1);%[1]
A(1,2)=-AY(2,1);%[1]
A(1,NIY+1)=-AX(1,2);%[1]
%special boundary condition at [NIY,1]
A(NIY,NIY)=AX(NIY,2)+AY(NIY,1);%[1]
A(NIY,NIY-1)=-AY(NIY,1);%[1]
A(NIY,2*NIY)=-AX(NIY,2);%[1]
%special boundary condition at [1,NIX]
A((NIX-1)*NIY+1,(NIX-1)*NIY+1)=AX(1,NIX)+AY(2,NIX);%[1]
A((NIX-1)*NIY+1,(NIX-1)*NIY+2)=-AY(2,NIX);%[1]
A((NIX-1)*NIY+1,(NIX-2)*NIY+1)=-AX(1,NIX);%[1]
%special boundary condition at [NIY,NIX]
A(NIX*NIY,NIX*NIY)=AX(NIY,NIX)+AY(NIY,NIX);%[1]
A(NIX*NIY,NIX*NIY-1)=-AY(NIY,NIX)*0.0;%[1]
A(NIX*NIY,(NIX-1)*NIY)=-AX(NIY,NIX)*0.0;%[1]
A(NIX*NIY,NIX*NIY)=1.0;
%Left boundary
for j=2:NIY-1
A(j,j)=AY(j,1)+AY(j+1,1)+AX(j,2);%[1]
A(j,j-1)=-AY(j,1);%[1]
A(j,j+1)=-AY(j+1,1);%[1]
A(j,j+NIY)=-AX(j,2);%[1]
end
%Right boundary
for i=2:NIY-1
j=(NIX-1)*NIY+i;
A(j,j)=AY(i,NIX)+AY(i+1,NIX)+AX(i,NIX);%[1]
A(j,j-1)=-AY(i,NIX);%[1]
A(j,j+1)=-AY(i+1,NIX);%[1]
A(j,j-NIY)=-AX(i,NIX);%[1]
end
%Top boundary
for i=2:NIX-1
j=(i-1)*NIY+1;
A(j,j)=AX(1,i)+AY(2,i)+AX(1,i+1);%[1]
A(j,j-NIY)=-AX(1,i);%[1]
A(j,j+1)=-AY(2,i);%[1]
A(j,j+NIY)=-AX(1,i+1);%[1]
end
%Bottom boundary
for i=2:NIX-1
j=i*NIY;
A(j,j)=AX(NIY,i)+AY(NIY,i)+AX(NIY,i+1);%[1]
A(j,j-NIY)=-AX(NIY,i);%[1]
A(j,j-1)=-AY(NIY,i);%[1]
A(j,j+NIY)=-AX(NIY,i+1);%[1]
end
%=========================== [A] MATRIX ===============================
%% ===================== RFVXTM RFVYTM =======================
%NOTE: DFLP at 4 physical walls or boundaries are useless since coefficients are set zero there, thus DFLP has onlt NIX*NIY elements.
DFLP=zeros(NIY*NIX,1);%consider delta(FL*PD) or delta(PD) as one variable which has (NIX*NIY) elements in one column [X]
B=zeros(NIY*NIX,1);%set as [B] which has NIX*NIY elements in one column so that [A][X]=[B]
DRFVX=zeros(NIY+2,NIX+1);
DRFVY=zeros(NIY+1,NIX+2);
VX=zeros(NIY+2,NIX+1);%returned liquid x-axis velocity
VY=zeros(NIY+1,NIX+2);%returned y-axis liquid velocity
%Old step Effective (bulk) dynamic viscosity, I==integer [Pa.sec]
MUOEI=zeros(NIY+2,NIX+2);
MUOEI=VisMix(FSOTM,MUOTM);
% for i=1:NIX+2
% for j=1:NIY+2
% MUOEI(j,i)=VisMix(FSOTM,MUOTM);
% %if(FSOTM<FSCR1)
% %MUOEI(j,i)=f(FSOTM,MUOTM);
% %end
% end
% end
%Old step Effective (bulk) dynamic viscosity, H==half grid [Pa.sec]
MUOEH=zeros(NIY+1,NIX+1);
FSQM=zeros(NIY+1,NIX+1);%FS Quarter Mean
MUQM=zeros(NIY+1,NIX+1);%MU Quarter Mean
for i=1:NIX+1
for j=1:NIY+1
FSQM(j,i)=0.25*(FSOTM(j,i)+FSOTM(j+1,i)+FSOTM(j,i+1)+FSOTM(j+1,i+1));
MUQM(j,i)=0.25*(MUOTM(j,i)+MUOTM(j+1,i)+MUOTM(j,i+1)+MUOTM(j+1,i+1));
% if(F<FSCR1)
% MUOEH(j,i)=VisMix(FSOTM,MUOTM);
% end
end
end
MUOEH=VisMix(FSQM,MUQM);
%--------------------------- 1. Old RFVX ---------------------------------
%RFVX(j+0.5,k)
RFVX=zeros(NIY+2,NIX+1);
for i=1:NIX+1
for j=1:NIY+2
RFVX(j,i)=0.5*(RLOTM(j,i)+RLOTM(j,i+1))*0.5*(FLOTM(j,i)+FLOTM(j,i+1))*VXOTM(j,i);%[kg/m^2/sec]
end
end
%RFVX(1:NIY+2,1)=0.0 --> Left impermeable boundary
%RFVX(1:NIY+2,NIX+1)=0.0 --> Right impermeable boundary
%RFVX(1,1:NIX+1)=-RFVX(2,1:NIX+1) --> Top NO SLIP boundary
%RFVX(NIY+2,1:NIX+1)=-RFVX(NIY+1,1:NIX+1) --> Bottom NO SLIP boundary
%RFVX(1,1:NIX+1)=RFVX(2,1:NIX+1) --> Top FREE boundary
%RFVX(NIY+2,1:NIX+1)=RFVX(NIY+1,1:NIX+1) --> Bottom FREE boundary
%--------------------------- 1. Old RFVX ---------------------------------
%--------------------------- 2. Old RFVY ---------------------------------
%RFVY(j,k+0.5)
RFVY=zeros(NIY+1,NIX+2);
for i=1:NIX+2
for j=1:NIY+1
RFVY(j,i)=0.5*(RLOTM(j,i)+RLOTM(j+1,i))*0.5*(FLOTM(j,i)+FLOTM(j+1,i))*VYOTM(j,i);%[kg/m^2/sec]
end
end
%RFVY(1,1:NIX+2)=0.0 --> Top impermeable boundary
%RFVY(NIY+1,1:NIX+2)=0.0 --> Bottom impermeable boundary
%RFVY(1:NIY+1,1)=RFVY(1:NIY+1,2) --> Left FREE boundary
%RFVY(1:NIY+1,NIX+2)=RFVY(1:NIY+1,NIX+1) --> Right FREE boundary
%RFVY(1:NIY+1,1)=-RFVY(1:NIY+1,2) --> Left NO SLIP boundary
%RFVY(1:NIY+1,NIX+2)=-RFVY(1:NIY+1,NIX+1) --> Right NO SLIP boundary
%--------------------------- 2. Old RFVY ---------------------------------
%----------------------- 3. RFVSX Increment ------------------------------
%----------------------- 3. RFVSX Increment ------------------------------
%----------------------- 4. RFVSY Increment ------------------------------
%----------------------- 4. RFVSY Increment ------------------------------
%%==================== VELOCITY APPROXIMATION PARTS ======================
%------------------------- 5. RFVX in upwind -------------------------------
