-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFord_Fulkerson_Algorithm.py
231 lines (160 loc) · 6.44 KB
/
Ford_Fulkerson_Algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
class Vertex:
def __init__(self,key) -> None:
self.key = key
def __eq__(self, other: object) -> bool:
if isinstance(other, Vertex):
return self.key == other.key
else:
return self.key == other
def __hash__(self) -> int:
return hash(self.key)
def __str__(self) -> str:
return f'{self.key}'
class Edge:
def __init__(self,capacity,isResidual) -> None:
self.capacity = capacity
self.isResidual = isResidual
if self.isResidual:
self.flow = 0
self.residual = 0
self.flow = 0
self.residual = capacity
def __repr__(self) -> str:
return f'{self.capacity} {self.flow} {self.residual} {self.isResidual}'
class ListGraph:
def __init__(self) -> None:
self.graph = {}
def is_empty(self):
if self.graph:
return False
return True
def insert_vertex(self,vertex):
for i in self.graph:
if vertex == i:
return i
self.graph[vertex] = {}
return None
def insert_edge(self,vertex1, vertex2, edge = None):
self.graph[vertex1][vertex2] = edge
def bfs_search(self):
start_vertex = self.get_vertex('s')
visited = []
parent = {}
queue = []
queue.append(start_vertex)
visited.append(start_vertex)
while queue:
current_vertex = queue.pop(0)
for neighbor, edge in self.graph[current_vertex].items():
if neighbor not in visited and edge.residual > 0:
visited.append(neighbor)
parent[neighbor] = current_vertex
queue.append(neighbor)
return parent
def delete_vertex(self,vertex):
neighbours = self.neighbours(vertex)
for v in neighbours:
self.delete_edge(vertex,v[0])
del self.graph[vertex]
def min_capacity(self,parents):
end_v_key = self.get_vertex('t')
min_flow = float('Inf')
curr = end_v_key
if end_v_key in parents:
while curr != self.get_vertex_items('s'):
parent_ver = parents[curr]
edge = self.graph[parent_ver][curr]
if edge.residual < min_flow:
min_flow = edge.residual
curr = parent_ver
return min_flow
return 0
def path_augmentation(self,parents,min_capacity):
curr = self.get_vertex('t')
while curr != self.get_vertex('s'):
parent_ver = parents[curr]
edge = self.graph[parent_ver][curr]
if edge.isResidual:
edge.residual -= min_capacity
edgerev = self.graph[curr][parent_ver]
edgerev.flow -= min_capacity
edgerev.residual += min_capacity
curr = parent_ver
else:
edge.flow += min_capacity
edge.residual -= min_capacity
edgerev = self.graph[curr][parent_ver]
edgerev.residual += min_capacity
curr = parent_ver
def ford_fulkerson_algorithm(self):
parents = self.bfs_search()
if self.get_vertex('t') not in parents:
raise ValueError('Path from s to t not found')
min_capacity = self.min_capacity(parents)
flow = min_capacity
while min_capacity > 0:
self.path_augmentation(parents,min_capacity)
parents = self.bfs_search()
min_capacity = self.min_capacity(parents)
flow += min_capacity
return flow
def delete_edge(self,vertex1, vertex2):
if vertex1 in self.graph and vertex2 in self.graph[vertex1]:
del self.graph[vertex1][vertex2]
if vertex2 in self.graph and vertex1 in self.graph[vertex2]:
del self.graph[vertex2][vertex1]
def neighbours(self,vertex_id):
try:
return list(self.graph[vertex_id[0]].items())
except TypeError:
return list(self.graph[vertex_id].items())
def vertices(self):
return list(self.graph.keys())
def get_vertex(self,vertex_id):
for vert, k in self.graph.items():
if vert == vertex_id:
return vert
def get_vertex_items(self,vertex_id):
for vert, k in self.graph.items():
if vert == vertex_id:
return vert.key
def get_vertexidx(self,vertex):
return self.graph[vertex]
def printGraph(self):
print("------GRAPH------")
vertic = self.vertices()
for v in vertic:
print(v, end = " -> ")
for (n, w) in self.neighbours(v):
print(n, w, end=";")
print()
print("-------------------")
def main():
graf_0 = [ ('s','u',2), ('u','t',1), ('u','v',3), ('s','v',1), ('v','t',2)]
graf_1 = [ ('s', 'a', 16), ('s', 'c', 13), ('c', 'a', 4), ('a', 'b', 12), ('b', 'c', 9), ('b', 't', 20), ('c', 'd', 14), ('d', 'b', 7), ('d', 't', 4) ]
graf_2 = [ ('s', 'a', 3), ('s', 'c', 3), ('a', 'b', 4), ('b', 's', 3), ('b', 'c', 1), ('b', 'd', 2), ('c', 'e', 6), ('c', 'd', 2), ('d', 't', 1), ('e', 't', 9)]
graphs = [graf_0,graf_1,graf_2]
for graf in graphs:
graph = ListGraph()
for data in graf:
vert1 = Vertex(data[0])
vert2 = Vertex(data[1])
edg = Edge(data[2],False)
edgRes = Edge(data[2],True)
ex_v1 = graph.insert_vertex(vert1)
ex_v2 = graph.insert_vertex(vert2)
if ex_v1 is None and ex_v2 is None:
graph.insert_edge(vert1,vert2,edg)
graph.insert_edge(vert2,vert1,edgRes)
elif ex_v1 is None and ex_v2 is not None:
graph.insert_edge(vert1,ex_v2,edg)
graph.insert_edge(ex_v2,vert1,edgRes)
elif ex_v2 is None and ex_v1 is not None:
graph.insert_edge(ex_v1,vert2,edg)
graph.insert_edge(vert2,ex_v1,edgRes)
else:
graph.insert_edge(ex_v1,ex_v2,edg)
graph.insert_edge(ex_v2,ex_v1,edgRes)
print(graph.ford_fulkerson_algorithm())
graph.printGraph()
main()