@@ -322,6 +322,7 @@ def initialize_models(self, bdb, generator_id, modelnos):
322
322
(generator_id, num_models)
323
323
VALUES (?, ?)
324
324
''' , (generator_id , len (modelnos ) + num_existing ))
325
+ self .analyze_models (bdb , generator_id , iterations = 1 )
325
326
326
327
def _get_num_models (self , bdb , generator_id ):
327
328
cursor = bdb .sql_execute ('''
@@ -493,7 +494,6 @@ def _get_cross_cat(self, bdb, generator_id, modelno):
493
494
494
495
def column_dependence_probability (self ,
495
496
bdb , generator_id , modelnos , colno0 , colno1 ):
496
- self ._check_loom_initialized (bdb , generator_id )
497
497
if modelnos is None :
498
498
modelnos = range (self ._get_num_models (bdb , generator_id ))
499
499
if colno0 == colno1 :
@@ -534,7 +534,6 @@ def _get_partition_id(self, bdb, generator_id, modelno, kind_id, rowid):
534
534
535
535
def column_mutual_information (self , bdb , generator_id , modelnos , colnos0 ,
536
536
colnos1 , constraints , numsamples ):
537
- self ._check_loom_initialized (bdb , generator_id )
538
537
population_id = core .bayesdb_generator_population (bdb , generator_id )
539
538
colnames0 = [str (core .bayesdb_variable_name (bdb , population_id , colno ))
540
539
for colno in colnos0 ]
@@ -553,7 +552,6 @@ def column_mutual_information(self, bdb, generator_id, modelnos, colnos0,
553
552
554
553
def row_similarity (self , bdb , generator_id , modelnos , rowid , target_rowid ,
555
554
colnos ):
556
- self ._check_loom_initialized (bdb , generator_id )
557
555
if modelnos is None :
558
556
modelnos = range (self ._get_num_models (bdb , generator_id ))
559
557
assert len (colnos ) == 1
@@ -607,7 +605,6 @@ def _reorder_row(self, bdb, generator_id, row, dense=True):
607
605
608
606
def predictive_relevance (self , bdb , generator_id , modelnos , rowid_target ,
609
607
rowid_queries , hypotheticals , colno ):
610
- self ._check_loom_initialized (bdb , generator_id )
611
608
if len (hypotheticals ) > 0 :
612
609
raise BQLError (bdb , 'Loom cannot handle hypothetical rows' \
613
610
' because it is unable to insert rows into CrossCat' )
@@ -630,7 +627,6 @@ def predictive_relevance(self, bdb, generator_id, modelnos, rowid_target,
630
627
631
628
def predict_confidence (self , bdb , generator_id , modelnos , rowid , colno ,
632
629
numsamples = None ):
633
- self ._check_loom_initialized (bdb , generator_id )
634
630
if not numsamples :
635
631
numsamples = 2
636
632
assert numsamples > 0
@@ -666,7 +662,6 @@ def _is_categorical(stattype):
666
662
667
663
def simulate_joint (self , bdb , generator_id , modelnos , rowid , targets ,
668
664
constraints , num_samples = 1 , accuracy = None ):
669
- self ._check_loom_initialized (bdb , generator_id )
670
665
if rowid != core .bayesdb_generator_fresh_row_id (bdb , generator_id ):
671
666
row_values_raw = core .bayesdb_generator_row_values (
672
667
bdb , generator_id , rowid )
@@ -733,8 +728,6 @@ def simulate_joint(self, bdb, generator_id, modelnos, rowid, targets,
733
728
734
729
def logpdf_joint (self , bdb , generator_id , modelnos , rowid , targets ,
735
730
constraints ):
736
- self ._check_loom_initialized (bdb , generator_id )
737
-
738
731
population_id = core .bayesdb_generator_population (bdb , generator_id )
739
732
ordered_column_labels = self ._get_ordered_column_labels (
740
733
bdb , generator_id )
0 commit comments