%RFVX(j,k)=RFVXI
RFVXI=zeros(NIY+2,NIX+2);%I==integer grid (main grid)
for i=2:NIX+1
for j=2:NIY+1
RFVXI(j,i)=RLOTM(j,i)*FLOTM(j,i)*0.5*(VXOTM(j,i-1)+VXOTM(j,i));%[kg/m^2/sec]
end
end
for i=2:NIY+1
%VX(1:NIY+2,1)=0.0 --> Left impermeable boundary
RFVXI(i,1)=-RFVXI(i,2);
%VX(1:NIY+2,NIX+1)=0.0 --> Right impermeable boundary
RFVXI(i,NIX+2)=-RFVXI(i,NIX+1);
end
%Top & Bottom NO SLIP boundary
for i=2:NIX+1
%VX(1,1:NIX+1)=-VX(2,1:NIX+1) --> No mass flow along x-axis --> top NO SLIP boundary
RFVXI(1,i)=-RFVXI(2,i);
%VX(NIY+2,1:NIX+1)=VX(NIY+1,1:NIX+1) --> Some mass flow along x-axis --> bottom FREE boundary
RFVXI(NIY+2,i)=RFVXI(NIY+1,i);
end
% %Top & Bottom FREE boundary
% for i=2:NIX+1
% %VX(1,1:NIX+1)=VX(2,1:NIX+1) --> Some mass flow along x-axis --> top FREE boundary
% RFVXI(1,i)=RFVXI(2,i);
%
% %VX(NIY+2,1:NIX+1)=VX(NIY+1,1:NIX+1) --> Some mass flow along x-axis --> bottom FREE boundary
% RFVXI(NIY+2,i)=RFVXI(NIY+1,i);
% end
%RFVX(j+0.5,k+0.5)=RFVXH
RFVXH=zeros(NIY+1,NIX+1);%H==half grid (cross grid)
for i=1:NIX+1
for j=1:NIY+1
RFVXH(j,i)=0.25*(RLOTM(j,i)+RLOTM(j+1,i)+RLOTM(j,i+1)+RLOTM(j+1,i+1))*0.25*(FLOTM(j,i)+FLOTM(j+1,i)+FLOTM(j,i+1)+FLOTM(j+1,i+1))*0.5*(VXOTM(j+1,i)+VXOTM(j,i));%[kg/m^2/sec]
end
end
%VX(1:NIY+2,1)=0.0 --> RFVXH(1:NIY+1,1)=0.0 --> Left impermeable boundary
%VX(1:NIY+2,NIX+1)=0.0 --> RFVXH(1:NIY+1,NIX+1)=0.0 --> Right impermeable boundary
%VX(1,1:NIX+1)=VX(2,1:NIX+1) --> RFVXH(1,1:NIX+1)!=0.0 --> Top FREE boundary
%VX(NIY+2,1:NIX+1)=VX(NIX+1,1:NIX+1) --> RFVXH(NIY+1,1:NIX+1)!=0.0 --> Bottom FREE boundary
%VX(1,1:NIX+1)=-VX(2,1:NIX+1) --> RFVXH(1,1:NIX+1)=0.0 --> Top NO SLIP boundary
%VX(NIY+2,1:NIX+1)=-VX(NIX+1,1:NIX+1) --> RFVXH(NIY+1,1:NIX+1)=0.0 --> Bottom NO SLIP boundary
%------------------------- 5. RFVX in upwind --------------------------------
%------------------------- 6. RFVSX in upwind -------------------------------
%------------------------- 6. RFVSX in upwind -------------------------------
%------------------------- 7. RFVY in upwind --------------------------------
%RFVY(j,k)=RFVYI
RFVYI=zeros(NIY+2,NIX+2);%I==integer grid (main grid)
for i=2:NIX+1
for j=2:NIY+1
RFVYI(j,i)=RLOTM(j,i)*FLOTM(j,i)*0.5*(VYOTM(j-1,i)+VYOTM(j,i));%[kg/m^2/sec]
end
end
for i=2:NIX+1
%VY(1,1:NIX+2)=0.0 --> Top impermeable boundary
RFVYI(1,i)=-RFVYI(2,i);
%VY(NIY+1,1:NIX+2)=0.0 --> Bottom impermeable boundary
RFVYI(NIY+2,i)=-RFVYI(NIY+1,i);
end
%Left & Right NO SLIP boundary
% for i=2:NIY+1
% %VY(1:NIY+1,1)=-VY(1:NIY+1,2) --> left NO SLIP boundary
% RFVYI(i,1)=-RFVYI(i,2);
%
% %VY(1:NIY+1,NIX+2)=-VY(1:NIY+1,NIX+1) --> right NO SLIP boundary
% RFVYI(i,NIX+2)=-RFVYI(i,NIX+1);
% end
%Left & Right FREE boundary
for i=2:NIY+1
%VY(1:NIY+1,1)=VY(1:NIY+1,2) --> left FREE boundary
RFVYI(i,1)=RFVYI(i,2);
%VY(1:NIY+1,NIX+2)=VY(1:NIY+1,NIX+1) --> right FREE boundary
RFVYI(i,NIX+2)=RFVYI(i,NIX+1);
end
%RFVY(j+0.5,k+0.5)=RFVYH
RFVYH=zeros(NIY+1,NIX+1);%H==half grid (cross grid)
for i=1:NIX+1
for j=1:NIY+1
RFVYH(j,i)=0.25*(RLOTM(j,i)+RLOTM(j+1,i)+RLOTM(j,i+1)+RLOTM(j+1,i+1))*0.25*(FLOTM(j,i)+FLOTM(j+1,i)+FLOTM(j,i+1)+FLOTM(j+1,i+1))*0.5*(VYOTM(j,i+1)+VYOTM(j,i));%[kg/m^2/sec]
end
end
%VY(1,1:NIX+2)=0.0 --> RFVYH(1,1:NIX+1)=0.0 --> Top impermeable boundary
%VY(NIY+1,1:NIX+2)=0.0 --> RFVYH(NIY+1,1:NIX+1)=0.0 --> Bottom impermeable boundary
%VY(1:NIY+1,1)=VY(1:NIY+1,2) --> RFVYH(1;NIY+1,1)!=0.0 --> Left FREE boundary
%VY(1:NIY+1,NIX+2)=VY(1:NIY+1,NIX+1) --> RFVYH(1;NIY+1,NIX+1)!=0.0 --> Right FREE boundary
%VY(1:NIY+1,1)=-VY(1:NIY+1,2) --> RFVYH(1;NIY+1,1)=0.0 --> Left NO SLIP boundary
%VY(1:NIY+1,NIX+2)=-VY(1:NIY+1,NIX+1) --> RFVYH(1;NIY+1,NIX+1)=0.0 --> Right NO SLIP boundary
%------------------------- 7. RFVY in upwind --------------------------------
%------------------------- 8. RFVSY in upwind -------------------------------
%------------------------- 8. RFVSY in upwind -------------------------------
%----------------------- 9. liquid x-momentum -------------------------------
%Upwind scheme for liquid x-axis momentum
VVXI=zeros(NIY+2,NIX+2);%I==integer grid (main grid)
for i=2:NIX+1
for j=1:NIY+2
VVXI(j,i)=VXOTM(j,i-1)*max(RFVXI(j,i),0.0)+VXOTM(j,i)*min(RFVXI(j,i),0.0);%including VVX1, VVX2 [kg/m/sec^2]
end
end
for i=2:NIY+1
%RFVXI(i,1)=RLOTM(i,1)*FLOTM(i,1)*0.5*(VXOTM(i,1)+(-VXOTM(i,2))), we set VXOTM(1:NIY+2,0)=-VXOTM(1:NIY+2,2) so that VXOTM(1:NIY+2,1)=0,
