|
| 1 | +import argparse |
| 2 | +import re |
| 3 | +import json |
| 4 | +import multiprocessing |
| 5 | +import itertools |
| 6 | +import tqdm |
| 7 | +import joblib |
| 8 | +import numpy as np |
| 9 | + |
| 10 | +from pathlib import Path |
| 11 | +from sklearn import model_selection as sklearn_model_selection |
| 12 | + |
| 13 | +METHOD_NAME, NUM = 'METHODNAME', 'NUM' |
| 14 | + |
| 15 | +parser = argparse.ArgumentParser() |
| 16 | +parser.add_argument('--data_dir', required=True, type=str) |
| 17 | +parser.add_argument('--valid_p', type=float, default=0.2) |
| 18 | +parser.add_argument('--max_path_length', type=int, default=8) |
| 19 | +parser.add_argument('--max_path_width', type=int, default=2) |
| 20 | +parser.add_argument('--use_method_name', type=bool, default=True) |
| 21 | +parser.add_argument('--use_nums', type=bool, default=True) |
| 22 | +parser.add_argument('--output_dir', required=True, type=str) |
| 23 | +parser.add_argument('--n_jobs', type=int, default=multiprocessing.cpu_count()) |
| 24 | +parser.add_argument('--seed', type=int, default=239) |
| 25 | + |
| 26 | + |
| 27 | +def __collect_asts(json_file): |
| 28 | + asts = [] |
| 29 | + with open(json_file, 'r', encoding='utf-8') as f: |
| 30 | + for line in f: |
| 31 | + ast = json.loads(line.strip()) |
| 32 | + asts.append(ast) |
| 33 | + |
| 34 | + return asts |
| 35 | + |
| 36 | + |
| 37 | +def __terminals(ast, node_index, args): |
| 38 | + stack, paths = [], [] |
| 39 | + |
| 40 | + def dfs(v): |
| 41 | + stack.append(v) |
| 42 | + |
| 43 | + v_node = ast[v] |
| 44 | + |
| 45 | + if 'value' in v_node: |
| 46 | + if v == node_index: # Top-level func def node. |
| 47 | + if args.use_method_name: |
| 48 | + paths.append((stack.copy(), METHOD_NAME)) |
| 49 | + else: |
| 50 | + v_type = v_node['type'] |
| 51 | + |
| 52 | + if v_type.startswith('Name'): |
| 53 | + paths.append((stack.copy(), v_node['value'])) |
| 54 | + elif args.use_nums and v_type == 'Num': |
| 55 | + paths.append((stack.copy(), NUM)) |
| 56 | + else: |
| 57 | + pass |
| 58 | + |
| 59 | + if 'children' in v_node: |
| 60 | + for child in v_node['children']: |
| 61 | + dfs(child) |
| 62 | + |
| 63 | + stack.pop() |
| 64 | + |
| 65 | + dfs(node_index) |
| 66 | + |
| 67 | + return paths |
| 68 | + |
| 69 | + |
| 70 | +def __merge_terminals2_paths(v_path, u_path): |
| 71 | + s, n, m = 0, len(v_path), len(u_path) |
| 72 | + while s < min(n, m) and v_path[s] == u_path[s]: |
| 73 | + s += 1 |
| 74 | + |
| 75 | + prefix = list(reversed(v_path[s:])) |
| 76 | + lca = v_path[s - 1] |
| 77 | + suffix = u_path[s:] |
| 78 | + |
| 79 | + return prefix, lca, suffix |
| 80 | + |
| 81 | + |
| 82 | +def __raw_tree_paths(ast, node_index, args): |
| 83 | + tnodes = __terminals(ast, node_index, args) |
| 84 | + |
| 85 | + tree_paths = [] |
| 86 | + for (v_path, v_value), (u_path, u_value) in itertools.combinations( |
| 87 | + iterable=tnodes, |
| 88 | + r=2, |
| 89 | + ): |
| 90 | + prefix, lca, suffix = __merge_terminals2_paths(v_path, u_path) |
| 91 | + if (len(prefix) + 1 + len(suffix) <= args.max_path_length) \ |
| 92 | + and (abs(len(prefix) - len(suffix)) <= args.max_path_width): |
| 93 | + path = prefix + [lca] + suffix |
| 94 | + tree_path = v_value, path, u_value |
| 95 | + tree_paths.append(tree_path) |
| 96 | + |
| 97 | + return tree_paths |
| 98 | + |
| 99 | + |
