|
| 1 | +import glob |
| 2 | +import os |
| 3 | +import sys |
| 4 | +import random |
| 5 | +import javalang |
| 6 | +import numpy as np |
| 7 | +from tqdm import tqdm |
| 8 | +from math import ceil |
| 9 | +from shutil import copyfile as cp |
| 10 | + |
| 11 | +TRAIN_SPLIT = .8 |
| 12 | +TEST_VAL_SPLIT = .1 |
| 13 | + |
| 14 | +#minimum number of times the method name must be seen to include it in the dataset |
| 15 | +MIN_NUM = 5 |
| 16 | + |
| 17 | +def copy_files(files, folder): |
| 18 | + for i in range(0, len(files)): |
| 19 | + cp(files[i], os.path.join(out_dir, folder, str(i) + ".java")) |
| 20 | + |
| 21 | +def add_to_method_map(m_name): |
| 22 | + if m_name in m_names: |
| 23 | + m_names[m_name] += 1 |
| 24 | + else: |
| 25 | + m_names[m_name] = 1 |
| 26 | + |
| 27 | +def get_all_methods(f_name): |
| 28 | + with open(f_name, "rb") as f: |
| 29 | + c = f.read() |
| 30 | + |
| 31 | + try: |
| 32 | + tree = javalang.parse.parse(c) |
| 33 | + methods = list(tree.filter(javalang.tree.MethodDeclaration)) |
| 34 | + |
| 35 | + except (javalang.parser.JavaSyntaxError, AttributeError, javalang.tokenizer.LexerError, TypeError, RecursionError, StopIteration) as e: |
| 36 | + #print(e) |
| 37 | + return [] |
| 38 | + |
| 39 | + return methods |
| 40 | + |
| 41 | +def split_by_token(name): |
| 42 | + tokens = [] |
| 43 | + token = "" |
| 44 | + prev = "" |
| 45 | + |
| 46 | + for c in name: |
| 47 | + if ((c.isupper() and prev.islower()) or c == "_" ) and len(token) > 0: |
| 48 | + tokens.append(token) |
| 49 | + token = c |
| 50 | + |
| 51 | + else: |
| 52 | + token += c |
| 53 | + |
| 54 | + prev = c |
| 55 | + |
| 56 | + |
| 57 | + if len(token) > 0: |
| 58 | + tokens.append(token) |
| 59 | + |
| 60 | + return tokens |
| 61 | + |
| 62 | +if len(sys.argv) < 3: |
| 63 | + print("USAGE: python clean_and_split.py IN_DIR OUT_DIR") |
| 64 | + |
| 65 | +data_dir = sys.argv[1] |
| 66 | +out_dir = sys.argv[2] |
| 67 | + |
| 68 | +split_or_clean = sys.argv[3] |
| 69 | +split, clean, vec = False, False, False |
| 70 | + |
| 71 | +if split_or_clean == "split": |
| 72 | + split = True |
| 73 | +elif split_or_clean == "clean": |
| 74 | + clean = True |
| 75 | + vec_or_seq = sys.argv[4] |
| 76 | + if vec == "seq": |
| 77 | + vec = False |
| 78 | +else: |
| 79 | + print("command not accepted") |
| 80 | + sys.exit(1) |
| 81 | + |
| 82 | + |
| 83 | +all_files = [] |
| 84 | +m_names = {} |
| 85 | + |
| 86 | +for (dirpath, dirnames, filenames) in os.walk(data_dir): |
| 87 | + all_files += [os.path.join(dirpath, _file) for _file in filenames] |
| 88 | + |
| 89 | +if clean: |
| 90 | + for _file in tqdm(all_files): |
| 91 | + methods = get_all_methods(_file) |
| 92 | + for path, node in methods: |
| 93 | + names = [node.name] if vec else split_by_token(node.name) |
| 94 | + |
| 95 | + for name in names: |
| 96 | + add_to_method_map(name) |
| 97 | + |
| 98 | + m_clean = {k: v for k, v in m_names.items() if v >= MIN_NUM} |
| 99 | + print("total", len(m_names), "clean", len(m_clean)) |
| 100 | + |
| 101 | + s = "" |
| 102 | + for k, v in m_clean.items(): |
| 103 | + s += k + "\n" |
| 104 | + |
| 105 | + with open("clean_names.txt", "w") as f: |
| 106 | + f.write(s) |
| 107 | + |
| 108 | + |
| 109 | +#clean files here by putting each method in a new file? |
| 110 | + |
| 111 | +if split: |
| 112 | + random.shuffle(all_files) |
| 113 | + |
| 114 | + l = len(all_files) |
| 115 | + end = ceil(TRAIN_SPLIT*l) |
| 116 | + train = all_files[0:end] |
| 117 | + |
| 118 | + start = end |
| 119 | + end = end + ceil(TEST_VAL_SPLIT*l) |
| 120 | + val = all_files[start:end] |
| 121 | + |
| 122 | + test = all_files[end:] |
| 123 | + |
| 124 | + |
| 125 | + if not os.path.exists(out_dir): |
| 126 | + os.mkdir(out_dir) |
| 127 | + os.mkdir(os.path.join(out_dir, "training")) |
| 128 | + os.mkdir(os.path.join(out_dir, "test")) |
| 129 | + os.mkdir(os.path.join(out_dir, "validation")) |
| 130 | + |
| 131 | + copy_files(train, "training") |
| 132 | + copy_files(test, "test") |
| 133 | + copy_files(val, "validation") |
0 commit comments