%RFVXI(i,1)=-RFVXI(i,2) --> VVXI(2:NIY+1,1)=VVXI(2:NIY+1,2) --> VXCONV(i-1,1)=0.0 --> Left impermeable boundary
VVXI(i,1)=-VXOTM(i,2)*max(-RLOTM(i,1)*FLOTM(i,1)*0.5*VXOTM(i,2),0.0)+0.0;
%RFVXI(i,NIX+2)=RLOTM(i,NIX+2)*FLOTM(i,NIX+2)*0.5*(VXOTM(i,NIX+1)+(-VXOTM(i,NIX))), we set VXOTM(1:NIY+2,NIX+2)=-VXOTM(1:NIY+2,NIX) so that
%VXOTM(i,NIX+1)=0.0, RFVXI(i,NIX+2)=-RFVXI(i,NIX+1) --> VVXI(2:NIY+1,NIX+2)=VVXI(2:NIY+1,NIX+1) --> VXCONV(i-1,NIX+1)=0.0 --> Right impermeable boundary
VVXI(i,NIX+2)=0.0-VXOTM(i,NIX)*min(-RLOTM(i,NIX+2)*FLOTM(i,NIX+2)*0.5*VXOTM(i,NIX),0.0);
end
%Upwind scheme for y-axis liquid momentum
VVXH=zeros(NIY+1,NIX+1);%H==half grid (cross grid)
for i=1:NIX+1
for j=1:NIY+1
VVXH(j,i)=VXOTM(j,i)*max(RFVYH(j,i),0.0)+VXOTM(j+1,i)*min(RFVYH(j,i),0.0);%[kg/m/sec^2]
end
end
%VY(1,1:NIX+2)=0.0 --> RFVYH(1,1:NIX+1)=0.0 --> VVXH(1,1:NIX+1)=0.0 --> Top impermeable boundary
%VY(NIY+1,1:NIX+2)=0.0 --> RFVYH(NIY+1,1:NIX+1)=0.0 --> VVXH(NIY+1,1:NIX+1)=0.0 --> Bottom impermeable boundary
%VX(1:NIY+2,1)=0.0 --> VVXH(1:NIY+1,1)=0.0 --> Left impermeable boundary
%VX(1:NIY+2,NIX+1)=0.0 --> VVXH(1;NIY+1,NIX+1)=0.0 --> Right impermeable boundary
%----------------------- 9. liquid x-momentum -------------------------------
%----------------------- 10. solid x-momentum -------------------------------
%----------------------- 10. solid x-momentum -------------------------------
%----------------------- 11. liquid y-flow momentum -------------------------
%Upwind scheme for liquid y-axis momentum
VVYI=zeros(NIY+2,NIX+2);%I==integer grid (main grid)
for i=1:NIX+2
for j=2:NIY+1
VVYI(j,i)=VYOTM(j-1,i)*max(RFVYI(j,i),0.0)+VYOTM(j,i)*min(RFVYI(j,i),0.0);%including VVY3, VVY4 [kg/m/sec^2]
end
end
for i=2:NIX+1
%RFVYI(1,i)=RLOTM(1,i)*FLOTM(1,i)*0.5*(VYOTM(0,i)+VYOTM(1,i)), we set VYOTM(0,1:NIX+2)=-VYOTM(2,1:NIX+2) so that VYOTM(1,1:NIX+2)=0.0,
%RFVYI(1,i)=-RFVYI(2,i) --> VVYI(1,2:NIX+1)=VVYI(2,2:NIX+1) --> VYCONV(1,i-1)=0.0 --> Top impermeable boundary
VVYI(1,i)=-VYOTM(2,i)*max(-RLOTM(1,i)*FLOTM(1,i)*0.5*VYOTM(2,i),0.0)+0.0;
%RFVYI(NIY+2,i)=RLOTM(NIY+2,i)*FLOTM(NIY+2,i)*0.5*(VYOTM(NIY+2,i)+VYOTM(NIY+1,i)), we set VYOTM(NIY+2,1:NIX+2)=-VYOTM(NIY,1:NIX+2) so that
%VYOTM(NIY+1,1:NIX+2)=0.0, RFVYI(NIY+2,i)=-RFVYI(NIY+1,i) --> VVYI(NIY+2,2:NIX+1)=VVYI(NIY+1,2:NIX+1) --> VYCONV(NIY+1,i-1)=0.0 --> Bottom impermeable
%boundary
VVYI(NIY+2,i)=0.0-VYOTM(NIY,i)*min(-RLOTM(NIY+2,i)*FLOTM(NIY+2,i)*0.5*VYOTM(NIY,i),0.0);
end
%Upwind scheme for liquid x-axis momentum
VVYH=zeros(NIY+1,NIX+1);%H==half grid (cross grid)
for i=1:NIX+1
for j=1:NIY+1
VVYH(j,i)=VYOTM(j,i)*max(RFVXH(j,i),0.0)+VYOTM(j,i+1)*min(RFVXH(j,i),0.0);%including VVX3, VVX4 [kg/m/sec^2]
end
end
%VX(1:NIY+2,1)=0.0 --> RFVXH(1:NIY+1,1)=0.0 --> VVYH(1:NIY+1,1)=0.0 --> Left impermeable boundary
%VX(1:NIY+2,NIX+1)=0.0 --> RFVXH(1:NIY+1,NIX+1)=0.0 --> VVYH(1:NIY+1,NIX+1)=0.0 --> Right impermeable boundary
%VY(1,1:NIX+2)=0.0 --> VVYH(1,1:NIX+1)=0.0 --> Top impermeable boundary
%VY(NIY+1,1:NIX+2)=0.0 --> VVYH(NIY+1,1:NIX+1)=0.0 --> Bottom impermeable boundary
%----------------------- 11. liquid y-flow momentum ---------------------------
%----------------------- 12. solid y-flow momentum ----------------------------
%----------------------- 12. solid y-flow momentum ----------------------------
%------------------------ 13. x-viscous momentum -----------------------------
%Originally marked as VDXI
VDSXI=zeros(NIY+2,NIX+2);%x velocity cell NORMAL STRESS [Pa.sec times 1/sec == Pa]
for i=2:NIX+1
for j=1:NIY+2
if(FSOTM(j,i)<=FSCR1)
VDSXI(j,i)=MUOEI(j,i)*(VXOTM(j,i)-VXOTM(j,i-1))/dx(i-1);%including VDSX1, VDSX2
else%Porus Region, crystals are interconnected
%VDSXI(j,i)=MUOTM(j,i)*(VXOTM(j,i)*0.5*(FLOTM(j,i)+FLOTM(j,i+1))-VXOTM(j,i-1)*0.5*(FLOTM(j,i-1)+FLOTM(j,i)))/dx(i-1);%including VDX1, VDX2 of Xudaming
VDSXI(j,i)=MUOTM(j,i)*FLOTM(j,i)*(VXOTM(j,i)-VXOTM(j,i-1))/dx(i-1);%Another expression of VDXI
end
end
end
for i=2:NIY+1
if(FSOTM(i,1)<=FSCR1)%Crystal Free-Moving Region
%IMPORTANT NOTE: since cavity is assumed rigid, any force NORMAL TO cavity wall from mixture is equal to the anti-force from cavity
%wall, but with opposite direction (Newton's 3rd law), that is, VDSXI(1:NIY+2,1)==VDSXI(1:NIY+2,2) (for LEFT NORMAL STRESS) and
%VDSXI(1:NIY+2,NIX+2)==VDSXI(1:NIY+2,NIX+1) (for RIGHT NORMAL STRESS). This is reduced to VXOTM(1:NIY+2,0)=-VXOTM(1:NIY+2,2).
