|
| 1 | +--TEST-- |
| 2 | +Examples of the usage of gmp for elliptic curve cryptography. |
| 3 | +--DESCRIPTION-- |
| 4 | +DANGER: DO NOT USE IN SECURITY-RELATED USE-CASES. |
| 5 | +This implementation is not hardened or tested against side channels (e.g. time or cache). |
| 6 | +Side-channels as contained in this implementation may compromise secrets (e.g. secret keys). |
| 7 | +Hence, it MUST NOT BE USED IN SECURITY-RELATED USE-CASES. |
| 8 | + |
| 9 | +This implementation operates on the secp256r1 curve from https://www.secg.org/sec2-v2.pdf (also known as NIST P-256). |
| 10 | +For addition and doublication, it implements https://www.secg.org/sec1-v2.pdf (2.2.1). |
| 11 | +For point decompression, it implements https://www.secg.org/sec1-v2.pdf (2.3.4). |
| 12 | +For scalar multiplication, it uses the well-known double-add-always pardigm. |
| 13 | + |
| 14 | +The implementation executes a diffie-hellman handshake. |
| 15 | +Omitted is an explicit demonstration of (public-key) encryption, commitments, zero-knowledge proofs or similar common applications. |
| 16 | +However, the operations used for diffie-hellman is at the core of all these other applications, hence these use-cases are implicitly covered. |
| 17 | + |
| 18 | +$aliceSecret and $bobSecret generated with |
| 19 | +$random = gmp_random_range(0, $n); |
| 20 | +$randomHex = strtoupper(gmp_strval($random, 16)); |
| 21 | +echo chunk_split($randomHex, 8, " "); |
| 22 | +--EXTENSIONS-- |
| 23 | +gmp |
| 24 | +--FILE-- |
| 25 | +<?php |
| 26 | + |
| 27 | +/** |
| 28 | + * Elliptic curve point with x and y coordinates |
| 29 | + */ |
| 30 | +class Point |
| 31 | +{ |
| 32 | + public function __construct(public \GMP $x, public \GMP $y) |
| 33 | + { |
| 34 | + } |
| 35 | + |
| 36 | + public static function createInfinity(): Point |
| 37 | + { |
| 38 | + return new Point(gmp_init(0), gmp_init(0)); |
| 39 | + } |
| 40 | + |
| 41 | + public function isInfinity(): bool |
| 42 | + { |
| 43 | + return gmp_cmp($this->x, 0) === 0 && gmp_cmp($this->y, 0) === 0; |
| 44 | + } |
| 45 | + |
| 46 | + public function equals(self $other): bool |
| 47 | + { |
| 48 | + return gmp_cmp($this->x, $other->x) === 0 && gmp_cmp($this->y, $other->y) === 0; |
| 49 | + } |
| 50 | +} |
| 51 | + |
| 52 | + |
| 53 | +/** |
| 54 | + * In the finite field F_p, |
| 55 | + * an elliptic curve in the short Weierstrass form y^2 = x^3 + ax + b is defined, |
| 56 | + * forming a group over addition. |
| 57 | + * |
| 58 | + * A base point G of order n and cofactor h is picked in this group. |
| 59 | + */ |
| 60 | +class Curve |
| 61 | +{ |
| 62 | + public function __construct(private readonly \GMP $p, private readonly \GMP $a, private readonly \GMP $b, private readonly Point $G, private readonly \GMP $n) |
| 63 | + { |
| 64 | + } |
| 65 | + |
| 66 | + public function getP(): \GMP |
| 67 | + { |
| 68 | + return $this->p; |
| 69 | + } |
| 70 | + |
| 71 | + public function getA(): \GMP |
| 72 | + { |
| 73 | + return $this->a; |
| 74 | + } |
| 75 | + |
| 76 | + public function getB(): \GMP |
| 77 | + { |
| 78 | + return $this->b; |
| 79 | + } |
| 80 | + |
| 81 | + public function getG(): Point |
| 82 | + { |
| 83 | + return $this->G; |
| 84 | + } |
| 85 | + |
| 86 | + public function getN(): \GMP |
| 87 | + { |
| 88 | + return $this->n; |
| 89 | + } |
| 90 | +} |
| 91 | + |
| 92 | + |
| 93 | +/** |
