diff --git a/HW89/homework/ckpt/discriminator_epoch_19.pt b/HW89/homework/ckpt/discriminator_epoch_19.pt new file mode 100644 index 0000000..1f4798f Binary files /dev/null and b/HW89/homework/ckpt/discriminator_epoch_19.pt differ diff --git a/HW89/homework/ckpt/discriminator_epoch_5.pt b/HW89/homework/ckpt/discriminator_epoch_5.pt new file mode 100644 index 0000000..fe6e846 Binary files /dev/null and b/HW89/homework/ckpt/discriminator_epoch_5.pt differ diff --git a/HW89/homework/ckpt/generator_epoch_19.pt b/HW89/homework/ckpt/generator_epoch_19.pt new file mode 100644 index 0000000..1d80e20 Binary files /dev/null and b/HW89/homework/ckpt/generator_epoch_19.pt differ diff --git a/HW89/homework/ckpt/generator_epoch_5.pt b/HW89/homework/ckpt/generator_epoch_5.pt new file mode 100644 index 0000000..6170616 Binary files /dev/null and b/HW89/homework/ckpt/generator_epoch_5.pt differ diff --git a/HW89/homework/dcgan/__init__.py b/HW89/homework/dcgan/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/HW89/homework/dcgan/dcgan.py b/HW89/homework/dcgan/dcgan.py new file mode 100644 index 0000000..65c208d --- /dev/null +++ b/HW89/homework/dcgan/dcgan.py @@ -0,0 +1,69 @@ + +#куски кода взяты с https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/dcgan/dcgan.py + +import torch.nn as nn + + +class DCGenerator(nn.Module): + + def __init__(self, image_size): + super(DCGenerator, self).__init__() + self.channels = 3 + + self.init_size = image_size // 4 + self.l1 = nn.Sequential(nn.Linear(100, 128*self.init_size**2)) + + self.conv_blocks = nn.Sequential( + nn.BatchNorm2d(128), + nn.Upsample(scale_factor=2), + nn.Conv2d(128, 128, 3, stride=1, padding=1), + nn.BatchNorm2d(128, 0.8), + nn.LeakyReLU(0.2, inplace=True), + nn.Upsample(scale_factor=2), + nn.Conv2d(128, 64, 3, stride=1, padding=1), + nn.BatchNorm2d(64, 0.8), + nn.LeakyReLU(0.2, inplace=True), + nn.Conv2d(64, self.channels, 3, stride=1, padding=1), + nn.Tanh() + ) + + def forward(self, data): + out = self.l1(data.squeeze()) + out = out.view(out.shape[0], 128, self.init_size, self.init_size) + img = self.conv_blocks(out) + return img + + +class DCDiscriminator(nn.Module): + + def __init__(self, image_size): + super(DCDiscriminator, self).__init__() + + self.channels = 3 + + def discriminator_block(in_filters, out_filters, bn=True): + block = [ nn.Conv2d(in_filters, out_filters, 3, 2, 1), + nn.LeakyReLU(0.2, inplace=True), + nn.Dropout2d(0.25)] + if bn: + block.append(nn.BatchNorm2d(out_filters, 0.8)) + return block + + self.model = nn.Sequential( + *discriminator_block(self.channels, 16, bn=False), + *discriminator_block(16, 32), + *discriminator_block(32, 64), + *discriminator_block(64, 128), + ) + + # The height and width of downsampled image + ds_size = image_size // 2**4 + self.adv_layer = nn.Sequential( nn.Linear(128*ds_size**2, 1), + nn.Sigmoid()) + + def forward(self, data): + out = self.model(data) + out = out.view(out.shape[0], -1) + validity = self.adv_layer(out) + + return validity diff --git a/HW89/homework/dcgan/trainer.py b/HW89/homework/dcgan/trainer.py new file mode 100644 index 0000000..202dc12 --- /dev/null +++ b/HW89/homework/dcgan/trainer.py @@ -0,0 +1,116 @@ +import logging +import os +from pathlib import Path + +import torch +import torch.nn as nn +import torch.nn.parallel +import torch.utils.data +import torchvision.utils as vutils +from tensorboardX import SummaryWriter + +import metric + + +class DCGANTrainer: + + def __init__(self, discriminator, generator, optimizer_d, optimizer_g, latent_size=100, + device='cpu', metrics_dir='metrics', save_root='ckpt', log_dir=None, start_epoch=0): + self.net_g = generator + self.net_d = discriminator + self.optimizer_d = optimizer_d + self.optimizer_g = optimizer_g + self.latent_size = latent_size + self.device = device + + self.metric_dir = metrics_dir + self.save_root = save_root + + self.net_g.to(device) + self.net_d.to(device) + + self.start_epoch = start_epoch + if self.start_epoch == 0: + self.net_g.apply(self._weights_init) + self.net_d.apply(self._weights_init) + + self.writer = SummaryWriter(log_dir=log_dir) + + @staticmethod + def _weights_init(m): + classname = m.__class__.__name__ + if classname.find('Conv') != -1: + m.weight.data.normal_(0.0, 0.02) + elif classname.find('BatchNorm') != -1: + m.weight.data.normal_(1.0, 0.02) + m.bias.data.fill_(0) + + def save(self, epoch): + os.makedirs(self.save_root, exist_ok=True) + torch.save(self.net_g.state_dict(), os.path.join(self.save_root, 'generator_epoch_{}.pt'.format(epoch))) + torch.save(self.net_d.state_dict(), os.path.join(self.save_root, 'discriminator_epoch_{}.pt'.format(epoch))) + + def train(self, dataloader, n_epoch=25, n_show_samples=8, show_img_every=10, log_metrics_every=100, + metrics_dataset='cifar10', metrics_to_log=('inception-score', 'mode-score', 'fid')): + criterion = nn.BCELoss() + + global_step = 0 + for epoch in range(self.start_epoch, n_epoch): + for i, data in enumerate(dataloader): + + self.net_d.zero_grad() + real, _ = data + real = real.to(self.device) + + target = torch.ones(real.size()[0], device=self.device) + + output = self.net_d(real) + err_d_real = criterion(output, target) + + noise = torch.randn(real.size()[0], self.latent_size, 1, 1, device=self.device) + fake = self.net_g(noise) + + if global_step % show_img_every == 0: + x = vutils.make_grid(fake[:n_show_samples, :, :, :], normalize=True, scale_each=True) + self.writer.add_image('img/fake', x, global_step) + + y = vutils.make_grid(real[:n_show_samples, :, :, :], normalize=True, scale_each=True) + self.writer.add_image('img/real', y, global_step) + + target = torch.zeros(real.size()[0], device=self.device) + output = self.net_d(fake.detach()) + err_d_fake = criterion(output, target) + + err_d = err_d_real + err_d_fake + err_d.backward() + self.optimizer_d.step() + + self.net_g.zero_grad() + target = torch.ones(real.size()[0], device=self.device) + output = self.net_d(fake) + err_g = criterion(output, target) + err_g.backward() + self.optimizer_g.step() + + #logging.info(f'epoch: [{epoch}/{n_epoch}] iter: [{i}/{len(dataloader)}] loss_D: {err_d:.4f} ' + logging.info('epoch: [{}/{}] iter: [{}/{}] loss_D: {:.4f} '\ + .format(epoch, n_epoch, i, len(dataloader), err_d) + #f'loss_G: {err_g:.4f}') + + 'loss_G: {:.4f}'.format(err_g)) + self.writer.add_scalar('data/loss_discriminator', err_d, global_step) + self.writer.add_scalar('data/loss_generator', err_g, global_step) + + self.net_g.eval() + if global_step % log_metrics_every == 0: + image_size = real.shape[-1] + report_dict = metric.compute_metrics(metrics_dataset, + image_size=image_size, + metrics_root=Path(self.metric_dir), + batch_size=dataloader.batch_size, netG=self.net_g) + + for mtrc in metrics_to_log: + self.writer.add_scalar('data/{}'.format(mtrc), report_dict[mtrc], global_step) + self.net_g.train() + global_step += 1 + + self.save(epoch) diff --git a/HW89/homework/metric.py b/HW89/homework/metric.py new file mode 100644 index 0000000..6db8bbc --- /dev/null +++ b/HW89/homework/metric.py @@ -0,0 +1,408 @@ +# copyed from https://github.com/xuqiantong/GAN-Metrics/blob/master/metric.py + +import math +import os +from pathlib import Path + +import numpy as np +import ot +import torch +import torch.nn.functional as F +import torchvision.datasets as dset +import torchvision.models as models +import torchvision.transforms as transforms +import torchvision.utils as vutils +from scipy import linalg +from torch import nn + + +def giveName(iter): # 7 digit name. + ans = str(iter) + return ans.zfill(7) + + +def sampleFake(netG, nz, sampleSize, batchSize, saveFolder): + saveFolder = os.path.join(saveFolder, '0') + + try: + os.makedirs(saveFolder) + except OSError: + pass + + #noise = torch.FloatTensor(batchSize, nz, 1, 1).cpu() + noise = torch.FloatTensor(batchSize, nz, 1, 1) + iter = 0 + for i in range(0, 1 + sampleSize // batchSize): + noise.data.normal_(0, 1) + fake = netG(noise) + for j in range(0, len(fake.data)): + if iter < sampleSize: + vutils.save_image(fake.data[j].mul(0.5).add( + 0.5), os.path.join(saveFolder, giveName(iter) + ".png")) + iter += 1 + if iter >= sampleSize: + break + + +def sampleTrue(dataset, imageSize, dataroot, sampleSize, batchSize, saveFolder): + saveFolder = os.path.join(saveFolder, '0') + + workers = 4 + if dataset in ['imagenet', 'folder', 'lfw']: + # folder dataset + dataset = dset.ImageFolder(root=dataroot, + transform=transforms.Compose([ + transforms.Resize(imageSize), + transforms.CenterCrop(imageSize), + transforms.ToTensor(), + transforms.Normalize( + (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), + ])) + elif dataset == 'lsun': + dataset = dset.LSUN(db_path=dataroot, classes=['bedroom_train'], + transform=transforms.Compose([ + transforms.Resize(imageSize), + transforms.CenterCrop(imageSize), + transforms.ToTensor(), + transforms.Normalize( + (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), + ])) + elif dataset == 'cifar10': + dataset = dset.CIFAR10(root=str(dataroot), download=True, + transform=transforms.Compose([ + transforms.Resize(imageSize), + transforms.ToTensor(), + transforms.Normalize( + (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), + ])) + elif dataset == 'celeba': + dataset = dset.ImageFolder(root=dataroot, + transform=transforms.Compose([ + transforms.CenterCrop(138), + transforms.Resize(imageSize), + transforms.ToTensor(), + transforms.Normalize( + (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), + ])) + + assert dataset + dataloader = torch.utils.data.DataLoader( + dataset, shuffle=True, batch_size=batchSize, num_workers=int(workers)) + + if not os.path.exists(saveFolder): + try: + os.makedirs(saveFolder) + except OSError: + pass + + iter = 0 + for i, data in enumerate(dataloader, 0): + img, _ = data + for j in range(0, len(img)): + + vutils.save_image(img[j].mul(0.5).add( + 0.5), os.path.join(saveFolder, giveName(iter) + ".png")) + iter += 1 + if iter >= sampleSize: + break + if iter >= sampleSize: + break + + +class ConvNetFeatureSaver(object): + def __init__(self, model='resnet34', workers=4, batchSize=64): + ''' + model: inception_v3, vgg13, vgg16, vgg19, resnet18, resnet34, + resnet50, resnet101, or resnet152 + ''' + self.model = model + self.batch_size = batchSize + self.workers = workers + if self.model.find('vgg') >= 0: + self.vgg = getattr(models, model)(pretrained=True).cpu().eval() + self.trans = transforms.Compose([ + transforms.Resize(224), + transforms.ToTensor(), + transforms.Normalize((0.485, 0.456, 0.406), + (0.229, 0.224, 0.225)), + ]) + elif self.model.find('resnet') >= 0: + resnet = getattr(models, model)(pretrained=True) + resnet.cpu().eval() + resnet_feature = nn.Sequential(resnet.conv1, resnet.bn1, + resnet.relu, + resnet.maxpool, resnet.layer1, + resnet.layer2, resnet.layer3, + resnet.layer4).cpu().eval() + self.resnet = resnet + self.resnet_feature = resnet_feature + self.trans = transforms.Compose([ + transforms.Resize(224), + transforms.ToTensor(), + transforms.Normalize((0.485, 0.456, 0.406), + (0.229, 0.224, 0.225)), + ]) + elif self.model == 'inception' or self.model == 'inception_v3': + inception = models.inception_v3( + pretrained=True, transform_input=False).cpu().eval() + inception_feature = nn.Sequential(inception.Conv2d_1a_3x3, + inception.Conv2d_2a_3x3, + inception.Conv2d_2b_3x3, + nn.MaxPool2d(3, 2), + inception.Conv2d_3b_1x1, + inception.Conv2d_4a_3x3, + nn.MaxPool2d(3, 2), + inception.Mixed_5b, + inception.Mixed_5c, + inception.Mixed_5d, + inception.Mixed_6a, + inception.Mixed_6b, + inception.Mixed_6c, + inception.Mixed_6d, + inception.Mixed_7a, + inception.Mixed_7b, + inception.Mixed_7c, + ).cpu().eval() + self.inception = inception + self.inception_feature = inception_feature + self.trans = transforms.Compose([ + transforms.Resize(299), + transforms.ToTensor(), + transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), + ]) + else: + raise NotImplementedError + + def save(self, imgFolder, save2disk=False): + dataset = dset.ImageFolder(root=imgFolder, transform=self.trans) + dataloader = torch.utils.data.DataLoader( + dataset, batch_size=self.batch_size, num_workers=self.workers) + + feature_pixl, feature_conv, feature_smax, feature_logit = [], [], [], [] + for img, _ in dataloader: + with torch.no_grad(): + input = img.cpu() + if self.model == 'vgg' or self.model == 'vgg16': + fconv = self.vgg.features(input).view(input.size(0), -1) + flogit = self.vgg.classifier(fconv) + elif self.model.find('resnet') >= 0: + fconv = self.resnet_feature( + input).mean(3).mean(2).squeeze() + flogit = self.resnet.fc(fconv) + elif self.model == 'inception' or self.model == 'inception_v3': + fconv = self.inception_feature( + input).mean(3).mean(2).squeeze() + flogit = self.inception.fc(fconv) + else: + raise NotImplementedError + fsmax = F.softmax(flogit, dim=0) + feature_pixl.append(img) + feature_conv.append(fconv.data.cpu()) + feature_logit.append(flogit.data.cpu()) + feature_smax.append(fsmax.data.cpu()) + + feature_pixl = torch.cat(feature_pixl, 0) + feature_conv = torch.cat(feature_conv, 0) + feature_logit = torch.cat(feature_logit, 0) + feature_smax = torch.cat(feature_smax, 0) + + if save2disk: + torch.save(feature_conv, os.path.join( + imgFolder, 'feature_pixl.pth')) + torch.save(feature_conv, os.path.join( + imgFolder, 'feature_conv.pth')) + torch.save(feature_logit, os.path.join( + imgFolder, 'feature_logit.pth')) + torch.save(feature_smax, os.path.join( + imgFolder, 'feature_smax.pth')) + + return feature_pixl, feature_conv, feature_logit, feature_smax + + +def distance(X, Y, sqrt): + nX = X.size(0) + nY = Y.size(0) + X = X.view(nX, -1).cpu() + X2 = (X * X).sum(1).resize_(nX, 1) + Y = Y.view(nY, -1).cpu() + Y2 = (Y * Y).sum(1).resize_(nY, 1) + + M = torch.zeros(nX, nY) + M.copy_(X2.expand(nX, nY) + Y2.expand(nY, nX).transpose(0, 1) - + 2 * torch.mm(X, Y.transpose(0, 1))) + + del X, X2, Y, Y2 + + if sqrt: + M = ((M + M.abs()) / 2).sqrt() + + return M + + +def wasserstein(M, sqrt): + if sqrt: + M = M.abs().sqrt() + emd = ot.emd2([], [], M.numpy()) + + return emd + + +class Score_knn: + acc = 0 + acc_real = 0 + acc_fake = 0 + precision = 0 + recall = 0 + tp = 0 + fp = 0 + fn = 0 + ft = 0 + + +def knn(Mxx, Mxy, Myy, k, sqrt): + n0 = Mxx.size(0) + n1 = Myy.size(0) + label = torch.cat((torch.ones(n0), torch.zeros(n1))) + M = torch.cat((torch.cat((Mxx, Mxy), 1), torch.cat( + (Mxy.transpose(0, 1), Myy), 1)), 0) + if sqrt: + M = M.abs().sqrt() + INFINITY = float('inf') + val, idx = (M + torch.diag(INFINITY * torch.ones(n0 + n1)) + ).topk(k, 0, False) + + count = torch.zeros(n0 + n1) + for i in range(0, k): + count = count + label.index_select(0, idx[i]) + pred = torch.ge(count, (float(k) / 2) * torch.ones(n0 + n1)).float() + + s = Score_knn() + s.tp = (pred * label).sum() + s.fp = (pred * (1 - label)).sum() + s.fn = ((1 - pred) * label).sum() + s.tn = ((1 - pred) * (1 - label)).sum() + s.precision = s.tp / (s.tp + s.fp + 1e-10) + s.recall = s.tp / (s.tp + s.fn + 1e-10) + s.acc_t = s.tp / (s.tp + s.fn) + s.acc_f = s.tn / (s.tn + s.fp) + s.acc = torch.eq(label, pred).float().mean() + s.k = k + + return s + + +def mmd(Mxx, Mxy, Myy, sigma): + scale = Mxx.mean() + Mxx = torch.exp(-Mxx / (scale * 2 * sigma * sigma)) + Mxy = torch.exp(-Mxy / (scale * 2 * sigma * sigma)) + Myy = torch.exp(-Myy / (scale * 2 * sigma * sigma)) + mmd = math.sqrt(Mxx.mean() + Myy.mean() - 2 * Mxy.mean()) + + return mmd + + +eps = 1e-20 + + +def inception_score(X): + kl = X * ((X + eps).log() - (X.mean(0) + eps).log().expand_as(X)) + score = np.exp(kl.sum(1).mean()) + + return score + + +def mode_score(X, Y): + kl1 = X * ((X + eps).log() - (X.mean(0) + eps).log().expand_as(X)) + kl2 = X.mean(0) * ((X.mean(0) + eps).log() - (Y.mean(0) + eps).log()) + score = np.exp(kl1.sum(1).mean() - kl2.sum()) + + return score + + +def fid(X, Y): + m = X.mean(0) + m_w = Y.mean(0) + X_np = X.numpy() + Y_np = Y.numpy() + + C = np.cov(X_np.transpose()) + C_w = np.cov(Y_np.transpose()) + C_C_w_sqrt = linalg.sqrtm(C.dot(C_w), True).real + + score = m.dot(m) + m_w.dot(m_w) - 2 * m_w.dot(m) + np.trace(C + C_w - 2 * C_C_w_sqrt) + return np.sqrt(score) + + +class Score: + emd = 0 + mmd = 0 + knn = None + + +def compute_score(real, fake, k=1, sigma=1, sqrt=True): + Mxx = distance(real, real, False) + Mxy = distance(real, fake, False) + Myy = distance(fake, fake, False) + + s = Score() + s.emd = wasserstein(Mxy, sqrt) + s.mmd = mmd(Mxx, Mxy, Myy, sigma) + s.knn = knn(Mxx, Mxy, Myy, k, sqrt) + + return s + + +def compute_score_raw(dataset, imageSize, dataroot, sampleSize, batchSize, + saveFolder_r, saveFolder_f, netG, nz, + conv_model='resnet34'): + sampleTrue(dataset, imageSize, dataroot, sampleSize, batchSize, + saveFolder_r) + sampleFake(netG, nz, sampleSize, batchSize, saveFolder_f) + + convnet_feature_saver = ConvNetFeatureSaver(model=conv_model, + batchSize=batchSize) + feature_r = convnet_feature_saver.save(saveFolder_r) + feature_f = convnet_feature_saver.save(saveFolder_f) + + # 4 feature spaces and 7 scores + incep + modescore + fid + score = np.zeros(4 * 7 + 3) + for i in range(0, 4): + Mxx = distance(feature_r[i], feature_r[i], False) + Mxy = distance(feature_r[i], feature_f[i], False) + Myy = distance(feature_f[i], feature_f[i], False) + + score[i * 7] = wasserstein(Mxy, True) + score[i * 7 + 1] = mmd(Mxx, Mxy, Myy, 1) + tmp = knn(Mxx, Mxy, Myy, 1, False) + score[(i * 7 + 2):(i * 7 + 7)] = \ + tmp.acc, tmp.acc_t, tmp.acc_f, tmp.precision, tmp.recall + + score[28] = inception_score(feature_f[3]) + score[29] = mode_score(feature_r[3], feature_f[3]) + score[30] = fid(feature_r[3], feature_f[3]) + return score + + +def compute_metrics(dataset, image_size, metrics_root: Path, batch_size, netG, nz=100, + conv_model='resnet34'): + data_root = metrics_root / 'data' + real_path = metrics_root / 'real' + fake_path = metrics_root / 'fake' + + real_path.mkdir(parents=True, exist_ok=True) + fake_path.mkdir(parents=True, exist_ok=True) + + scores = compute_score_raw(dataset, imageSize=image_size, dataroot=data_root, sampleSize=batch_size, + batchSize=batch_size, saveFolder_r=str(real_path), + saveFolder_f=str(fake_path), netG=netG, nz=nz, + conv_model=conv_model) + + report_dict = {} + metrics = ['wasserstein', 'mmd', 'knn-acc', 'knn-acc-t', 'knn-acc-f', 'knn-prec', 'knn-recall'] + for i, metric in enumerate(metrics): + report_dict[metric] = np.mean(scores[i::len(metrics)]) + + report_dict['inception-score'] = scores[28] + report_dict['mode-score'] = scores[29] + report_dict['fid'] = scores[30] + return report_dict diff --git a/HW89/homework/metrics/fake/0/0000000.png b/HW89/homework/metrics/fake/0/0000000.png new file mode 100644 index 0000000..bff0235 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000000.png differ diff --git a/HW89/homework/metrics/fake/0/0000001.png b/HW89/homework/metrics/fake/0/0000001.png new file mode 100644 index 0000000..878fc80 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000001.png differ diff --git a/HW89/homework/metrics/fake/0/0000002.png b/HW89/homework/metrics/fake/0/0000002.png new file mode 100644 index 0000000..6b05f1e Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000002.png differ diff --git a/HW89/homework/metrics/fake/0/0000003.png b/HW89/homework/metrics/fake/0/0000003.png new file mode 100644 index 0000000..df34b25 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000003.png differ diff --git a/HW89/homework/metrics/fake/0/0000004.png b/HW89/homework/metrics/fake/0/0000004.png new file mode 100644 index 0000000..e901221 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000004.png differ diff --git a/HW89/homework/metrics/fake/0/0000005.png b/HW89/homework/metrics/fake/0/0000005.png new file mode 100644 index 0000000..81148d4 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000005.png differ diff --git a/HW89/homework/metrics/fake/0/0000006.png b/HW89/homework/metrics/fake/0/0000006.png new file mode 100644 index 0000000..cfefd21 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000006.png differ diff --git a/HW89/homework/metrics/fake/0/0000007.png b/HW89/homework/metrics/fake/0/0000007.png new file mode 100644 index 0000000..76ff174 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000007.png differ diff --git a/HW89/homework/metrics/fake/0/0000008.png b/HW89/homework/metrics/fake/0/0000008.png new file mode 100644 index 0000000..1bf0c6d Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000008.png differ diff --git a/HW89/homework/metrics/fake/0/0000009.png b/HW89/homework/metrics/fake/0/0000009.png new file mode 100644 index 0000000..d972449 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000009.png differ diff --git a/HW89/homework/metrics/fake/0/0000010.png b/HW89/homework/metrics/fake/0/0000010.png new file mode 100644 index 0000000..4c030cc Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000010.png differ diff --git a/HW89/homework/metrics/fake/0/0000011.png b/HW89/homework/metrics/fake/0/0000011.png new file mode 100644 index 0000000..941d790 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000011.png differ diff --git a/HW89/homework/metrics/fake/0/0000012.png b/HW89/homework/metrics/fake/0/0000012.png new file mode 100644 index 0000000..5f63842 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000012.png differ diff --git a/HW89/homework/metrics/fake/0/0000013.png b/HW89/homework/metrics/fake/0/0000013.png new file mode 100644 index 0000000..40b30bc Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000013.png differ diff --git a/HW89/homework/metrics/fake/0/0000014.png b/HW89/homework/metrics/fake/0/0000014.png new file mode 100644 index 0000000..36039e9 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000014.png differ diff --git a/HW89/homework/metrics/fake/0/0000015.png b/HW89/homework/metrics/fake/0/0000015.png new file mode 100644 index 0000000..b7c8805 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000015.png differ diff --git a/HW89/homework/metrics/fake/0/0000016.png b/HW89/homework/metrics/fake/0/0000016.png new file mode 100644 index 0000000..d985bf2 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000016.png differ diff --git a/HW89/homework/metrics/fake/0/0000017.png b/HW89/homework/metrics/fake/0/0000017.png new file mode 100644 index 0000000..5e480be Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000017.png differ diff --git a/HW89/homework/metrics/fake/0/0000018.png b/HW89/homework/metrics/fake/0/0000018.png new file mode 100644 index 0000000..2a1b81a Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000018.png differ diff --git a/HW89/homework/metrics/fake/0/0000019.png b/HW89/homework/metrics/fake/0/0000019.png new file mode 100644 index 0000000..8919e79 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000019.png differ diff --git a/HW89/homework/metrics/fake/0/0000020.png b/HW89/homework/metrics/fake/0/0000020.png new file mode 100644 index 0000000..f41271b Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000020.png differ diff --git a/HW89/homework/metrics/fake/0/0000021.png b/HW89/homework/metrics/fake/0/0000021.png new file mode 100644 index 0000000..1725338 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000021.png differ diff --git a/HW89/homework/metrics/fake/0/0000022.png b/HW89/homework/metrics/fake/0/0000022.png new file mode 100644 index 0000000..bbf865f Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000022.png differ diff --git a/HW89/homework/metrics/fake/0/0000023.png b/HW89/homework/metrics/fake/0/0000023.png new file mode 100644 index 0000000..4c1e165 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000023.png differ diff --git a/HW89/homework/metrics/fake/0/0000024.png b/HW89/homework/metrics/fake/0/0000024.png new file mode 100644 index 0000000..02ea36b Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000024.png differ diff --git a/HW89/homework/metrics/fake/0/0000025.png b/HW89/homework/metrics/fake/0/0000025.png new file mode 100644 index 0000000..7cfe18a Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000025.png differ diff --git a/HW89/homework/metrics/fake/0/0000026.png b/HW89/homework/metrics/fake/0/0000026.png new file mode 100644 index 0000000..e5bb6d2 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000026.png differ diff --git a/HW89/homework/metrics/fake/0/0000027.png b/HW89/homework/metrics/fake/0/0000027.png new file mode 100644 index 0000000..2c82c8a Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000027.png differ diff --git a/HW89/homework/metrics/fake/0/0000028.png b/HW89/homework/metrics/fake/0/0000028.png new file mode 100644 index 0000000..3e265c7 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000028.png differ diff --git a/HW89/homework/metrics/fake/0/0000029.png b/HW89/homework/metrics/fake/0/0000029.png new file mode 100644 index 0000000..cedf3d4 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000029.png differ diff --git a/HW89/homework/metrics/fake/0/0000030.png b/HW89/homework/metrics/fake/0/0000030.png new file mode 100644 index 0000000..0ad0119 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000030.png differ diff --git a/HW89/homework/metrics/fake/0/0000031.png b/HW89/homework/metrics/fake/0/0000031.png new file mode 100644 index 0000000..86bb2e8 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000031.png differ diff --git a/HW89/homework/metrics/fake/0/0000032.png b/HW89/homework/metrics/fake/0/0000032.png new file mode 100644 index 0000000..8a98b93 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000032.png differ diff --git a/HW89/homework/metrics/fake/0/0000033.png b/HW89/homework/metrics/fake/0/0000033.png new file mode 100644 index 0000000..5c4538a Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000033.png differ diff --git a/HW89/homework/metrics/fake/0/0000034.png b/HW89/homework/metrics/fake/0/0000034.png new file mode 100644 index 0000000..22e3b3d Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000034.png differ diff --git a/HW89/homework/metrics/fake/0/0000035.png b/HW89/homework/metrics/fake/0/0000035.png new file mode 100644 index 0000000..874a882 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000035.png differ diff --git a/HW89/homework/metrics/fake/0/0000036.png b/HW89/homework/metrics/fake/0/0000036.png new file mode 100644 index 0000000..728fcb6 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000036.png differ diff --git a/HW89/homework/metrics/fake/0/0000037.png b/HW89/homework/metrics/fake/0/0000037.png new file mode 100644 index 0000000..a05841a Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000037.png differ diff --git a/HW89/homework/metrics/fake/0/0000038.png b/HW89/homework/metrics/fake/0/0000038.png new file mode 100644 index 0000000..291caf0 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000038.png differ diff --git a/HW89/homework/metrics/fake/0/0000039.png b/HW89/homework/metrics/fake/0/0000039.png new file mode 100644 index 0000000..5b58c49 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000039.png