%Another explaination is: if VDSXI(1:NIY+2,1)<VDSXI(1:NIY+2,2), then some mass would be pushed out of the cavity through left wall.
%So, to account for left impermeable boundary, we must set VXOTM(1:NIY+2,0)=-VXOTM(1:NIY+2,2).
%We also set dx(0)=dx(1).
VDSXI(i,1)=MUOEI(i,1)*(VXOTM(i,1)-(-VXOTM(i,2)))/dx(1);%left impermeable boundary
%In the same manner, we set VXOTM(1:NIY+2,NIX+2)=-VXOTM(1:NIY+2,NIX) and set dx(NIX+1)=dx(NIX)
VDSXI(i,NIX+2)=MUOEI(i,NIX+2)*(-VXOTM(i,NIX)-VXOTM(i,NIX+1))/dx(NIX);%right impermeable boundary
else%Porus Region, crystals are interconnected
%IMPORTANT NOTE: since cavity is assumed rigid, any force NORMAL TO cavity wall from liquid is equal to the anti-force from cavity
%wall, but with opposite direction (Newton's 3rd law), that is, VDSXI(1:NIY+2,1)==VDSXI(1:NIY+2,2) (for LEFT NORMAL STRESS) and
%VDSXI(1:NIY+2,NIX+2)==VDSXI(1:NIY+2,NIX+1) (for RIGHT NORMAL STRESS). This is reduced to VXOTM(1:NIY+2,0)=-VXOTM(1:NIY+2,2) and
%FLOTM(1:NIY+2,0)=FLOTM(1:NIY+2,3). Another explaination is: if VDSXI(1:NIY+2,1)<VDSXI(1:NIY+2,2), then some mass would be pushed
%out of the cavity through left wall. So, to account for left impermeable boundary, we must set VXOTM(1:NIY+2,0)=-VXOTM(1:NIY+2,2).
%We also set dx(0)=dx(1).
%VDSXI(i,1)=MUOTM(i,1)*(0.0-(-VXOTM(i,2)*0.5*(FLOTM(i,3)+FLOTM(i,2))))/dx(1);%left impermeable boundary
%NOTE: FLOTM(i,3)+FLOTM(i,2) actually is FLOTM(i,0)+FLOTM(i,1)
VDSXI(i,1)=MUOTM(i,1)*FLOTM(i,1)*(0.0-(-VXOTM(i,2)))/dx(1);%Another expression of VDXI
%In the same manner, we set VXOTM(1:NIY+2,NIX+2)=-VXOTM(1:NIY+2,NIX) and FLOTM(1:NIY+2,NIX+3)=FLOTM(1:NIY+2,NIX). we also set dx(NIX)=dx(NIX+1).
%VDSXI(i,NIX+2)=MUOTM(i,NIX+2)*(0.5*(FLOTM(i,NIX)+FLOTM(i,NIX+1))*(-VXOTM(i,NIX))-0.0)/dx(NIX);%right impermeable boundary
%NOTE: FLOTM(i,NIX)+FLOTM(i,NIX+1) is actually FLOTM(i,NIX+2)+FLOTM(i,NIX+3)
VDSXI(i,NIX+2)=MUOTM(i,NIX+2)*FLOTM(i,NIX+2)*((-VXOTM(i,NIX))-0.0)/dx(NIX);%Another expression of VDXI
end
end
% %The following is a father set of the commented above
% MU=0.0;
% VXL=0.0;
% VXR=0.0;
% for i=2:NIX+1
% for j=1:NIY+2
% if(FSOTM(j,i)<=FSCR1)%Crystal Free-Moving Region
% MU=MUOEI(j,i);
% else%Porus Region, crystals are interconnected
% MU=MUOTM(j,i);
% end
% if(0.5*(FSOTM(j,i-1)+FSOTM(j,i))<=FSCR1)
% VXL=VXOTM(j,i-1);
% else
% VXL=0.5*(FLOTM(j,i-1)+FLOTM(j,i))*VXOTM(j,i-1);
% end
% if(0.5*(FSOTM(j,i)+FSOTM(j,i+1))<=FSCR1)
% VXR=VXOTM(j,i);
% else
% VXR=0.5*(FLOTM(j,i)+FLOTM(j,i+1))*VXOTM(j,i);
% end
%
% VDSXI(j,i)=MU*(VXR-VXL)/dx(i-1);%including VDSX1, VDSX2
% end
% end
%
% %Left + Right impermeable boundary
% for i=2:NIY+1
% %IMPORTANT NOTE: since cavity is assumed rigid, any force NORMAL TO cavity wall from mixture is equal to the anti-force from cavity
% %wall, but with opposite direction (Newton's 3rd law), that is, VDSXI(1:NIY+2,1)==VDSXI(1:NIY+2,2) (for LEFT NORMAL STRESS) and
% %VDSXI(1:NIY+2,NIX+2)==VDSXI(1:NIY+2,NIX+1) (for RIGHT NORMAL STRESS). This is reduced to VXOTM(1:NIY+2,0)=-VXOTM(1:NIY+2,2),
% %FSOTM(1:NIY+2,0)=FSOTM(1:LNIY+2,3). Another explaination is: if VDSXI(1:NIY+2,1)<VDSXI(1:NIY+2,2), then some mass would be pushed out of the cavity through left wall.
% %So, to account for left impermeable boundary, we must set VXOTM(1:NIY+2,0)=-VXOTM(1:NIY+2,2).
% %We also set dx(0)=dx(1).
% if(FSOTM(i,1)<=FSCR1)
% MU=MUOEI(i,1);
% else
% MU=MUOTM(i,1);
% end
% if(0.5*(FSOTM(i,2)+FSOTM(i,3))<=FSCR1)
% %FSOTM(i,3)+FSOTM(i,2) == FSOTM(i,0)+FSOTM(i,1)
% VXL=-VXOTM(i,2);
% else
% VXL=-0.5*(FLOTM(i,2)+FLOTM(i,3))*VXOTM(i,2);
% %FLOTM(i,3)+FLOTM(i,2) == FLOTM(i,0)+FLOTM(i,1)
% end
%
% if(0.5*(FSOTM(i,1)+FSOTM(i,2))<=FSCR1)
% VXR=VXOTM(i,1);
% else
% VXR=0.5*(FLOTM(i,1)+FLOTM(i,2))*VXOTM(i,1);
% end
%
% VDSXI(i,1)=MU*(VXR-VXL)/dx(1);%VDSXI(i,1)=VDSXI(i,2) --> Left rigid/impermeable boundary
%
% %In the same manner, we set VXOTM(1:NIY+2,NIX+2)=-VXOTM(1:NIY+2,NIX) and FLOTM(1:NIY+2,NIX+3)=FLOTM(1:NIY+2,NIX). we also set dx(NIX)=dx(NIX+1).
