-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpooling_layers.go
119 lines (107 loc) · 3.04 KB
/
pooling_layers.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
package keras2go
import "math"
func K2c_global_max_pooling(output *K2c_tensor, input *K2c_tensor) {
var in_chan = input.Shape[input.Ndim-1]
copy(output.Array, input.Array[:in_chan])
for i := 0; i < input.Numel; i += in_chan {
for j := 0; j < in_chan; j++ {
if output.Array[j] < input.Array[i+j] {
output.Array[j] = input.Array[i+j]
}
}
}
}
func K2c_global_avg_pooling(output *K2c_tensor, input *K2c_tensor) {
var in_chan = input.Shape[input.Ndim-1]
output.fillFloat64(0)
num_inv := 1 / float64(input.Numel/in_chan)
for i := 0; i < input.Numel; i += in_chan {
for j := 0; j < in_chan; j++ {
output.Array[j] += input.Array[i+j] * num_inv
}
}
}
func K2c_maxpool1d(output *K2c_tensor, input *K2c_tensor, pool_size int, stride int) {
var channels = input.Shape[1]
for i := 0; i < channels; i++ {
var j, k int
for j < output.Shape[0]*channels {
output.Array[j+i] = input.Array[k+i]
for l := 0; l < pool_size*channels; l += channels {
if output.Array[j+i] < input.Array[k+i+l] {
output.Array[j+i] = input.Array[k+i+l]
}
}
j += channels
k += stride * channels
}
}
}
func K2c_maxpool2d(output *K2c_tensor, input *K2c_tensor, pool_size []int, stride []int) {
var channels = input.Shape[2]
for i := 0; i < channels; i++ {
var j, k int
for j < output.Shape[1]*channels {
var l, m int
for l < output.Numel {
output.Array[l+j+i] = input.Array[m+k+i]
for n := 0; n < pool_size[1]*channels; n += channels {
for p := 0; p < pool_size[0]*channels*input.Shape[1]; p += channels * input.Shape[1] {
if output.Array[l+j+i] < input.Array[m+k+i+n+p] {
output.Array[l+j+i] = input.Array[m+k+i+n+p]
}
}
}
l += channels * output.Shape[1]
m += channels * input.Shape[1] * stride[0]
}
j += channels
k += channels * stride[1]
}
}
}
func K2c_avgpool1d(output *K2c_tensor, input *K2c_tensor, pool_size int, stride int) {
var channels = input.Shape[1]
output.fillFloat64(0)
for i := 0; i < channels; i++ {
var j, k int
for j < output.Numel {
var count int
for l := 0; l < pool_size*channels; l += channels {
if input.Array[k+i+l] > -math.MaxFloat64 {
output.Array[j+i] += input.Array[k+i+l]
count++
}
}
output.Array[i+j] /= float64(count)
j += channels
k += stride * channels
}
}
}
func K2c_avgpool2d(output *K2c_tensor, input *K2c_tensor, pool_size []int, stride []int) {
output.fillFloat64(0)
var channels = input.Shape[2]
for i := 0; i < channels; i++ {
var j, k int
for j < output.Shape[1]*channels {
var l, m int
for l < output.Numel {
var count int
for n := 0; n < pool_size[1]*channels; n += channels {
for p := 0; p < pool_size[0]*channels*input.Shape[1]; p += channels * input.Shape[1] {
if -math.MaxFloat64 < input.Array[m+k+i+n+p] {
output.Array[l+j+i] += input.Array[m+k+i+n+p]
count++
}
}
}
output.Array[l+j+i] /= float64(count)
l += channels * output.Shape[1]
m += channels * input.Shape[1] * stride[0]
}
j += channels
k += channels * stride[1]
}
}
}