| 94 | + * Math inside a prime field; hence always (mod p) |
| 95 | + */ |
| 96 | +class PrimeField |
| 97 | +{ |
| 98 | + private int $elementBitLength; |
| 99 | + |
| 100 | + public function __construct(private readonly \GMP $prime) |
| 101 | + { |
| 102 | + $this->elementBitLength = strlen(gmp_strval($prime, 2)); |
| 103 | + } |
| 104 | + |
| 105 | + public function getElementBitLength(): int |
| 106 | + { |
| 107 | + return $this->elementBitLength; |
| 108 | + } |
| 109 | + |
| 110 | + public function add(\GMP $a, \GMP $b): \GMP |
| 111 | + { |
| 112 | + $r = gmp_add($a, $b); |
| 113 | + return gmp_mod($r, $this->prime); |
| 114 | + } |
| 115 | + |
| 116 | + public function mul(\GMP $a, \GMP $b): \GMP |
| 117 | + { |
| 118 | + $r = gmp_mul($a, $b); |
| 119 | + return gmp_mod($r, $this->prime); |
| 120 | + } |
| 121 | + |
| 122 | + public function sub(\GMP $a, \GMP $b): \GMP |
| 123 | + { |
| 124 | + $r = gmp_sub($a, $b); |
| 125 | + return gmp_mod($r, $this->prime); |
| 126 | + } |
| 127 | + |
| 128 | + public function mod(\GMP $a): \GMP |
| 129 | + { |
| 130 | + return gmp_mod($a, $this->prime); |
| 131 | + } |
| 132 | + |
| 133 | + public function invert(\GMP $z): \GMP|false |
| 134 | + { |
| 135 | + return gmp_invert($z, $this->prime); |
| 136 | + } |
| 137 | +} |
| 138 | + |
| 139 | +class UnsafePrimeCurveMath |
| 140 | +{ |
| 141 | + private PrimeField $field; |
| 142 | + public function __construct(private readonly Curve $curve) |
| 143 | + { |
| 144 | + $this->field = new PrimeField($this->curve->getP()); |
| 145 | + } |
| 146 | + |
| 147 | + /** |
| 148 | + * checks whether point fulfills the defining equation of the curve |
| 149 | + */ |
| 150 | + public function isOnCurve(Point $point): bool |
| 151 | + { |
| 152 | + $left = gmp_pow($point->y, 2); |
| 153 | + $right = gmp_add( |
| 154 | + gmp_add( |
| 155 | + gmp_pow($point->x, 3), |
| 156 | + gmp_mul($this->curve->getA(), $point->x) |
| 157 | + ), |
| 158 | + $this->curve->getB() |
| 159 | + ); |
| 160 | + |
| 161 | + $comparison = $this->field->sub($left, $right); |
| 162 | + |
| 163 | + return gmp_cmp($comparison, 0) == 0; |
| 164 | + } |
| 165 | + |
| 166 | + /** |
| 167 | + * implements https://www.secg.org/sec1-v2.pdf 2.3.4 |
| 168 | + */ |
| 169 | + public function fromXCoordinate(\GMP $x, bool $isEvenY): Point |
| 170 | + { |
| 171 | + $alpha = gmp_add( |
| 172 | + gmp_add( |
| 173 | + gmp_powm($x, gmp_init(3, 10), $this->curve->getP()), |
| 174 | + gmp_mul($this->curve->getA(), $x) |
| 175 | + ), |
| 176 | + $this->curve->getB() |
| 177 | + ); |
| 178 | + |
| 179 | + $jacobiSymbol = gmp_jacobi($alpha, $this->curve->getP()); |
| 180 | + if ($jacobiSymbol !== 1) { |
| 181 | + throw new Exception('No square root of alpha.'); |
| 182 | + } |
| 183 | + |
| 184 | + $const = gmp_div(gmp_add($this->curve->getP(), 1), 4); |
| 185 | + $beta = gmp_powm($alpha, $const, $this->curve->getP()); |
| 186 | + |
| 187 | + $yp = $isEvenY ? gmp_init(0) : gmp_init(1); |
| 188 | + if (gmp_cmp(gmp_mod($beta, 2), $yp) === 0) { |
| 189 | + return new Point($x, $beta); |
| 190 | + } else { |
| 191 | + return new Point($x, gmp_sub($this->curve->getP(), $beta)); |
| 192 | + } |
| 193 | + } |
| 194 | + |
| 195 | + /** |
| 196 | + * rules from https://www.secg.org/SEC1-Ver-1.0.pdf (2.2.1) |
| 197 | + */ |
| 198 | + private function add(Point $a, Point $b): Point |
| 199 | + { |
| 200 | + // rule 1 & 2 |