% if(FSOTM(i,NIX+2)<=FSCR1)
% MU=MUOEI(i,NIX+2);
% else
% MU=MUOTM(i,NIX+2);
% end
% if(0.5*(FSOTM(i,NIX+1)+FSOTM(i,NIX+2))<=FSCR1)
% VXL=VXOTM(i,NIX+1);
% else
% VXL=0.5*(FLOTM(i,NIX+1)+FLOTM(i,NIX+2))*VXOTM(i,NIX+1);
% end
%
% if(0.5*(FSOTM(i,NIX)+FSOTM(i,NIX+1))<=FSCR1)
% %FSOTM(i,NIX)+FSOTM(i,NIX+1) == FSOTM(i,NIX+2)+FSOTM(i,NIX+3)
% VXR=-VXOTM(i,NIX);
% else
% VXR=-0.5*(FLOTM(i,NIX)+FLOTM(i,NIX+1))*VXOTM(i,NIX);
% %FLOTM(i,NIX)+FLOTM(i,NIX+1) == FLOTM(i,NIX+2)+FLOTM(i,NIX+3)
% end
%
% VDSXI(i,NIX+2)=MU*(VXR-VXL)/dx(NIX);%VDSXI(i,NIX+2)=VDSXI(i,NIX+1) --> Right rigid/impermeable boundary
%
% end
%
% %Left + Right impermeable boundary can be simply set as:
% %VDSXI(2:NIY+1,1)=VDSXI(2:NIY+1,2);
% %VDSXI(2:NIY+1,NIX+2)=VDSXI(2:NIY+1,NIX+1);
%Originally marked as VDXH
VDSXH=zeros(NIY+1,NIX+1);%x velocity cell SHEAR STRESS [Pa.sec times 1/sec == Pa]
for i=1:NIX+1
for j=2:NIY
if(0.25*(FSOTM(j,i)+FSOTM(j,i+1)+FSOTM(j+1,i)+FSOTM(j+1,i+1))<=FSCR1)%Free-Moving region
VDSXH(j,i)=2.0*MUOEH(j,i)*(VXOTM(j+1,i)-VXOTM(j,i))/(dy(j-1)+dy(j));%[Pa.sec times 1/sec == Pa]
else%Porus region, crystals are interconnected
%VXOTM(j+1,i)~=0.0 and VXOTM(j,i)~=0.0
%VXOTM(j+1,i)=0.0 and VXOTM(j,i)=0.0
VDSXH(j,i)=2.0*MUOEH(j,i)*(0.5*(FLOTM(j+1,i)+FLOTM(j+1,i+1))*VXOTM(j+1,i)-0.5*(FLOTM(j,i)+FLOTM(j,i+1))*VXOTM(j,i))/(dy(j-1)+dy(j));%[Pa.sec times 1/sec == Pa]
%Up and Down row Logical for complete solid cells
UDL1=logical((abs(VXOTM(j+1,i))<VErr)&&(abs(VXOTM(j,i))>=VErr));
UDL2=logical(FLOTM(j+1,i+1)<FLErr||FLOTM(j+1,i)<FLErr);
if(UDL1&&UDL2)
%VXOTM(j+1,i)=0.0, VXOTM(j,i)~=0.0 and FLOTM(j+1,i+1)=0.0 or FLOTM(j+1,i)=0.0; set VXOTM(j+1,i)=-VXOTM(j,i)
VDSXH(j,i)=2.0*MUOEH(j,i)*(0.5*(FLOTM(j+1,i)+FLOTM(j+1,i+1))*(-VXOTM(j,i))-0.5*(FLOTM(j,i)+FLOTM(j,i+1))*VXOTM(j,i))/(dy(j-1)+dy(j));%[Pa.sec times 1/sec == Pa]
end
%Up and Down row Logical for complete solid cells
UDL3=logical((abs(VXOTM(j+1,i))>=VErr)&&(abs(VXOTM(j,i))<VErr));
UDL4=logical(FLOTM(j,i+1)<FLErr||FLOTM(j,i)<FLErr);
if(UDL3&&UDL4)
%VXOTM(j+1,i)~=0.0, VXOTM(j,i)=0.0 and FLOTM(j,i+1)=0.0 or FLOTM(j,i)=0.0; set VXOTM(j,i)=-VXOTM(j+1,i)
VDSXH(j,i)=2.0*MUOEH(j,i)*(0.5*(FLOTM(j+1,i)+FLOTM(j+1,i+1))*(-VXOTM(j,i))-0.5*(FLOTM(j,i)+FLOTM(j,i+1))*(-VXOTM(j+1,i)))/(dy(j-1)+dy(j));%[Pa.sec times 1/sec == Pa]
end
end
end
end
for i=1:NIX+1
%VXOTM(1,i)=-VXOTM(2,i) top NO SLIP boundary
VDSXH(1,i)=2.0*MUOEH(1,i)*(0.5*(FLOTM(2,i)+FLOTM(2,i+1))*VXOTM(2,i)-0.5*(FLOTM(1,i)+FLOTM(1,i+1))*VXOTM(1,i))/(2.0*dy(1));%VXOTM(1,i)=-VXOTM(2,i); [Pa.sec times 1/sec == Pa]
%VXOTM(NIY+1,i)=VXOTM(NIY+2,i) bottom FREE boundary
VDSXH(NIY+1,i)=2.0*MUOEH(NIY+1,i)*(0.5*(FLOTM(NIY+2,i)+FLOTM(NIY+2,i+1))*VXOTM(NIY+2,i)-0.5*(FLOTM(NIY+1,i)+FLOTM(NIY+1,i+1))*VXOTM(NIY+1,i))/(2.0*dy(NIY));%VXOTM(NIY+1,i)=-VXOTM(NIY+2,i);[Pa.sec times 1/sec == Pa]
end
% %The following is a father set of the commented above
% VXU=0.0;
% VXD=0.0;
% for i=1:NIX+1
% for j=2:NIY
% if(0.25*(FSOTM(j,i)+FSOTM(j,i+1)+FSOTM(j+1,i)+FSOTM(j+1,i+1))<=FSCR1)%Crystal Free-Moving Region
% MU=MUOEH(j,i);
% else%Porus Region, crystals are interconnected
% MU=0.25*(MUOTM(j,i)+MUOTM(j,i+1)+MUOTM(j+1,i)+MUOTM(j+1,i+1));
% %In theory, MU=MUOTM(j+0.5,i+0.5) calculated by VisCpRL(T(j+0.5,i+0.5),PA(j+0.5,i+0.5),MCL(j+0.5,i+0.5)). But it's too complex and may give similar results as presented here
% end
% if(0.5*(FSOTM(j,i)+FSOTM(j,i+1))<=FSCR1)
% VXU=VXOTM(j,i);
% else
% VXU=0.5*(FLOTM(j,i)+FLOTM(j,i+1))*VXOTM(j,i);
% end
% if(0.5*(FSOTM(j+1,i)+FSOTM(j+1,i+1))<=FSCR1)
% VXD=VXOTM(j+1,i);
% else
% VXD=0.5*(FLOTM(j+1,i)+FLOTM(j+1,i+1))*VXOTM(j+1,i);
% end
%
% VDSXH(j,i)=2.0*MU*(VXD-VXU)/(dy(j)+dy(j-1));%including VDSX1, VDSX2
% end
% end
%
% %Top + Bottom NO SLIP boundary: SOME SHEAR STRESS along x-axis wall
% for i=1:NIX+1
% if(0.25*(FSOTM(1,i)+FSOTM(2,i)+FSOTM(1,i+1)+FSOTM(2,i+1))<=FSCR1)
% MU=MUOEH(1,i);
% else
% MU=0.25*(MUOTM(1,i)+MUOTM(2,i)+MUOTM(1,i+1)+MUOTM(2,i+1));
% end
% if(0.5*(FSOTM(1,i)+FSOTM(1,i+1))<=FSCR1)
% VXU=VXOTM(1,i);
% else
% VXU=0.5*(FLOTM(1,i)+FLOTM(1,i+1))*VXOTM(1,i);
% end
% if(0.5*(FSOTM(2,i)+FSOTM(2,i+1))<=FSCR1)
% VXD=VXOTM(2,i);
% else
% VXD=0.5*(FLOTM(2,i)+FLOTM(2,i+1))*VXOTM(2,i);
% end
%
% VDSXH(1,i)=2.0*MU*(VXD-VXU)/(dy(1)+dy(1));%VX(1,1:NIX+1)=-VX(2,1:NIX+1) --> VDSXH(1,i)!=0.0 --> Top x-axis some shear stress
%
% if(0.25*(FSOTM(NIY+1,i)+FSOTM(NIY+2,i)+FSOTM(NIY+1,i+1)+FSOTM(NIY+2,i+1))<=FSCR1)
% MU=MUOEH(NIY+1,i);
% else
% MU=0.25*(MUOTM(NIY+1,i)+MUOTM(NIY+2,i)+MUOTM(NIY+1,i+1)+MUOTM(NIY+2,i+1));
% end
% if(0.5*(FSOTM(NIY+1,i)+FSOTM(NIY+1,i+1))<=FSCR1)
% VXU=VXOTM(NIY+1,i);
% else
% VXU=0.5*(FLOTM(NIY+1,i)+FLOTM(NIY+1,i+1))*VXOTM(NIY+1,i);
% end
% if(0.5*(FSOTM(NIY+2,i)+FSOTM(NIY+2,i+1))<=FSCR1)
% VXD=VXOTM(NIY+2,i);
% else
% VXD=0.5*(FLOTM(NIY+2,i)+FLOTM(NIY+2,i+1))*VXOTM(NIY+2,i);
% end
%
% VDSXH(NIY+1,i)=2.0*MU*(VXD-VXU)/(dy(NIY)+dy(NIY));%VX(NIY+2,1:NIX+1)=-VX(NIY+1,1:NIX+1)--> VDSXH(NIY+1,i)!=0.0 --> Bottom x-axis some shear stress
%
% end
%
% % %Top + Bottom FREE boundary: NO SHEAR STRESS along x-axis wall
% % for i=1:NIX+1
% % if(0.25*(FSOTM(1,i)+FSOTM(2,i)+FSOTM(1,i+1)+FSOTM(2,i+1))<=FSCR1)
% % MU=MUOEH(1,i);
% % else
% % MU=0.25*(MUOTM(1,i)+MUOTM(2,i)+MUOTM(1,i+1)+MUOTM(2,i+1));
% % end
% % if(0.5*(FSOTM(1,i)+FSOTM(1,i+1))<=FSCR1)
% % VXU=VXOTM(1,i);
% % else
% % VXU=0.5*(FLOTM(1,i)+FLOTM(1,i+1))*VXOTM(1,i);
% % end
% % if(0.5*(FSOTM(2,i)+FSOTM(2,i+1))<=FSCR1)
% % VXD=VXOTM(2,i);
% % else
% % VXD=0.5*(FLOTM(2,i)+FLOTM(2,i+1))*VXOTM(2,i);
% % end
% %
% % VDSXH(1,i)=2.0*MU*(VXD-VXU)/(dy(1)+dy(1));%%VX(1,1:NIX+1)=VX(2,1:NIX+1) --> VDSXH(1,i)=0.0 --> Top x-axis NO shear stress
% %
% % if(0.25*(FSOTM(NIY+1,i)+FSOTM(NIY+2,i)+FSOTM(NIY+1,i+1)+FSOTM(NIY+2,i+1))<=FSCR1)
% % MU=MUOEH(NIY+1,i);
% % else
% % MU=0.25*(MUOTM(NIY+1,i)+MUOTM(NIY+2,i)+MUOTM(NIY+1,i+1)+MUOTM(NIY+2,i+1));
% % end
% % if(0.5*(FSOTM(NIY+1,i)+FSOTM(NIY+1,i+1))<=FSCR1)
% % VXU=VXOTM(NIY+1,i);
% % else
% % VXU=0.5*(FLOTM(NIY+1,i)+FLOTM(NIY+1,i+1))*VXOTM(NIY+1,i);
% % end
% % if(0.5*(FSOTM(NIY+2,i)+FSOTM(NIY+2,i+1))<=FSCR1)
% % VXD=VXOTM(NIY+2,i);
% % else
% % VXD=0.5*(FLOTM(NIY+2,i)+FLOTM(NIY+2,i+1))*VXOTM(NIY+2,i);
% % end
% %
% % VDSXH(NIY+1,i)=2.0*MU*(VXD-VXU)/(dy(NIY)+dy(NIY));%VX(NIY+2,1:NIX+1)=-VX(NIY+1,1:NIX+1)--> VDSXH(NIY+1,i)!=0.0 --> Bottom x-axis NO shear stress
% %
% % end
%------------------------ 13. x-viscous momentum ----------------------------
%------------------------ 14. y-viscous momentum ----------------------------
%Originally marked as VDYI
VDSYI=zeros(NIY+2,NIX+2);%y velocity cell NORMAL STRESS [Pa.sec times 1/sec == Pa]
for i=1:NIX+2
for j=2:NIY+1
if(FSOTM(j,i)<=FSCR1)%Crystal Free-Moving Region
VDSYI(j,i)=MUOEI(j,i)*(VYOTM(j,i)-VYOTM(j-1,i))/dy(j-1);
else%Porus Region, crystals are interconnected
VDSYI(j,i)=MUOTM(j,i)*(VYOTM(j,i)*0.5*(FLOTM(j+1,i)+FLOTM(j,i))-VYOTM(j-1,i)*0.5*(FLOTM(j,i)+FLOTM(j-1,i)))/dy(j-1);%including VDSY3, VDSY4
end
end
end
for i=2:NIX+1
if(FSOTM(1,i)<=FSCR1)%Crystal Free-Moving Region
%IMPORTANT NOTE: since cavity is assumed rigid, any force NORMAL TO cavity wall from mixture is equal to the anti-force from cavity
%wall, but with opposite direction (Newton's 3rd law), that is, VDSYI(1,1:NIX+2)==VDSYI(2,1:NIX+2) (for TOP NORMAL STRSS) and
%VDSYI(NIY+2,1:NIX+2)==VDSYI(NIY+1,1:NIX+2) (for BOTTOM NORMAL STRESS). This is reduced to VYOTM(0,1:NIX+2)=-VYOTM(2,1:NIX+2).
%We also set dy(0)=dy(1).
VDSYI(1,i)=MUOEI(1,i)*(0.0-(-VYOTM(2,i)))/dy(1);%top impermeable boundary
%In the same manner, we set VYOTM(NIY+2,1:NIX+2)=-VYOTM(NIY,1:NIX+2) and set dy(NIY+1)=dy(NIY).