differ diff --git a/HW89/homework/metrics/fake/0/0000040.png b/HW89/homework/metrics/fake/0/0000040.png new file mode 100644 index 0000000..150f0ee Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000040.png differ diff --git a/HW89/homework/metrics/fake/0/0000041.png b/HW89/homework/metrics/fake/0/0000041.png new file mode 100644 index 0000000..cac2a07 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000041.png differ diff --git a/HW89/homework/metrics/fake/0/0000042.png b/HW89/homework/metrics/fake/0/0000042.png new file mode 100644 index 0000000..a1bd7be Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000042.png differ diff --git a/HW89/homework/metrics/fake/0/0000043.png b/HW89/homework/metrics/fake/0/0000043.png new file mode 100644 index 0000000..5d418fa Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000043.png differ diff --git a/HW89/homework/metrics/fake/0/0000044.png b/HW89/homework/metrics/fake/0/0000044.png new file mode 100644 index 0000000..da6ac0b Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000044.png differ diff --git a/HW89/homework/metrics/fake/0/0000045.png b/HW89/homework/metrics/fake/0/0000045.png new file mode 100644 index 0000000..3477e74 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000045.png differ diff --git a/HW89/homework/metrics/fake/0/0000046.png b/HW89/homework/metrics/fake/0/0000046.png new file mode 100644 index 0000000..8ddd38c Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000046.png differ diff --git a/HW89/homework/metrics/fake/0/0000047.png b/HW89/homework/metrics/fake/0/0000047.png new file mode 100644 index 0000000..94098d6 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000047.png differ diff --git a/HW89/homework/metrics/fake/0/0000048.png b/HW89/homework/metrics/fake/0/0000048.png new file mode 100644 index 0000000..bc7d8a3 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000048.png differ diff --git a/HW89/homework/metrics/fake/0/0000049.png b/HW89/homework/metrics/fake/0/0000049.png new file mode 100644 index 0000000..0f05625 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000049.png differ diff --git a/HW89/homework/metrics/fake/0/0000050.png b/HW89/homework/metrics/fake/0/0000050.png new file mode 100644 index 0000000..5fd510b Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000050.png differ diff --git a/HW89/homework/metrics/fake/0/0000051.png b/HW89/homework/metrics/fake/0/0000051.png new file mode 100644 index 0000000..e166adf Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000051.png differ diff --git a/HW89/homework/metrics/fake/0/0000052.png b/HW89/homework/metrics/fake/0/0000052.png new file mode 100644 index 0000000..f182317 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000052.png differ diff --git a/HW89/homework/metrics/fake/0/0000053.png b/HW89/homework/metrics/fake/0/0000053.png new file mode 100644 index 0000000..990ad93 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000053.png differ diff --git a/HW89/homework/metrics/fake/0/0000054.png b/HW89/homework/metrics/fake/0/0000054.png new file mode 100644 index 0000000..42ad5a8 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000054.png differ diff --git a/HW89/homework/metrics/fake/0/0000055.png b/HW89/homework/metrics/fake/0/0000055.png new file mode 100644 index 0000000..d216baf Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000055.png differ diff --git a/HW89/homework/metrics/fake/0/0000056.png b/HW89/homework/metrics/fake/0/0000056.png new file mode 100644 index 0000000..7f7988f Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000056.png differ diff --git a/HW89/homework/metrics/fake/0/0000057.png b/HW89/homework/metrics/fake/0/0000057.png new file mode 100644 index 0000000..09d7aef Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000057.png differ diff --git a/HW89/homework/metrics/fake/0/0000058.png b/HW89/homework/metrics/fake/0/0000058.png new file mode 100644 index 0000000..dbc84de Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000058.png differ diff --git a/HW89/homework/metrics/fake/0/0000059.png b/HW89/homework/metrics/fake/0/0000059.png new file mode 100644 index 0000000..28516d6 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000059.png differ diff --git a/HW89/homework/metrics/fake/0/0000060.png b/HW89/homework/metrics/fake/0/0000060.png new file mode 100644 index 0000000..7ae0efe Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000060.png differ diff --git a/HW89/homework/metrics/fake/0/0000061.png b/HW89/homework/metrics/fake/0/0000061.png new file mode 100644 index 0000000..f4c5767 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000061.png differ diff --git a/HW89/homework/metrics/fake/0/0000062.png b/HW89/homework/metrics/fake/0/0000062.png new file mode 100644 index 0000000..bf06a49 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000062.png differ diff --git a/HW89/homework/metrics/fake/0/0000063.png b/HW89/homework/metrics/fake/0/0000063.png new file mode 100644 index 0000000..925cb88 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000063.png differ diff --git a/HW89/homework/metrics/fake/0/0000064.png b/HW89/homework/metrics/fake/0/0000064.png new file mode 100644 index 0000000..68af442 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000064.png differ diff --git a/HW89/homework/metrics/fake/0/0000065.png b/HW89/homework/metrics/fake/0/0000065.png new file mode 100644 index 0000000..58d2bf0 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000065.png differ diff --git a/HW89/homework/metrics/fake/0/0000066.png b/HW89/homework/metrics/fake/0/0000066.png new file mode 100644 index 0000000..802c8ba Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000066.png differ diff --git a/HW89/homework/metrics/fake/0/0000067.png b/HW89/homework/metrics/fake/0/0000067.png new file mode 100644 index 0000000..2390606 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000067.png differ diff --git a/HW89/homework/metrics/fake/0/0000068.png b/HW89/homework/metrics/fake/0/0000068.png new file mode 100644 index 0000000..bd9a453 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000068.png differ diff --git a/HW89/homework/metrics/fake/0/0000069.png b/HW89/homework/metrics/fake/0/0000069.png new file mode 100644 index 0000000..fe149bb Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000069.png differ diff --git a/HW89/homework/metrics/fake/0/0000070.png b/HW89/homework/metrics/fake/0/0000070.png new file mode 100644 index 0000000..59ac893 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000070.png differ diff --git a/HW89/homework/metrics/fake/0/0000071.png b/HW89/homework/metrics/fake/0/0000071.png new file mode 100644 index 0000000..6516b78 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000071.png differ diff --git a/HW89/homework/metrics/fake/0/0000072.png b/HW89/homework/metrics/fake/0/0000072.png new file mode 100644 index 0000000..3962787 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000072.png differ diff --git a/HW89/homework/metrics/fake/0/0000073.png b/HW89/homework/metrics/fake/0/0000073.png new file mode 100644 index 0000000..ef60958 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000073.png differ diff --git a/HW89/homework/metrics/fake/0/0000074.png b/HW89/homework/metrics/fake/0/0000074.png new file mode 100644 index 0000000..51882b4 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000074.png differ diff --git a/HW89/homework/metrics/fake/0/0000075.png b/HW89/homework/metrics/fake/0/0000075.png new file mode 100644 index 0000000..6339285 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000075.png differ diff --git a/HW89/homework/metrics/fake/0/0000076.png b/HW89/homework/metrics/fake/0/0000076.png new file mode 100644 index 0000000..ab80067 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000076.png differ diff --git a/HW89/homework/metrics/fake/0/0000077.png b/HW89/homework/metrics/fake/0/0000077.png new file mode 100644 index 0000000..2f88960 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000077.png differ diff --git a/HW89/homework/metrics/fake/0/0000078.png b/HW89/homework/metrics/fake/0/0000078.png new file mode 100644 index 0000000..c293dca Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000078.png differ diff --git a/HW89/homework/metrics/fake/0/0000079.png b/HW89/homework/metrics/fake/0/0000079.png new file mode 100644 index 0000000..d86a4a4 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000079.png differ diff --git a/HW89/homework/metrics/fake/0/0000080.png b/HW89/homework/metrics/fake/0/0000080.png new file mode 100644 index 0000000..b590f81 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000080.png differ diff --git a/HW89/homework/metrics/fake/0/0000081.png b/HW89/homework/metrics/fake/0/0000081.png new file mode 100644 index 0000000..401ad2b Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000081.png differ diff --git a/HW89/homework/metrics/fake/0/0000082.png b/HW89/homework/metrics/fake/0/0000082.png new