| 201 | + if ($a->isInfinity()) { |
| 202 | + return clone $b; |
| 203 | + } elseif ($b->isInfinity()) { |
| 204 | + return clone $a; |
| 205 | + } |
| 206 | + |
| 207 | + if (gmp_cmp($a->x, $b->x) === 0) { |
| 208 | + // rule 3 |
| 209 | + if (gmp_cmp($b->y, $a->y) !== 0) { |
| 210 | + return Point::createInfinity(); |
| 211 | + } |
| 212 | + |
| 213 | + // rule 5 |
| 214 | + return $this->double($a); |
| 215 | + } |
| 216 | + |
| 217 | + // rule 4 (note that a / b = a * b^-1) |
| 218 | + $lambda = $this->field->mul( |
| 219 | + gmp_sub($b->y, $a->y), |
| 220 | + $this->field->invert(gmp_sub($b->x, $a->x)) |
| 221 | + ); |
| 222 | + |
| 223 | + $x = $this->field->sub( |
| 224 | + gmp_sub( |
| 225 | + gmp_pow($lambda, 2), |
| 226 | + $a->x |
| 227 | + ), |
| 228 | + $b->x |
| 229 | + ); |
| 230 | + |
| 231 | + $y = $this->field->sub( |
| 232 | + gmp_mul( |
| 233 | + $lambda, |
| 234 | + gmp_sub($a->x, $x) |
| 235 | + ), |
| 236 | + $a->y |
| 237 | + ); |
| 238 | + |
| 239 | + return new Point($x, $y); |
| 240 | + } |
| 241 | + |
| 242 | + private function double(Point $a): Point |
| 243 | + { |
| 244 | + if (gmp_cmp($a->y, 0) === 0) { |
| 245 | + return Point::createInfinity(); |
| 246 | + } |
| 247 | + |
| 248 | + // rule 5 (note that a / b = a * b^-1) |
| 249 | + $lambda = $this->field->mul( |
| 250 | + gmp_add( |
| 251 | + gmp_mul( |
| 252 | + gmp_init(3), |
| 253 | + gmp_pow($a->x, 2) |
| 254 | + ), |
| 255 | + $this->curve->getA() |
| 256 | + ), |
| 257 | + $this->field->invert( |
| 258 | + gmp_mul(2, $a->y) |
| 259 | + ) |
| 260 | + ); |
| 261 | + |
| 262 | + $x = $this->field->sub( |
| 263 | + gmp_pow($lambda, 2), |
| 264 | + gmp_mul(2, $a->x) |
| 265 | + ); |
| 266 | + |
| 267 | + $y = $this->field->sub( |
| 268 | + gmp_mul( |
| 269 | + $lambda, |
| 270 | + gmp_sub($a->x, $x) |
| 271 | + ), |
| 272 | + $a->y |
| 273 | + ); |
| 274 | + |
| 275 | + return new Point($x, $y); |
| 276 | + } |
| 277 | + |
| 278 | + private function conditionalSwap(Point $a, Point $b, int $swapBit): void |
| 279 | + { |
| 280 | + $this->conditionalSwapScalar($a->x, $b->x, $swapBit, $this->field->getElementBitLength()); |
| 281 | + $this->conditionalSwapScalar($a->y, $b->y, $swapBit, $this->field->getElementBitLength()); |
| 282 | + } |
| 283 | + |
| 284 | + private function conditionalSwapScalar(GMP &$a, GMP &$b, int $swapBit, int $elementBitLength): void |
| 285 | + { |
| 286 | + // create a mask (note how it inverts the maskbit) |
| 287 | + $mask = gmp_init(str_repeat((string)(1 - $swapBit), $elementBitLength), 2); |
| 288 | + |
| 289 | + // if mask is 1, tempA = a, else temp = 0 |
| 290 | + $tempA = gmp_and($a, $mask); |
| 291 | + $tempB = gmp_and($b, $mask); |
| 292 | + |
| 293 | + $a = gmp_xor($tempB, gmp_xor($a, $b)); // if mask is 1, then b XOR a XOR b = a, else 0 XOR a XOR b = a XOR b |
| 294 | + $b = gmp_xor($tempA, gmp_xor($a, $b)); // if mask is 1, then a XOR a XOR b = b, else 0 XOR a XOR b XOR b = a |
| 295 | + $a = gmp_xor($tempB, gmp_xor($a, $b)); // if mask is 1, then b XOR a XOR b = a, else 0 XOR a XOR b XOR a = b |
| 296 | + |
| 297 | + // hence if mask is 1 (= inverse of $swapBit), then no swap, else swap |
| 298 | + } |
| 299 | + |
| 300 | + /** |
| 301 | + * multiplication using the double-add-always |
| 302 | + */ |
| 303 | + public function mul(Point $point, \GMP $factor): Point |
| 304 | + { |