VDSYI(NIY+2,i)=MUOEI(NIY+2,i)*((-VYOTM(NIY,i))-0.0)/dy(NIY);%bottom impermeable boundary
else%Porus region, crystals are interconnected
%IMPORTANT NOTE: since cavity is assumed rigid, any force NORMAL TO cavity wall from mixture is equal to the anti-force from cavity
%wall, but with opposite direction (Newton's 3rd law), that is, VDSYI(1,1:NIX+2)==VDSYI(2,1:NIX+2) (for TOP NORMAL STRESS) and
%VDSYI(NIY+2,1:NIX+2)==VDSYI(NIY+1,1:NIX+2) (for BOTTOM NORMAL STRESS). This is reduced to VYOTM(0,1:NIX+2)=-VYOTM(2,1:NIX+2) and
%FLOTM(0,1:NIX+2)=FLOTM(3,1:NIX+2). We also set dy(0)=dy(1).
VDSYI(1,i)=MUOTM(1,i)*(0.0-0.5*(FLOTM(2,i)+FLOTM(3,i))*(-VYOTM(2,i)))/dy(1);%top impermeable boundary
%NOTE: FLOTM(2,i)+FLOTM(3,i) is actually FLOTM(1,i)+FLOTM(0,i)
%In the same manner, we set VYOTM(NIY+2,1:NIX+2)=-VYOTM(NIY,1:NIX+2) and FLOTM(NIY+3,1:NIX+2)=FLOTM(NIY,1:NIX+2), we also set dy(NIY)=dy(NIY+1).
VDSYI(NIY+2,i)=MUOTM(NIY+2,i)*(0.5*(FLOTM(NIY+1,i)+FLOTM(NIY,i))*(-VYOTM(NIY,i))-0.0)/dy(NIY);%bottom impermeable boundary
%NOTE: FLOTM(NIY+1,i)+FLOTM(NIY,i) is actually FLOTM(NIY+3,i)+FLOTM(NIY+2,i)
end
end
% VYU=0.0;
% VYD=0.0;
% for i=1:NIX+2
% for j=2:NIY+1
% if(FSOTM(j,i)<=FSCR1)
% MU=MUOEI(j,i);
% else
% MU=MUOTM(j,i);
% end
% if(0.5*(FSOTM(j-1,i)+FSOTM(j,i))<=FSCR1)
% VYU=VYOTM(j-1,i);
% else
% VYU=0.5*(FLOTM(j-1,i)+FLOTM(j,i))*VYOTM(j-1,i);
% end
% if(0.5*(FSOTM(j,i)+FSOTM(j+1,i))<=FSCR1)
% VYD=VYOTM(j,i);
% else
% VYD=0.5*(FLOTM(j,i)+FLOTM(j+1,i))*VYOTM(j,i);
% end
%
% VDSYI(j,i)=MU*(VYD-VYU)/dy(j-1);
% end
% end
%
% %Top + Bottom impermeable boundary
% for i=2:NIX+1
% if(FSOTM(1,i)<=FSCR1)
% MU=MUOEI(1,i);
% else
% MU=MUOTM(1,i);
% end
% if(0.5*(FSOTM(2,i)+FSOTM(3,i))<=FSCR1)
% %FSOTM(2,i)+FSOTM(3,i) == FSOTM(1,i)+FSOTM(0,i)
% VYU=-VYOTM(2,i);
% else
% VYU=-0.5*(FLOTM(2,i)+FLOTM(3,i))*VYOTM(2,i);
% %FLOTM(2,i)+FLOTM(3,i) == FLOTM(1,i)+FLOTM(0,i)
% end
% if(0.5*(FSOTM(1,i)+FSOTM(2,i))<=FSCR1)
% VYD=VYOTM(1,i);
% else
% VYD=0.5*(FLOTM(1,i)+FLOTM(2,i))*VYOTM(1,i);
% end
%
% VDSYI(1,i)=MU*(VYD-VYU)/dy(1);%VDSYI(1,i)=VDSYI(2,i) --> Top rigid/impermeable boundary
%
% if(FSOTM(NIY+2,i)<=FSCR1)
% MU=MUOEI(NIY+2,i);
% else
% MU=MUOTM(NIY+2,i);
% end
% if(0.5*(FSOTM(NIY+1,i)+FSOTM(NIY+2,i))<=FSCR1)
% VYU=VYOTM(NIY+1,i);
% else
% VYU=0.5*(FLOTM(NIY+1,i)+FLOTM(NIY+2,i))*VYOTM(NIY+1,i);
% end
% if(0.5*(FSOTM(NIY,i)+FSOTM(NIY+1,i))<=FSCR1)
% %FSOTM(NIY+1,i)+FSOTM(NIY,i) == FSOTM(NIY+3,i)+FSOTM(NIY+2,i)
% VYD=-VYOTM(NIY,i);
% else
% VYD=-0.5*(FLOTM(NIY,i)+FLOTM(NIY+1,i))*VYOTM(NIY,i);
% %FLOTM(NIY+1,i)+FLOTM(NIY,i) == FLOTM(NIY+3,i)+FLOTM(NIY+2,i)
% end
%
% VDSYI(NIY+2,i)=MU*(VYD-VYU)/dy(NIY);%VDSYI(NIY+2,i)=VDSYI(NIY+1,i) --> Bottom rigid/impermeable boundary
%
% end
VDSYH=zeros(NIY+1,NIX+1);%y velocity cell SHEAR STRESS [Pa.sec times 1/sec == Pa]
for i=2:NIX
%VYOTM(1,i)==0.0 --> top impermeable boundary --> VDSYH(1,i)=0.0
%VYOTM(NIY+1,i)==0.0 --> bottom impermeable boundary --> VDSYH(NIY+1,i)=0.0
for j=1:NIY+1
%VYOTM(j,i)~=0.0 and VYOTM(j,i+1)~=0.0
%VYOTM(j,i)=0.0 and VYOTM(j,i+1)=0.0
VDSYH(j,i)=2.0*0.25*(MUOTM(j,i)+MUOTM(j,i+1)+MUOTM(j+1,i)+MUOTM(j+1,i+1))*(0.5*(FLOTM(j+1,i+1)+FLOTM(j,i+1))*VYOTM(j,i+1)-0.5*(FLOTM(j+1,i)+FLOTM(j,i))*VYOTM(j,i))/(dx(i-1)+dx(i));%[Pa.sec times 1/sec == Pa]
%Left and Right column Logical
LRL1=logical(abs(VYOTM(j,i))<VErr&&abs(VYOTM(j,i+1))>=VErr);
LRL2=logical(FLOTM(j,i)<FLErr||FLOTM(j+1,i)<FLErr);
if(LRL1&&LRL2)
%VYOTM(j,i)=0.0 and VYOTM(j,i+1)~=0.0 and FLOTM(j,i)=0.0 or FLOTM(j+1,i)=0.0; set VYOTM(j,i)=-VYOTM(j,i+1)
VDSYH(j,i)=2.0*0.25*(MUOTM(j,i)+MUOTM(j,i+1)+MUOTM(j+1,i)+MUOTM(j+1,i+1))*(0.5*(FLOTM(j+1,i+1)+FLOTM(j,i+1))*VYOTM(j,i+1)-0.5*(FLOTM(j+1,i)+FLOTM(j,i))*(-VYOTM(j,i+1)))/(dx(i-1)+dx(i));%[Pa.sec times 1/sec == Pa]