file mode 100644 index 0000000..90ec3d3 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000082.png differ diff --git a/HW89/homework/metrics/fake/0/0000083.png b/HW89/homework/metrics/fake/0/0000083.png new file mode 100644 index 0000000..603cb48 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000083.png differ diff --git a/HW89/homework/metrics/fake/0/0000084.png b/HW89/homework/metrics/fake/0/0000084.png new file mode 100644 index 0000000..74bcd44 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000084.png differ diff --git a/HW89/homework/metrics/fake/0/0000085.png b/HW89/homework/metrics/fake/0/0000085.png new file mode 100644 index 0000000..6fe42ac Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000085.png differ diff --git a/HW89/homework/metrics/fake/0/0000086.png b/HW89/homework/metrics/fake/0/0000086.png new file mode 100644 index 0000000..16e4e56 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000086.png differ diff --git a/HW89/homework/metrics/fake/0/0000087.png b/HW89/homework/metrics/fake/0/0000087.png new file mode 100644 index 0000000..d6e62c1 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000087.png differ diff --git a/HW89/homework/metrics/fake/0/0000088.png b/HW89/homework/metrics/fake/0/0000088.png new file mode 100644 index 0000000..b60b912 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000088.png differ diff --git a/HW89/homework/metrics/fake/0/0000089.png b/HW89/homework/metrics/fake/0/0000089.png new file mode 100644 index 0000000..bd1ead5 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000089.png differ diff --git a/HW89/homework/metrics/fake/0/0000090.png b/HW89/homework/metrics/fake/0/0000090.png new file mode 100644 index 0000000..bad54f5 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000090.png differ diff --git a/HW89/homework/metrics/fake/0/0000091.png b/HW89/homework/metrics/fake/0/0000091.png new file mode 100644 index 0000000..ea65427 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000091.png differ diff --git a/HW89/homework/metrics/fake/0/0000092.png b/HW89/homework/metrics/fake/0/0000092.png new file mode 100644 index 0000000..3d93f3c Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000092.png differ diff --git a/HW89/homework/metrics/fake/0/0000093.png b/HW89/homework/metrics/fake/0/0000093.png new file mode 100644 index 0000000..80979fb Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000093.png differ diff --git a/HW89/homework/metrics/fake/0/0000094.png b/HW89/homework/metrics/fake/0/0000094.png new file mode 100644 index 0000000..c9e157f Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000094.png differ diff --git a/HW89/homework/metrics/fake/0/0000095.png b/HW89/homework/metrics/fake/0/0000095.png new file mode 100644 index 0000000..f4dd6b0 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000095.png differ diff --git a/HW89/homework/metrics/fake/0/0000096.png b/HW89/homework/metrics/fake/0/0000096.png new file mode 100644 index 0000000..42c02a4 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000096.png differ diff --git a/HW89/homework/metrics/fake/0/0000097.png b/HW89/homework/metrics/fake/0/0000097.png new file mode 100644 index 0000000..ef09ed8 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000097.png differ diff --git a/HW89/homework/metrics/fake/0/0000098.png b/HW89/homework/metrics/fake/0/0000098.png new file mode 100644 index 0000000..44447b2 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000098.png differ diff --git a/HW89/homework/metrics/fake/0/0000099.png b/HW89/homework/metrics/fake/0/0000099.png new file mode 100644 index 0000000..09a2149 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000099.png differ diff --git a/HW89/homework/metrics/fake/0/0000100.png b/HW89/homework/metrics/fake/0/0000100.png new file mode 100644 index 0000000..449d2ea Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000100.png differ diff --git a/HW89/homework/metrics/fake/0/0000101.png b/HW89/homework/metrics/fake/0/0000101.png new file mode 100644 index 0000000..e54ae11 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000101.png differ diff --git a/HW89/homework/metrics/fake/0/0000102.png b/HW89/homework/metrics/fake/0/0000102.png new file mode 100644 index 0000000..7d7ed4a Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000102.png differ diff --git a/HW89/homework/metrics/fake/0/0000103.png b/HW89/homework/metrics/fake/0/0000103.png new file mode 100644 index 0000000..b0a3116 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000103.png differ diff --git a/HW89/homework/metrics/fake/0/0000104.png b/HW89/homework/metrics/fake/0/0000104.png new file mode 100644 index 0000000..23488d2 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000104.png differ diff --git a/HW89/homework/metrics/fake/0/0000105.png b/HW89/homework/metrics/fake/0/0000105.png new file mode 100644 index 0000000..8de8b09 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000105.png differ diff --git a/HW89/homework/metrics/fake/0/0000106.png b/HW89/homework/metrics/fake/0/0000106.png new file mode 100644 index 0000000..1033324 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000106.png differ diff --git a/HW89/homework/metrics/fake/0/0000107.png b/HW89/homework/metrics/fake/0/0000107.png new file mode 100644 index 0000000..db8a543 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000107.png differ diff --git a/HW89/homework/metrics/fake/0/0000108.png b/HW89/homework/metrics/fake/0/0000108.png new file mode 100644 index 0000000..48a8731 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000108.png differ diff --git a/HW89/homework/metrics/fake/0/0000109.png b/HW89/homework/metrics/fake/0/0000109.png new file mode 100644 index 0000000..3885701 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000109.png differ diff --git a/HW89/homework/metrics/fake/0/0000110.png b/HW89/homework/metrics/fake/0/0000110.png new file mode 100644 index 0000000..5171fdf Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000110.png differ diff --git a/HW89/homework/metrics/fake/0/0000111.png b/HW89/homework/metrics/fake/0/0000111.png new file mode 100644 index 0000000..23c11ec Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000111.png differ diff --git a/HW89/homework/metrics/fake/0/0000112.png b/HW89/homework/metrics/fake/0/0000112.png new file mode 100644 index 0000000..b0c56fe Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000112.png differ diff --git a/HW89/homework/metrics/fake/0/0000113.png b/HW89/homework/metrics/fake/0/0000113.png new file mode 100644 index 0000000..ea85d17 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000113.png differ diff --git a/HW89/homework/metrics/fake/0/0000114.png b/HW89/homework/metrics/fake/0/0000114.png new file mode 100644 index 0000000..dd4715b Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000114.png differ diff --git a/HW89/homework/metrics/fake/0/0000115.png b/HW89/homework/metrics/fake/0/0000115.png new file mode 100644 index 0000000..9f979d1 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000115.png differ diff --git a/HW89/homework/metrics/fake/0/0000116.png b/HW89/homework/metrics/fake/0/0000116.png new file mode 100644 index 0000000..3b32bee Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000116.png differ diff --git a/HW89/homework/metrics/fake/0/0000117.png b/HW89/homework/metrics/fake/0/0000117.png new file mode 100644 index 0000000..fbb72ab Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000117.png differ diff --git a/HW89/homework/metrics/fake/0/0000118.png b/HW89/homework/metrics/fake/0/0000118.png new file mode 100644 index 0000000..1e92d1e Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000118.png differ diff --git a/HW89/homework/metrics/fake/0/0000119.png b/HW89/homework/metrics/fake/0/0000119.png new file mode 100644 index 0000000..bccdf1a Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000119.png differ diff --git a/HW89/homework/metrics/fake/0/0000120.png b/HW89/homework/metrics/fake/0/0000120.png new file mode 100644 index 0000000..6d16657 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000120.png differ diff --git a/HW89/homework/metrics/fake/0/0000121.png b/HW89/homework/metrics/fake/0/0000121.png new file mode 100644 index 0000000..7f8efa3 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000121.png differ diff --git a/HW89/homework/metrics/fake/0/0000122.png b/HW89/homework/metrics/fake/0/0000122.png new file mode 100644 index 0000000..103b8aa Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000122.png differ diff --git a/HW89/homework/metrics/fake/0/0000123.png b/HW89/homework/metrics/fake/0/0000123.png new file mode 100644 index 0000000..cbf2571 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000123.png differ diff --git a/HW89/homework/metrics/fake/0/0000124.png b/HW89/homework/metrics/fake/0/0000124.png new file mode 100644 index 0000000..d5ea29a Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000124.png differ diff --git a/HW89/homework/metrics/fake/0/0000125.png b/HW89/homework/metrics/fake/0/0000125.png new file mode 100644 index 0000000..3b36138 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000125.png differ diff --git a/HW89/homework/metrics/fake/0/0000126.png b/HW89/homework/metrics/fake/0/0000126.png new file mode 100644 index 0000000..01ae932 Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000126.png differ diff --git a/HW89/homework/metrics/fake/0/0000127.png b/HW89/homework/metrics/fake/0/0000127.png new file mode 100644 index 0000000..098073f Binary files /dev/null and b/HW89/homework/metrics/fake/0/0000127.png differ diff --git a/HW89/homework/runs/Nov15_00-02-03_anton/events.out.tfevents.1542229323.anton b/HW89/homework/runs/Nov15_00-02-03_anton/events.out.tfevents.1542229323.anton new file mode 100644 index 0000000..72a254c Binary files /dev/null and b/HW89/homework/runs/Nov15_00-02-03_anton/events.out.tfevents.1542229323.anton differ diff --git a/HW89/homework/runs/Nov15_00-32-23_anton/events.out.tfevents.1542231143.anton b/HW89/homework/runs/Nov15_00-32-23_anton/events.out.tfevents.1542231143.anton new file mode 100644 index 0000000..a8367a9 Binary files /dev/null and b/HW89/homework/runs/Nov15_00-32-23_anton/events.out.tfevents.1542231143.anton differ diff --git a/HW89/homework/task.md b/HW89/homework/task.md new file mode 100644 index 0000000..5fdf9fd --- /dev/null +++ b/HW89/homework/task.md @@ -0,0 +1,5 @@ +## HW8 Generative models + +* Implement deep convolutional GAN in dcgan module +* Fill the gaps in vae trainer +* Provide the script for VAE training experiment \ No newline at end of file diff --git a/HW89/homework/train_dcgan.py b/HW89/homework/train_dcgan.py new file mode 100644 index 0000000..f556b0a --- /dev/null +++ b/HW89/homework/train_dcgan.py @@ -0,0 +1,74 @@ +import argparse +import logging +import os + +import torch +import torchvision.datasets as datasets +from torch.optim import Adam +from torchvision import transforms + +from dcgan.dcgan import DCGenerator, DCDiscriminator +from dcgan.trainer import DCGANTrainer + + +def get_config(): + parser = argparse.ArgumentParser(description='Training DCGAN on CIFAR10') + + parser.add_argument('--log-root', type=str, default='../logs') + parser.add_argument('--data-root', type=str, default='data') + parser.add_argument('--log-name', type=str, default='train_dcgan.log') + parser.add_argument('--no-cuda', action='store_true', default=True, + help='enables CUDA training') + parser.add_argument('--batch-size', type=int, default=128, + help='input batch size for training') + parser.add_argument('--epochs', type=int, default=30, + help='number of epochs to train ') + parser.add_argument('--image-size', type=int, default=32, + help='size of images to generate') + parser.add_argument('--n_show_samples', type=int, default=8) + parser.add_argument('--show_img_every', type=int, default=10) + parser.add_argument('--log_metrics_every', type=int, default=100) + config = parser.parse_args() + config.cuda = not config.no_cuda and torch.cuda.is_available() + + return config + + +def main(): + config = get_config() + logging.basicConfig( + format='%(asctime)s | %(message)s', + handlers=[ + logging.FileHandler(os.path.join(config.log_root, + config.log_name)), + logging.StreamHandler()], + level=logging.INFO) + + transform = transforms.Compose([transforms.Scale(config.image_size), transforms.ToTensor(), + transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) + dataset = datasets.CIFAR10(root=config.data_root, download=True, + transform=transform) + dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.batch_size, shuffle=True, + num_workers=4, pin_memory=True) + + discriminator, generator = DCDiscriminator(config.image_size), DCGenerator(config.image_size) + + start_epoch = 5 + if start_epoch >= 0: + disc_path = './ckpt/discriminator_epoch_{}.pt'.format(start_epoch) + gen_path = './ckpt/generator_epoch_{}.pt'.format(start_epoch) + discriminator.load_state_dict(torch.load(disc_path)) + generator.load_state_dict(torch.load(gen_path)) + print('state loaded from', disc_path, gen_path) + + trainer = DCGANTrainer(generator=generator, discriminator=discriminator, + optimizer_d=Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999)), + optimizer_g=Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999)), + metrics_dir='metrics', + start_epoch=start_epoch+1) + + trainer.train(dataloader, config.epochs, config.n_show_samples, config.show_img_every, config.log_metrics_every) + + +if __name__ == '__main__': + main() diff --git a/HW89/homework/train_vae.py b/HW89/homework/train_vae.py new file mode 100644 index 0000000..67e01c2 --- /dev/null +++ b/HW89/homework/train_vae.py @@ -0,0 +1,52 @@ + +# куски кода взяты из https://github.com/pytorch/examples/blob/master/vae/main.py + +import vae.trainer +import vae.vae +import argparse +import torch +import torch.utils.data +from torchvision import datasets, transforms + +parser = argparse.ArgumentParser(description='VAE MNIST Example') +parser.add_argument('--batch-size', type=int, default=128, metavar='N', + help='input batch size for training (default: 128)') +parser.add_argument('--epochs', type=int, default=10, metavar='N', + help='number of epochs to train (default: 10)') +parser.add_argument('--no-cuda', action='store_true', default=True, + help='enables CUDA training') +parser.add_argument('--seed', type=int, default=1, metavar='S', + help='random seed (default: 1)') +parser.add_argument('--log-interval', type=int, default=10, metavar='N', + help='how many batches to wait before logging training status') +args = parser.parse_args() +args.cuda = not args.no_cuda and torch.cuda.is_available() + +torch.manual_seed(args.seed) + +device = torch.device("cuda" if args.cuda else "cpu") +kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} + +train_loader = torch.utils.data.DataLoader( + datasets.FashionMNIST('data', train=True, download=True, + transform=transforms.ToTensor()), + batch_size=args.batch_size, shuffle=True, **kwargs) +test_loader = torch.utils.data.DataLoader( + datasets.FashionMNIST('data', train=False, transform=transforms.ToTensor()), + batch_size=args.batch_size, shuffle=True, **kwargs) + +model = vae.vae.VAE().to(device) +optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) + +def main(): + + trainer = vae.trainer.Trainer(model, train_loader, test_loader, optimizer, vae.vae.loss_function, device) + + for epoch in range(args.epochs + 1): + trainer.train(epoch, args.log_interval) + trainer.test(epoch, args.batch_size, args.log_interval) + + + +if __name__ == '__main__': + main() diff --git a/HW89/homework/vae/trainer.py b/HW89/homework/vae/trainer.py new file mode 100644 index 0000000..ed5711f --- /dev/null +++ b/HW89/homework/vae/trainer.py @@ -0,0 +1,108 @@ +import logging +import os + +import torch +import torchvision.utils as vutils +from tensorboardX import SummaryWriter + + +class Trainer: + + def __init__(self, model, train_loader, test_loader, optimizer, + loss_function, device='cpu'): + self.model = model + self.train_loader = train_loader + self.test_loader = test_loader + self.optimizer = optimizer + self.loss_function = loss_function + self.device = device + self.writer = SummaryWriter() + + def train(self, epoch, log_interval): + self.model.train() + epoch_loss = 0 + + for batch_idx, (data, _) in enumerate(self.train_loader): + # ############################ + + data = data.to(self.device) + self.optimizer.zero_grad() + recon_batch, mu, logvar = self.model(data) + loss = self.loss_function(recon_batch, data, mu, logvar) + loss.backward() + + train_loss = loss.item() + ####################### + epoch_loss += train_loss + norm_train_loss = train_loss / len(data) + + self.optimizer.step() + if batch_idx % log_interval == 0: + msg = 'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( + epoch, batch_idx * len(data), + len(self.train_loader.dataset), + 100. * batch_idx / len(self.train_loader), + norm_train_loss) + logging.info(msg) + + batch_size = self.train_loader.batch_size + train_size = len(self.train_loader.dataset) + batches_per_epoch_train = train_size // batch_size + self.writer.add_scalar(tag='data/train_loss', + scalar_value=norm_train_loss, + global_step=batches_per_epoch_train * epoch + batch_idx) + + epoch_loss /= len(self.train_loader.dataset) + #logging.info(f'====> Epoch: {epoch} Average loss: {epoch_loss:.4f}') + logging.info('====> Epoch: {} Average loss: {:.4f}'.format(epoch, epoch_loss)) + self.writer.add_scalar(tag='data/train_epoch_loss', + scalar_value=epoch_loss, + global_step=epoch) + + def test(self, epoch, batch_size, log_interval): + self.model.eval() + test_epoch_loss = 0 + + for batch_idx, (data, _) in enumerate(self.test_loader): + # ############################################# + + data = data.to(self.device) + recon_batch, mu, logvar = self.model(data) + + test_loss = self.loss_function(recon_batch, data, mu, logvar).item() + + ############################################### + test_epoch_loss += test_loss + + if batch_idx % log_interval == 0: + msg = 'Test Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( + epoch, batch_idx * len(data), + len(self.test_loader.dataset), + 100. * batch_idx / len(self.test_loader), + test_loss / len(data)) + logging.info(msg) + + batches_per_epoch_test = len(self.test_loader.dataset) // batch_size + self.writer.add_scalar(tag='data/test_loss', + scalar_value=test_loss / len(data), + global_step=batches_per_epoch_test * (epoch - 1) + batch_idx) + + test_epoch_loss /= len(self.test_loader.dataset) + logging.info('====> Test set loss: {:.4f}'.format(test_epoch_loss)) + self.writer.add_scalar(tag='data/test_epoch_loss', + scalar_value=test_epoch_loss, + global_step=epoch) + self.plot_generated(epoch, batch_size) + + def plot_generated(self, epoch, batch_size): + with torch.no_grad(): + sample = torch.randn(64, 20).to(self.device) + sample = self.model.decode(sample).cpu() + vutils.save_image(sample.view(64, 1, 28, 28), + 'vae_results/sample_' + str(epoch) + '.png') + + + def save(self, checkpoint_path): + dir_name = os.path.dirname(checkpoint_path) + os.makedirs(dir_name, exist_ok=True) + torch.save(self.model.state_dict(), checkpoint_path) diff --git a/HW89/homework/vae/vae.py b/HW89/homework/vae/vae.py new file mode 100644 index 0000000..065c39c --- /dev/null +++ b/HW89/homework/vae/vae.py @@ -0,0 +1,57 @@ +import torch +import torch.utils.data +from torch import nn +from torch.nn import functional as F # noqa: F401 + + +class VAE(nn.Module): + def __init__(self, image_size=28, enc_hidden=400, + latent_size=20, dec_hidden=400): + super().__init__() + self.latent_size = latent_size + + self.fc1 = nn.Linear(image_size * image_size, enc_hidden) + self.fc21 = nn.Linear(enc_hidden, latent_size) + self.fc22 = nn.Linear(enc_hidden, latent_size) + self.fc3 = nn.Linear(latent_size, dec_hidden) + self.fc4 = nn.Linear(dec_hidden, image_size * image_size) + + def encode(self, x): + h1 = F.relu(self.fc1(x)) + return self.fc21(h1), self.fc22(h1) + + def reparameterize(self, mu, logvar): + if self.training: + std = torch.exp(0.5*logvar) + eps = torch.randn_like(std) + return eps.mul(std).add_(mu) + else: + return mu + + def decode(self, z): + h3 = F.relu(self.fc3(z)) + return F.sigmoid(self.fc4(h3)) + + def forward(self, x): + mu, logvar = self.encode(x.view(-1, 784)) + latent = self.reparameterize(mu, logvar) + return self.decode(latent), mu, logvar + + def embed(self, x): + with torch.no_grad(): + mu, logvar = self.encode(x.view(-1, 784)) + z = self.reparameterize(mu, logvar) + return z + + +def loss_function(recon_x, x, mu, logvar): + """ + see Appendix B from VAE paper: + Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014 + https://arxiv.org/abs/1312.6114 + 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) + """ + bce = F.binary_cross_entropy(recon_x, x.view(-1, 784), size_average=False) + kld = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) + + return bce + kld diff --git a/HW89/homework/vae_results/sample_0.png b/HW89/homework/vae_results/sample_0.png new file mode 100644 index 0000000..b7d418a Binary files /dev/null and b/HW89/homework/vae_results/sample_0.png differ diff --git a/HW89/homework/vae_results/sample_1.png b/HW89/homework/vae_results/sample_1.png new file mode 100644 index 0000000..81dca69 Binary files /dev/null and b/HW89/homework/vae_results/sample_1.png differ diff --git a/HW89/homework/vae_results/sample_10.png b/HW89/homework/vae_results/sample_10.png new file mode 100644 index 0000000..fb16b05 Binary files /dev/null and b/HW89/homework/vae_results/sample_10.png differ diff --git a/HW89/homework/vae_results/sample_2.png b/HW89/homework/vae_results/sample_2.png new file mode 100644 index 0000000..208a103 Binary files /dev/null and b/HW89/homework/vae_results/sample_2.png differ diff --git a/HW89/homework/vae_results/sample_3.png b/HW89/homework/vae_results/sample_3.png new file mode 100644 index 0000000..62b7c6d Binary files /dev/null and b/HW89/homework/vae_results/sample_3.png differ diff --git a/HW89/homework/vae_results/sample_4.png b/HW89/homework/vae_results/sample_4.png new file mode 100644 index 0000000..17c755d Binary files /dev/null and b/HW89/homework/vae_results/sample_4.png differ diff --git a/HW89/homework/vae_results/sample_5.png b/HW89/homework/vae_results/sample_5.png new file mode 100644 index 0000000..8ed401c Binary files /dev/null and b/HW89/homework/vae_results/sample_5.png differ diff --git a/HW89/homework/vae_results/sample_6.png b/HW89/homework/vae_results/sample_6.png new file mode 100644 index 0000000..29d2f43 Binary files /dev/null and b/HW89/homework/vae_results/sample_6.png differ diff --git a/HW89/homework/vae_results/sample_7.png b/HW89/homework/vae_results/sample_7.png new file mode 100644 index 0000000..4634947 Binary files /dev/null and b/HW89/homework/vae_results/sample_7.png differ diff --git a/HW89/homework/vae_results/sample_8.png b/HW89/homework/vae_results/sample_8.png new file mode 100644 index 0000000..4a05b2c Binary files /dev/null and b/HW89/homework/vae_results/sample_8.png differ diff --git a/HW89/homework/vae_results/sample_9.png b/HW89/homework/vae_results/sample_9.png new file mode 100644 index 0000000..ff97170 Binary files /dev/null and b/HW89/homework/vae_results/sample_9.png differ diff --git a/HW89/logs/train_dcgan.log b/HW89/logs/train_dcgan.log new file mode 100644 index 0000000..0c89199 --- /dev/null +++ b/HW89/logs/train_dcgan.log @@ -0,0 +1,8340 @@ +2018-11-14 00:28:08,169 | epoch: [0/30] iter: [0/196] loss_D: 1.3866 loss_G: 0.6788 +2018-11-14 00:33:54,122 | epoch: [0/30] iter: [0/391] loss_D: 1.3863 loss_G: 0.6918 +2018-11-14 00:36:01,822 | epoch: [0/30] iter: [0/391] loss_D: 1.3864 loss_G: 0.6908 +2018-11-14 00:37:04,542 | epoch: [0/30] iter: [0/391] loss_D: 1.3866 loss_G: 0.6764 +2018-11-14 00:46:14,433 | epoch: [0/30] iter: [0/391] loss_D: 1.3867 loss_G: 0.6728 +2018-11-14 00:46:20,432 | Starting new HTTPS connection (1): download.pytorch.org +2018-11-14 00:48:43,683 | epoch: [0/30] iter: [0/196] loss_D: 1.3864 loss_G: 0.6904 +2018-11-14 01:06:34,473 | epoch: [0/30] iter: [0/391] loss_D: 1.3863 loss_G: 0.6963 +2018-11-14 01:08:01,447 | epoch: [0/30] iter: [0/391] loss_D: 1.3864 loss_G: 0.7016 +2018-11-14 01:10:56,509 | epoch: [0/30] iter: [1/391] loss_D: 1.3863 loss_G: 0.7008 +2018-11-14 01:11:09,096 | epoch: [0/30] iter: [2/391] loss_D: 1.3863 loss_G: 0.7001 +2018-11-14 01:11:21,893 | epoch: [0/30] iter: [3/391] loss_D: 1.3863 loss_G: 0.6995 +2018-11-14 01:12:57,402 | epoch: [0/30] iter: [0/391] loss_D: 1.3866 loss_G: 0.6779 +2018-11-14 01:16:03,076 | epoch: [0/30] iter: [1/391] loss_D: 1.3865 loss_G: 0.6784 +2018-11-14 01:16:07,754 | epoch: [0/30] iter: [2/391] loss_D: 1.3865 loss_G: 0.6789 +2018-11-14 01:16:14,921 | epoch: [0/30] iter: [3/391] loss_D: 1.3865 loss_G: 0.6796 +2018-11-14 01:16:22,409 | epoch: [0/30] iter: [4/391] loss_D: 1.3866 loss_G: 0.6801 +2018-11-14 01:16:29,678 | epoch: [0/30] iter: [5/391] loss_D: 1.3864 loss_G: 0.6806 +2018-11-14 01:16:36,742 | epoch: [0/30] iter: [6/391] loss_D: 1.3864 loss_G: 0.6812 +2018-11-14 01:16:43,367 | epoch: [0/30] iter: [7/391] loss_D: 1.3862 loss_G: 0.6818 +2018-11-14 01:16:50,473 | epoch: [0/30] iter: [8/391] loss_D: 1.3863 loss_G: 0.6823 +2018-11-14 01:16:57,352 | epoch: [0/30] iter: [9/391] loss_D: 1.3862 loss_G: 0.6828 +2018-11-14 01:17:04,047 | epoch: [0/30] iter: [10/391] loss_D: 1.3859 loss_G: 0.6833 +2018-11-14 01:17:11,482 | epoch: [0/30] iter: [11/391] loss_D: 1.3861 loss_G: 0.6837 +2018-11-14 01:17:18,778 | epoch: [0/30] iter: [12/391] loss_D: 1.3862 loss_G: 0.6842 +2018-11-14 01:17:25,667 | epoch: [0/30] iter: [13/391] loss_D: 1.3863 loss_G: 0.6845 +2018-11-14 01:17:33,004 | epoch: [0/30] iter: [14/391] loss_D: 1.3862 loss_G: 0.6848 +2018-11-14 01:17:40,277 | epoch: [0/30] iter: [15/391] loss_D: 1.3864 loss_G: 0.6850 +2018-11-14 01:17:47,419 | epoch: [0/30] iter: [16/391] loss_D: 1.3866 loss_G: 0.6854 +2018-11-14 01:17:54,379 | epoch: [0/30] iter: [17/391] loss_D: 1.3868 loss_G: 0.6858 +2018-11-14 01:18:01,399 | epoch: [0/30] iter: [18/391] loss_D: 1.3872 loss_G: 0.6863 +2018-11-14 01:18:08,606 | epoch: [0/30] iter: [19/391] loss_D: 1.3870 loss_G: 0.6867 +2018-11-14 01:18:15,807 | epoch: [0/30] iter: [20/391] loss_D: 1.3867 loss_G: 0.6878 +2018-11-14 01:18:22,480 | epoch: [0/30] iter: [21/391] loss_D: 1.3867 loss_G: 0.6882 +2018-11-14 01:18:29,316 | epoch: [0/30] iter: [22/391] loss_D: 1.3864 loss_G: 0.6887 +2018-11-14 01:18:36,271 | epoch: [0/30] iter: [23/391] loss_D: 1.3865 loss_G: 0.6892 +2018-11-14 01:18:43,452 | epoch: [0/30] iter: [24/391] loss_D: 1.3862 loss_G: 0.6898 +2018-11-14 01:18:50,575 | epoch: [0/30] iter: [25/391] loss_D: 1.3861 loss_G: 0.6905 +2018-11-14 01:18:57,619 | epoch: [0/30] iter: [26/391] loss_D: 1.3858 loss_G: 0.6908 +2018-11-14 01:19:04,543 | epoch: [0/30] iter: [27/391] loss_D: 1.3858 loss_G: 0.6914 +2018-11-14 01:19:11,666 | epoch: [0/30] iter: [28/391] loss_D: 