Papers
arxiv:2110.07205

SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing

Published on Oct 14, 2021
Authors:
,
,
,
,
,
,
,
,
,
,
,
,
,

Abstract

Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning. The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder. Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. To align the textual and speech information into this unified semantic space, we propose a cross-modal vector quantization approach that randomly mixes up speech/text states with latent units as the interface between encoder and decoder. Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification. We release our code and model at https://github.com/microsoft/SpeechT5.

Community

This comment has been hidden
This comment has been hidden
This comment has been hidden
This comment has been hidden

SpeechT5: Revolutionizing Spoken Language Processing

Links 🔗:

👉 Subscribe: https://www.youtube.com/@Arxflix
👉 Twitter: https://x.com/arxflix
👉 LMNT (Partner): https://lmnt.com/

By Arxflix
9t4iCUHx_400x400-1.jpg

Sign up or log in to comment

Models citing this paper 9

Browse 9 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2110.07205 in a dataset README.md to link it from this page.

Spaces citing this paper 724

Collections including this paper 2