-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheuler038.py
43 lines (34 loc) · 1.29 KB
/
euler038.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
"""
Take the number 192 and multiply it by each of 1, 2, and 3:
192 * 1 = 192
192 * 2 = 384
192 * 3 = 576
By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3)
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, ... , n) where n > 1?
"""
def get_limit(k):
set_limit = set()
for i in range(1, k + 1):
set_limit.add(str(i))
limit = 0
for i in range(1, k + 1):
limit += i * 10 ** (i - 1)
return limit, set_limit
def pandigital(n, k):
limit, set_limit = get_limit(k)
print(limit, set_limit)
multipliers = []
for multiplier in range(2, n):
res = ""
i = 0
while len(res) < k or int(res) <= limit:
i += 1
res += str(multiplier * i)
if len(res) == k and set(res) == set_limit:
print(res, multiplier, i)
multipliers.append(multiplier)
return multipliers
if __name__ == "__main__":
n, k = map(int, input().split(" "))
print(pandigital(n, k))