| 100 | +def __delim_name(name): |
| 101 | + if name in {METHOD_NAME, NUM}: |
| 102 | + return name |
| 103 | + |
| 104 | + def camel_case_split(identifier): |
| 105 | + matches = re.finditer( |
| 106 | + '.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)', |
| 107 | + identifier, |
| 108 | + ) |
| 109 | + return [m.group(0) for m in matches] |
| 110 | + |
| 111 | + blocks = [] |
| 112 | + for underscore_block in name.split('_'): |
| 113 | + blocks.extend(camel_case_split(underscore_block)) |
| 114 | + |
| 115 | + return '|'.join(block.lower() for block in blocks) |
| 116 | + |
| 117 | + |
| 118 | +def __collect_sample(ast, fd_index, args): |
| 119 | + root = ast[fd_index] |
| 120 | + if root['type'] != 'FunctionDef': |
| 121 | + raise ValueError('Wrong node type.') |
| 122 | + |
| 123 | + target = root['value'] |
| 124 | + |
| 125 | + tree_paths = __raw_tree_paths(ast, fd_index, args) |
| 126 | + contexts = [] |
| 127 | + for tree_path in tree_paths: |
| 128 | + start, connector, finish = tree_path |
| 129 | + |
| 130 | + start, finish = __delim_name(start), __delim_name(finish) |
| 131 | + connector = '|'.join(ast[v]['type'] for v in connector) |
| 132 | + |
| 133 | + context = f'{start},{connector},{finish}' |
| 134 | + contexts.append(context) |
| 135 | + |
| 136 | + if len(contexts) == 0: |
| 137 | + return None |
| 138 | + |
| 139 | + target = __delim_name(target) |
| 140 | + context = ' '.join(contexts) |
| 141 | + |
| 142 | + return f'{target} {context}' |
| 143 | + |
| 144 | + |
| 145 | +def __collect_samples(ast, args): |
| 146 | + samples = [] |
| 147 | + for node_index, node in enumerate(ast): |
| 148 | + if node['type'] == 'FunctionDef': |
| 149 | + sample = __collect_sample(ast, node_index, args) |
| 150 | + if sample is not None: |
| 151 | + samples.append(sample) |
| 152 | + |
| 153 | + return samples |
| 154 | + |
| 155 | + |
| 156 | +def __collect_all_and_save(asts, args, output_file): |
| 157 | + parallel = joblib.Parallel(n_jobs=args.n_jobs) |
| 158 | + func = joblib.delayed(__collect_samples) |
| 159 | + |
| 160 | + samples = parallel(func(ast, args) for ast in tqdm.tqdm(asts)) |
| 161 | + samples = list(itertools.chain.from_iterable(samples)) |
| 162 | + |
| 163 | + with open(output_file, 'w') as f: |
| 164 | + for line_index, line in enumerate(samples): |
| 165 | + f.write(line + ('' if line_index == len(samples) - 1 else '\n')) |
| 166 | + |
| 167 | + |
| 168 | +def main(): |
| 169 | + args = parser.parse_args() |
| 170 | + np.random.seed(args.seed) |
| 171 | + |
| 172 | + data_dir = Path(args.data_dir) |
| 173 | + trains = __collect_asts(data_dir / 'python100k_train.json') |
| 174 | + evals = __collect_asts(data_dir / 'python50k_eval.json') |
| 175 | + |
| 176 | + train, valid = sklearn_model_selection.train_test_split( |
| 177 | + trains, |
| 178 | + test_size=args.valid_p, |
| 179 | + ) |
| 180 | + test = evals |
| 181 | + |
| 182 | + output_dir = Path(args.output_dir) |
| 183 | + output_dir.mkdir(exist_ok=True) |
| 184 | + for split_name, split in zip( |
| 185 | + ('train', 'valid', 'test'), |
| 186 | + (train, valid, test), |
| 187 | + ): |
| 188 | + output_file = output_dir / f'{split_name}_output_file.txt' |
| 189 | + __collect_all_and_save(split, args, output_file) |
| 190 | + |
| 191 | + |
| 192 | +if __name__ == '__main__': |
| 193 | + main() |
0 commit comments