|
22 | 22 | from ads.aqua.shaperecommend.llm_config import LLMConfig |
23 | 23 | from ads.aqua.shaperecommend.recommend import ( |
24 | 24 | AquaShapeRecommend, |
25 | | - HuggingFaceModelFetcher, |
26 | 25 | ) |
27 | 26 | from ads.aqua.shaperecommend.shape_report import ( |
28 | 27 | DeploymentParams, |
@@ -457,71 +456,3 @@ def test_shape_report_pareto_front(self): |
457 | 456 | assert c and d in pf |
458 | 457 | assert a and b not in pf |
459 | 458 | assert len(pf) == 2 |
460 | | - |
461 | | - |
462 | | -class TestHuggingFaceModelFetcher: |
463 | | - @pytest.mark.parametrize( |
464 | | - "model_id, expected", |
465 | | - [ |
466 | | - ("meta-llama/Llama-2-7b-hf", True), |
467 | | - ("mistralai/Mistral-7B-v0.1", True), |
468 | | - ("ocid1.datasciencemodel.oc1.iad.xxxxxxxx", False), |
469 | | - ], |
470 | | - ) |
471 | | - def test_is_huggingface_model_id(self, model_id, expected): |
472 | | - assert HuggingFaceModelFetcher.is_huggingface_model_id(model_id) == expected |
473 | | - |
474 | | - @patch("requests.get") |
475 | | - def test_fetch_config_only_success(self, mock_get): |
476 | | - mock_response = MagicMock() |
477 | | - mock_response.status_code = 200 |
478 | | - mock_response.json.return_value = {"model_type": "llama"} |
479 | | - mock_get.return_value = mock_response |
480 | | - |
481 | | - config = HuggingFaceModelFetcher.fetch_config_only("some/model") |
482 | | - assert config == {"model_type": "llama"} |
483 | | - mock_get.assert_called_once() |
484 | | - |
485 | | - @patch("requests.get") |
486 | | - def test_fetch_config_only_not_found(self, mock_get): |
487 | | - mock_response = MagicMock() |
488 | | - mock_response.status_code = 404 |
489 | | - mock_get.return_value = mock_response |
490 | | - |
491 | | - with pytest.raises(AquaValueError, match="not found on HuggingFace"): |
492 | | - HuggingFaceModelFetcher.fetch_config_only("non/existent") |
493 | | - |
494 | | - @patch.dict(os.environ, {"HF_TOKEN": "test_token_123"}, clear=True) |
495 | | - def test_get_hf_token(self): |
496 | | - assert HuggingFaceModelFetcher.get_hf_token() == "test_token_123" |
497 | | - |
498 | | - # @pytest.mark.network |
499 | | - # def test_fetch_config_only_real_call_success(self): |
500 | | - # """ |
501 | | - # Tests a real network call to fetch a public model's configuration. |
502 | | - # This test requires an internet connection. |
503 | | - # """ |
504 | | - # model_id = "distilbert-base-uncased" |
505 | | - |
506 | | - # try: |
507 | | - # config = HuggingFaceModelFetcher.fetch_config_only(model_id) |
508 | | - # assert isinstance(config, dict) |
509 | | - # assert "model_type" in config |
510 | | - # assert "dim" in config |
511 | | - # except AquaValueError as e: |
512 | | - # pytest.fail(f"Real network call to Hugging Face failed: {e}") |
513 | | - |
514 | | - @patch("ads.aqua.shaperecommend.recommend.OCIDataScienceModelDeployment.shapes") |
515 | | - @patch.dict(os.environ, {}, clear=True) |
516 | | - def test_valid_compute_shapes_raises_error_no_compartment(self, mock_oci_shapes): |
517 | | - """ |
518 | | - Tests that valid_compute_shapes raises a ValueError when no compartment ID is |
519 | | - provided and none can be found in the environment. |
520 | | - """ |
521 | | - app = AquaShapeRecommend() |
522 | | - |
523 | | - with pytest.raises(AquaValueError, match="A compartment OCID is required"): |
524 | | - app.valid_compute_shapes(compartment_id=None) |
525 | | - |
526 | | - # Verify that the OCI SDK was not called because the check failed early |
527 | | - mock_oci_shapes.assert_not_called() |
0 commit comments