From 688340758310ba40795ce2e07c240928c859fc36 Mon Sep 17 00:00:00 2001 From: mvinyard Date: Tue, 8 Nov 2022 02:49:51 +0000 Subject: [PATCH] update pandas functions to reduce warnings --- simba/tools/_pbg.py | 18 ++++++------------ simba/tools/_post_training.py | 15 ++++----------- 2 files changed, 10 insertions(+), 23 deletions(-) diff --git a/simba/tools/_pbg.py b/simba/tools/_pbg.py index 720b57a..5f9b4bf 100755 --- a/simba/tools/_pbg.py +++ b/simba/tools/_pbg.py @@ -211,40 +211,35 @@ def gen_graph(list_CP=None, columns=['alias'], data=[f'{k}.{x}' for x in range(len(dict_cells[k]))]) settings.pbg_params['entities'][k] = {'num_partitions': 1} - entity_alias = entity_alias.append(dict_df_cells[k], - ignore_index=False) + entity_alias = pd.concat([entity_alias, dict_df_cells[k]], ignore_index=False) if(len(ids_genes) > 0): df_genes = pd.DataFrame( index=ids_genes, columns=['alias'], data=[f'{prefix_G}.{x}' for x in range(len(ids_genes))]) settings.pbg_params['entities'][prefix_G] = {'num_partitions': 1} - entity_alias = entity_alias.append(df_genes, - ignore_index=False) + entity_alias = pd.concat([entity_alias, df_genes], ignore_index=False) if(len(ids_peaks) > 0): df_peaks = pd.DataFrame( index=ids_peaks, columns=['alias'], data=[f'{prefix_P}.{x}' for x in range(len(ids_peaks))]) settings.pbg_params['entities'][prefix_P] = {'num_partitions': 1} - entity_alias = entity_alias.append(df_peaks, - ignore_index=False) + entity_alias = pd.concat([entity_alias, df_peaks], ignore_index=False) if(len(ids_kmers) > 0): df_kmers = pd.DataFrame( index=ids_kmers, columns=['alias'], data=[f'{prefix_K}.{x}' for x in range(len(ids_kmers))]) settings.pbg_params['entities'][prefix_K] = {'num_partitions': 1} - entity_alias = entity_alias.append(df_kmers, - ignore_index=False) + entity_alias = pd.concat([entity_alias, df_kmers], ignore_index=False) if(len(ids_motifs) > 0): df_motifs = pd.DataFrame( index=ids_motifs, columns=['alias'], data=[f'{prefix_M}.{x}' for x in range(len(ids_motifs))]) settings.pbg_params['entities'][prefix_M] = {'num_partitions': 1} - entity_alias = entity_alias.append(df_motifs, - ignore_index=False) + entity_alias = pd.concat([entity_alias, df_motifs], ignore_index=False) # generate edges dict_graph_stats = dict() @@ -405,8 +400,7 @@ def gen_graph(list_CP=None, {'source': key, 'destination': prefix_G, 'n_edges': df_edges_x.shape[0]} - df_edges = df_edges.append(df_edges_x, - ignore_index=True) + df_edges = pd.concat([df_edges, df_edges_x], ignore_index=True) settings.pbg_params['relations'].append( {'name': f'r{id_r}', 'lhs': f'{key}', diff --git a/simba/tools/_post_training.py b/simba/tools/_post_training.py index 7cc900a..baffc2b 100755 --- a/simba/tools/_post_training.py +++ b/simba/tools/_post_training.py @@ -137,10 +137,7 @@ def embed(self): percentile = self.percentile list_percentile = self.list_percentile X_all = adata_ref.X.copy() - # obs_all = pd.DataFrame( - # data=['ref']*adata_ref.shape[0], - # index=adata_ref.obs.index, - # columns=['id_dataset']) + obs_all = adata_ref.obs.copy() obs_all['id_dataset'] = ['ref']*adata_ref.shape[0] for i, adata_query in enumerate(list_adata_query): @@ -178,15 +175,11 @@ def embed(self): n_top=n_top, ) X_all = np.vstack((X_all, adata_query.layers['softmax'])) - # obs_all = obs_all.append( - # pd.DataFrame( - # data=[f'query_{i}']*adata_query.shape[0], - # index=adata_query.obs.index, - # columns=['id_dataset']) - # ) + obs_query = adata_query.obs.copy() obs_query['id_dataset'] = [f'query_{i}']*adata_query.shape[0] - obs_all = obs_all.append(obs_query, ignore_index=False) + obs_all = pd.concat([obs_all, obs_query], ignore_index=False) + adata_all = ad.AnnData(X=X_all, obs=obs_all) return adata_all