end
%Left and Right column Logical
LRL3=logical(abs(VYOTM(j,i))>=VErr&&abs(VYOTM(j,i+1))<VErr);
LRL4=logical(FLOTM(j,i+1)<FLErr||FLOTM(j+1,i+1)<FLErr);
if(LRL3&&LRL4)
%VYOTM(j,i)~=0.0 and VYOTM(j,i+1)=0.0; set VYOTM(j,i+1)=-VYOTM(j,i)
VDSYH(j,i)=2.0*0.25*(MUOTM(j,i)+MUOTM(j,i+1)+MUOTM(j+1,i)+MUOTM(j+1,i+1))*(0.5*(FLOTM(j+1,i+1)+FLOTM(j,i+1))*(-VYOTM(j,i))-0.5*(FLOTM(j+1,i)+FLOTM(j,i))*(-VYOTM(j,i+1)))/(dx(i-1)+dx(i));%[Pa.sec times 1/sec == Pa]
end
end
end
for i=1:NIY+1
%VYOTM(i,1)==VYOTM(i,2) --> left FREE boundary
VDSYH(i,1)=2.0*0.25*(MUOTM(i,1)+MUOTM(i,2)+MUOTM(i+1,1)+MUOTM(i+1,2))*(0.5*(FLOTM(i+1,2)+FLOTM(i,2))*VYOTM(i,2)-0.5*(FLOTM(i+1,1)+FLOTM(i,1))*VYOTM(i,1))/(2.0*dx(1));%VYOTM(i,1)=VYOTM(i,2) for slip boundary; [Pa.sec times 1/sec == Pa]
%VYOTM(i,NIX+2)=VYOTM(i,NIX+2) --> right FREE boundary
VDSYH(i,NIX+1)=2.0*0.25*(MUOTM(i,NIX+1)+MUOTM(i,NIX+2)+MUOTM(i+1,NIX+1)+MUOTM(i+1,NIX+2))*(0.5*(FLOTM(i+1,NIX+2)+FLOTM(i,NIX+2))*VYOTM(i,NIX+2)-0.5*(FLOTM(i+1,NIX+1)+FLOTM(i,NIX+1))*VYOTM(i,NIX+1))/(2.0*dx(NIX));%VYOTM(i,NIX+2)=VYOTM(i,NIX+1); [Pa.sec times 1/sec == Pa]
end
% VYL=0.0;
% VYR=0.0;
% for i=2:NIX
% for j=1:NIY+1
% if(0.25*(FSOTM(j,i)+FSOTM(j+1,i)+FSOTM(j,i+1)+FSOTM(j+1,i+1))<=FSCR1)
% MU=MUOEH(j,i);
% else
% MU=0.25*(MUOTM(j,i)+MUOTM(j+1,i)+MUOTM(j,i+1)+MUOTM(j+1,i+1));
% end
% if(0.5*(FSOTM(j,i)+FSOTM(j+1,i))<=FSCR1)
% VYL=VYOTM(j,i);
% else
% VYL=0.5*(FLOTM(j,i)+FLOTM(j+1,i))*VYOTM(j,i);
% end
% if(0.5*(FSOTM(j,i+1)+FSOTM(j+1,i+1))<=FSCR1)
% VYR=VYOTM(j,i+1);
% else
% VYR=0.5*(FLOTM(j,i+1)+FLOTM(j+1,i+1))*VYOTM(j,i+1);
% end
% VDSYH(j,i)=2.0*MU*(VYR-VYL)/(dx(i-1)+dx(i));
% end
% end
%
% %Left + Right FREE boundary: NO SHEAR STRESS along y-axis wall, that is, VY(1:NIY+1,1)=VY(1:NIY+1,2) or VY(1:NIY+1,NIX+2)=VY(1:NIY+1,NIX+1)
% for i=1:NIY+1
% if(0.25*(FSOTM(i,1)+FSOTM(i+1,1)+FSOTM(i,2)+FSOTM(i+1,2))<=FSCR1)
% MU=MUOEH(i,1);
% else
% MU=0.25*(MUOTM(i,1)+MUOTM(i+1,1)+MUOTM(i,2)+MUOTM(i+1,2));
% end
% if(0.5*(FSOTM(i,1)+FSOTM(i+1,1))<=FSCR1)
% VYL=VYOTM(i,1);
% else
% VYL=0.5*(FLOTM(i,1)+FLOTM(i+1,1))*VYOTM(i,1);
% end
% if(0.5*(FSOTM(i,2)+FSOTM(i+1,2))<=FSCR1)
% VYR=VYOTM(i,2);
% else
% VYR=0.5*(FLOTM(i,2)+FLOTM(i+1,2))*VYOTM(i,2);
% end
% VDSYH(i,1)=2.0*MU*(VYR-VYL)/(dx(1)+dx(1));%VDSYH(i,1)=0.0 --> NO SHEAR STRESS along y-axis wall --> Left FREE boundary
%
% if(0.25*(FSOTM(i,NIX+1)+FSOTM(i+1,NIX+1)+FSOTM(i,NIX+2)+FSOTM(i+1,NIX+2))<=FSCR1)
% MU=MUOEH(i,NIX+1);
% else
% MU=0.25*(MUOTM(i,NIX+1)+MUOTM(i+1,NIX+1)+MUOTM(i,NIX+2)+MUOTM(i+1,NIX+2));
% end
% if(0.5*(FSOTM(i,NIX+1)+FSOTM(i+1,NIX+1))<=FSCR1)
% VYL=VYOTM(i,NIX+1);
% else
% VYL=0.5*(FLOTM(i,NIX+1)+FLOTM(i+1,NIX+1))*VYOTM(i,NIX+1);
% end
% if(0.5*(FSOTM(i,NIX+2)+FSOTM(i+1,NIX+2))<=FSCR1)
% VYR=VYOTM(i,NIX+2);
% else
% VYR=0.5*(FLOTM(i,NIX+2)+FLOTM(i+1,NIX+2))*VYOTM(i,NIX+2);
% end
% VDSYH(i,NIX+1)=2.0*MU*(VYR-VYL)/(dx(NIX)+dx(NIX));%VDSYH(i,NIX+1)=0.0 --> NO SHEAR STRESS along y-axis wall --> Right FREE boundary
%
% end
%
% % %Left + Right NO SLIP boundary: SOME SHEAR STRESS along y-axis wall, that is, VY(1:NIY+1,1)=-VY(1:NIY+1,2) or VY(1:NIY+1,NIX+2)=-VY(1:NIY+1,NIX+1)
% % for i=1:NIY+1
% % if(0.25*(FSOTM(i,1)+FSOTM(i+1,1)+FSOTM(i,2)+FSOTM(i+1,2))<=FSCR1)
% % MU=MUOEH(j,1);
% % else
% % MU=0.25*(MUOTM(i,1)+MUOTM(i+1,1)+MUOTM(i,2)+MUOTM(i+1,2));
% % end
% % if(0.5*(FSOTM(i,1)+FSOTM(i+1,1))<=FSCR1)
% % VYL=VYOTM(i,1);
% % else
% % VYL=0.5*(FLOTM(i,1)+FLOTM(i+1,1))*VYOTM(i,1);
% % end
% % if(0.5*(FSOTM(i,2)+FSOTM(i+1,2))<=FSCR1)
% % VYR=VYOTM(i,2);
% % else
% % VYR=0.5*(FLOTM(i,2)+FLOTM(i+1,2))*VYOTM(i,2);
% % end