| 305 | + $mulField = new PrimeField($this->curve->getN()); |
| 306 | + |
| 307 | + // reduce factor once to ensure it is within our curve N bit size (and reduce computational effort) |
| 308 | + $reducedFactor = $mulField->mod($factor); |
| 309 | + |
| 310 | + // normalize to the element bit length to always execute the double-add loop a constant number of times |
| 311 | + $factorBits = gmp_strval($reducedFactor, 2); |
| 312 | + $normalizedFactorBits = str_pad($factorBits, $mulField->getElementBitLength(), '0', STR_PAD_LEFT); |
| 313 | + |
| 314 | + /** |
| 315 | + * how this works: |
| 316 | + * first, observe r[0] is infinity and r[1] our "real" point. |
| 317 | + * r[0] and r[1] are swapped iff the corresponding bit in $factor is set to 1, |
| 318 | + * hence if $j = 1, then the "real" point is added, else the "real" point is doubled |
| 319 | + */ |
| 320 | + /** @var Point[] $r */ |
| 321 | + $r = [Point::createInfinity(), clone $point]; |
| 322 | + for ($i = 0; $i < $mulField->getElementBitLength(); $i++) { |
| 323 | + $j = (int)$normalizedFactorBits[$i]; |
| 324 | + |
| 325 | + $this->conditionalSwap($r[0], $r[1], $j ^ 1); |
| 326 | + |
| 327 | + $r[0] = $this->add($r[0], $r[1]); |
| 328 | + $r[1] = $this->double($r[1]); |
| 329 | + |
| 330 | + $this->conditionalSwap($r[0], $r[1], $j ^ 1); |
| 331 | + } |
| 332 | + |
| 333 | + return $r[0]; |
| 334 | + } |
| 335 | +} |
| 336 | + |
| 337 | +// secp256r1 curve from https://www.secg.org/sec2-v2.pdf (also known as NIST P-256). |
| 338 | +$p = gmp_init('FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF FFFFFFFF', 16); |
| 339 | +$a = gmp_init('FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF FFFFFFFC', 16); |
| 340 | +$b = gmp_init('5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6 3BCE3C3E 27D2604B', 16); |
| 341 | + |
| 342 | +$Gx = gmp_init('6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0 F4A13945 D898C296', 16); |
| 343 | +$Gy = gmp_init('4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357 6B315ECE CBB64068 37BF51F5', 16); |
| 344 | +$G = new Point($Gx, $Gy); |
| 345 | + |
| 346 | +$n = gmp_init('FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 F3B9CAC2 FC632551', 16); |
| 347 | +$curve = new Curve($p, $a, $b, $G, $n); |
| 348 | +$math = new UnsafePrimeCurveMath($curve); |
| 349 | +var_dump($math->isOnCurve($G)); // sanity check |
| 350 | + |
| 351 | +// do diffie hellman key exchange |
| 352 | +$aliceSecret = gmp_init('1421B466 CB12D4F1 298CF525 DE823345 B81B861F 25B5AA7B E86869F9 697C13D', 16); |
| 353 | +$bobSecret = gmp_init('3CFFD9D8 3D5EF967 3432932D D70EC213 8D559C30 7EFBCFF6 0EB96EAB F08B0CBA', 16); |
| 354 | + |
| 355 | +$alicePublicKey = $math->mul($curve->getG(), $aliceSecret); |
| 356 | +$bobPublicKey = $math->mul($curve->getG(), $bobSecret); |
| 357 | + |
| 358 | +$bobPublicKeyReconstructed = $math->fromXCoordinate($bobPublicKey->x, gmp_cmp(gmp_mod($bobPublicKey->y, 2), 0) === 0); |
| 359 | +$aliceSharedKey = $math->mul($bobPublicKey, $aliceSecret); |
| 360 | + |
| 361 | +$alicePublicKeyReconstructed = $math->fromXCoordinate($alicePublicKey->x, gmp_cmp(gmp_mod($alicePublicKey->y, 2), 0) === 0); |
| 362 | +$bobSharedKey = $math->mul($alicePublicKey, $bobSecret); |
| 363 | + |
| 364 | +var_dump($aliceSharedKey->equals($bobSharedKey)); |
| 365 | +?> |
| 366 | +--EXPECT-- |
| 367 | +bool(true) |
| 368 | +bool(true) |
0 commit comments