1.3855 loss_G: 0.6920 +2018-11-14 01:19:18,832 | epoch: [0/30] iter: [29/391] loss_D: 1.3862 loss_G: 0.6922 +2018-11-14 01:19:25,743 | epoch: [0/30] iter: [30/391] loss_D: 1.3857 loss_G: 0.6925 +2018-11-14 01:19:32,867 | epoch: [0/30] iter: [31/391] loss_D: 1.3861 loss_G: 0.6924 +2018-11-14 01:19:40,016 | epoch: [0/30] iter: [32/391] loss_D: 1.3871 loss_G: 0.6916 +2018-11-14 01:19:47,051 | epoch: [0/30] iter: [33/391] loss_D: 1.3864 loss_G: 0.6918 +2018-11-14 01:19:54,495 | epoch: [0/30] iter: [34/391] loss_D: 1.3870 loss_G: 0.6915 +2018-11-14 01:20:02,073 | epoch: [0/30] iter: [35/391] loss_D: 1.3871 loss_G: 0.6915 +2018-11-14 01:20:09,395 | epoch: [0/30] iter: [36/391] loss_D: 1.3866 loss_G: 0.6919 +2018-11-14 01:20:16,563 | epoch: [0/30] iter: [37/391] loss_D: 1.3870 loss_G: 0.6919 +2018-11-14 01:20:23,279 | epoch: [0/30] iter: [38/391] loss_D: 1.3864 loss_G: 0.6921 +2018-11-14 01:20:30,327 | epoch: [0/30] iter: [39/391] loss_D: 1.3864 loss_G: 0.6921 +2018-11-14 01:20:37,264 | epoch: [0/30] iter: [40/391] loss_D: 1.3860 loss_G: 0.6923 +2018-11-14 01:20:44,223 | epoch: [0/30] iter: [41/391] loss_D: 1.3860 loss_G: 0.6925 +2018-11-14 01:20:51,494 | epoch: [0/30] iter: [42/391] loss_D: 1.3859 loss_G: 0.6926 +2018-11-14 01:20:58,437 | epoch: [0/30] iter: [43/391] loss_D: 1.3852 loss_G: 0.6928 +2018-11-14 01:21:05,157 | epoch: [0/30] iter: [44/391] loss_D: 1.3848 loss_G: 0.6930 +2018-11-14 01:21:12,478 | epoch: [0/30] iter: [45/391] loss_D: 1.3840 loss_G: 0.6933 +2018-11-14 01:21:19,451 | epoch: [0/30] iter: [46/391] loss_D: 1.3832 loss_G: 0.6933 +2018-11-14 01:21:26,792 | epoch: [0/30] iter: [47/391] loss_D: 1.3828 loss_G: 0.6920 +2018-11-14 01:21:33,999 | epoch: [0/30] iter: [48/391] loss_D: 1.3814 loss_G: 0.6912 +2018-11-14 01:21:41,003 | epoch: [0/30] iter: [49/391] loss_D: 1.3840 loss_G: 0.6898 +2018-11-14 01:21:50,963 | epoch: [0/30] iter: [50/391] loss_D: 1.3841 loss_G: 0.6864 +2018-11-14 01:22:00,225 | epoch: [0/30] iter: [51/391] loss_D: 1.3938 loss_G: 0.6841 +2018-11-14 01:22:09,491 | epoch: [0/30] iter: [52/391] loss_D: 1.3920 loss_G: 0.6863 +2018-11-14 01:22:18,646 | epoch: [0/30] iter: [53/391] loss_D: 1.3926 loss_G: 0.6896 +2018-11-14 01:22:27,831 | epoch: [0/30] iter: [54/391] loss_D: 1.3900 loss_G: 0.6937 +2018-11-14 01:22:37,111 | epoch: [0/30] iter: [55/391] loss_D: 1.3865 loss_G: 0.6977 +2018-11-14 01:22:46,707 | epoch: [0/30] iter: [56/391] loss_D: 1.3867 loss_G: 0.6992 +2018-11-14 01:22:56,070 | epoch: [0/30] iter: [57/391] loss_D: 1.3833 loss_G: 0.7041 +2018-11-14 01:23:05,608 | epoch: [0/30] iter: [58/391] loss_D: 1.3843 loss_G: 0.7017 +2018-11-14 01:23:15,143 | epoch: [0/30] iter: [59/391] loss_D: 1.3825 loss_G: 0.7030 +2018-11-14 01:23:24,436 | epoch: [0/30] iter: [60/391] loss_D: 1.3865 loss_G: 0.7029 +2018-11-14 01:23:33,577 | epoch: [0/30] iter: [61/391] loss_D: 1.3829 loss_G: 0.7051 +2018-11-14 01:23:42,648 | epoch: [0/30] iter: [62/391] loss_D: 1.3913 loss_G: 0.7004 +2018-11-14 01:23:51,887 | epoch: [0/30] iter: [63/391] loss_D: 1.3975 loss_G: 0.6950 +2018-11-14 01:24:01,635 | epoch: [0/30] iter: [64/391] loss_D: 1.3854 loss_G: 0.6998 +2018-11-14 01:24:11,496 | epoch: [0/30] iter: [65/391] loss_D: 1.3911 loss_G: 0.6943 +2018-11-14 01:24:20,664 | epoch: [0/30] iter: [66/391] loss_D: 1.3875 loss_G: 0.6966 +2018-11-14 01:24:29,932 | epoch: [0/30] iter: [67/391] loss_D: 1.3886 loss_G: 0.6953 +2018-11-14 01:24:39,384 | epoch: [0/30] iter: [68/391] loss_D: 1.3845 loss_G: 0.6974 +2018-11-14 01:24:48,890 | epoch: [0/30] iter: [69/391] loss_D: 1.3836 loss_G: 0.6986 +2018-11-14 01:24:58,288 | epoch: [0/30] iter: [70/391] loss_D: 1.3828 loss_G: 0.6978 +2018-11-14 01:25:07,403 | epoch: [0/30] iter: [71/391] loss_D: 1.3803 loss_G: 0.7002 +2018-11-14 01:25:16,756 | epoch: [0/30] iter: [72/391] loss_D: 1.3800 loss_G: 0.7000 +2018-11-14 01:25:26,166 | epoch: [0/30] iter: [73/391] loss_D: 1.3780 loss_G: 0.7031 +2018-11-14 01:25:36,125 | epoch: [0/30] iter: [74/391] loss_D: 1.3760 loss_G: 0.7025 +2018-11-14 01:25:45,790 | epoch: [0/30] iter: [75/391] loss_D: 1.3817 loss_G: 0.6981 +2018-11-14 01:25:54,945 | epoch: [0/30] iter: [76/391] loss_D: 1.3781 loss_G: 0.6984 +2018-11-14 01:26:04,447 | epoch: [0/30] iter: [77/391] loss_D: 1.3808 loss_G: 0.6907 +2018-11-14 01:26:13,797 | epoch: [0/30] iter: [78/391] loss_D: 1.3920 loss_G: 0.6832 +2018-11-14 01:26:23,232 | epoch: [0/30] iter: [79/391] loss_D: 1.3910 loss_G: 0.6823 +2018-11-14 01:26:32,744 | epoch: [0/30] iter: [80/391] loss_D: 1.3961 loss_G: 0.6799 +2018-11-14 01:26:42,418 | epoch: [0/30] iter: [81/391] loss_D: 1.3978 loss_G: 0.6829 +2018-11-14 01:26:51,764 | epoch: [0/30] iter: [82/391] loss_D: 1.3956 loss_G: 0.6834 +2018-11-14 01:27:01,321 | epoch: [0/30] iter: [83/391] loss_D: 1.3970 loss_G: 0.6858 +2018-11-14 01:27:10,919 | epoch: [0/30] iter: [84/391] loss_D: 1.3956 loss_G: 0.6911 +2018-11-14 01:27:20,252 | epoch: [0/30] iter: [85/391] loss_D: 1.3916 loss_G: 0.6940 +2018-11-14 01:27:29,870 | epoch: [0/30] iter: [86/391] loss_D: 1.3884 loss_G: 0.6970 +2018-11-14 01:27:39,038 | epoch: [0/30] iter: [87/391] loss_D: 1.3876 loss_G: 0.6998 +2018-11-14 01:27:48,816 | epoch: [0/30] iter: [88/391] loss_D: 1.3854 loss_G: 0.7013 +2018-11-14 01:27:58,926 | epoch: [0/30] iter: [89/391] loss_D: 1.3836 loss_G: 0.7032 +2018-11-14 01:28:08,562 | epoch: [0/30] iter: [90/391] loss_D: 1.3816 loss_G: 0.7059 +2018-11-14 01:28:18,590 | epoch: [0/30] iter: [91/391] loss_D: 1.3812 loss_G: 0.7066 +2018-11-14 01:28:28,069 | epoch: [0/30] iter: [92/391] loss_D: 1.3781 loss_G: 0.7085 +2018-11-14 01:28:37,350 | epoch: [0/30] iter: [93/391] loss_D: 1.3750 loss_G: 0.7131 +2018-11-14 01:28:46,994 | epoch: [0/30] iter: [94/391] loss_D: 1.3790 loss_G: 0.7071 +2018-11-14 01:28:56,953 | epoch: [0/30] iter: [95/391] loss_D: 1.3829 loss_G: 0.7052 +2018-11-14 01:29:06,777 | epoch: [0/30] iter: [96/391] loss_D: 1.3778 loss_G: 0.7042 +2018-11-14 01:29:15,627 | epoch: [0/30] iter: [97/391] loss_D: 1.3850 loss_G: 0.7002 +2018-11-14 01:29:25,114 | epoch: [0/30] iter: [98/391] loss_D: 1.3897 loss_G: 0.6942 +2018-11-14 01:29:34,666 | epoch: [0/30] iter: [99/391] loss_D: 1.3964 loss_G: 0.6905 +2018-11-14 01:29:43,895 | epoch: [0/30] iter: [100/391] loss_D: 1.3935 loss_G: 0.6921 +2018-11-14 01:34:44,424 | epoch: [0/30] iter: [101/391] loss_D: 1.3932 loss_G: 0.6917 +2018-11-14 01:34:55,046 | epoch: [0/30] iter: [102/391] loss_D: 1.3937 loss_G: 0.6917 +2018-11-14 01:35:04,643 | epoch: [0/30] iter: [103/391] loss_D: 1.3892 loss_G: 0.6940 +2018-11-14 01:35:14,535 | epoch: [0/30] iter: [104/391] loss_D: 1.3874 loss_G: 0.6942 +2018-11-14 01:35:24,888 | epoch: [0/30] iter: [105/391] loss_D: 1.3869 loss_G: 0.6956 +2018-11-14 01:35:35,406 | epoch: [0/30] iter: [106/391] loss_D: 1.3851 loss_G: 0.6962 +2018-11-14 01:35:45,708 | epoch: [0/30] iter: [107/391] loss_D: 1.3818 loss_G: 0.6975 +2018-11-14 01:35:55,549 | epoch: [0/30] iter: [108/391] loss_D: 1.3820 loss_G: 0.7008 +2018-11-14 01:36:04,886 | epoch: [0/30] iter: [109/391] loss_D: 1.3813 loss_G: 0.6987 +2018-11-14 01:36:14,261 | epoch: [0/30] iter: [110/391] loss_D: 1.3773 loss_G: 0.7009 +2018-11-14 01:36:23,874 | epoch: [0/30] iter: [111/391] loss_D: 1.3784 loss_G: 0.6993 +2018-11-14 01:36:33,621 | epoch: [0/30] iter: [112/391] loss_D: 1.3795 loss_G: 0.6963 +2018-11-14 01:36:43,496 | epoch: [0/30] iter: [113/391] loss_D: 1.3797 loss_G: 0.6921 +2018-11-14 01:36:52,488 | epoch: [0/30] iter: [114/391] loss_D: 1.3862 loss_G: 0.6917 +2018-11-14 01:37:02,112 | epoch: [0/30] iter: [115/391] loss_D: 1.3801 loss_G: 0.6912 +2018-11-14 01:37:11,778 | epoch: [0/30] iter: [116/391] loss_D: 1.3840 loss_G: 0.6886 +2018-11-14 01:37:21,011 | epoch: [0/30] iter: [117/391] loss_D: 1.3873 loss_G: 0.6846 +2018-11-14 01:37:30,069 | epoch: [0/30] iter: [118/391] loss_D: 1.3969 loss_G: 0.6838 +2018-11-14 01:37:39,351 | epoch: [0/30] iter: [119/391] loss_D: 1.3953 loss_G: 0.6854 +2018-11-14 01:37:48,926 | epoch: [0/30] iter: [120/391] loss_D: 1.3948 loss_G: 0.6866 +2018-11-14 01:37:58,383 | epoch: [0/30] iter: [121/391] loss_D: 1.3958 loss_G: 0.6886 +2018-11-14 01:38:07,655 | epoch: [0/30] iter: [122/391] loss_D: 1.3932 loss_G: 0.6904 +2018-11-14 01:38:17,415 | epoch: [0/30] iter: [123/391] loss_D: 1.3926 loss_G: 0.6937 +2018-11-14 01:38:26,903 | epoch: [0/30] iter: [124/391] loss_D: 1.3911 loss_G: 0.6950 +2018-11-14 01:38:36,499 | epoch: [0/30] iter: [125/391] loss_D: 1.3923 loss_G: 0.6965 +2018-11-14 01:38:45,564 | epoch: [0/30] iter: [126/391] loss_D: 1.3885 loss_G: 0.6979 +2018-11-14 01:38:55,313 | epoch: [0/30] iter: [127/391] loss_D: 1.3891 loss_G: 0.6983 +2018-11-14 01:39:05,047 | epoch: [0/30] iter: [128/391] loss_D: 1.3866 loss_G: 0.7004 +2018-11-14 01:39:15,015 | epoch: [0/30] iter: [129/391] loss_D: 1.3865 loss_G: 0.6994 +2018-11-14 01:39:25,198 | epoch: [0/30] iter: [130/391] loss_D: 1.3848 loss_G: 0.7013 +2018-11-14 01:39:34,845 | epoch: [0/30] iter: [131/391] loss_D: 1.3852 loss_G: 0.7006 +2018-11-14 01:39:44,359 | epoch: [0/30] iter: [132/391] loss_D: 1.3847 loss_G: 0.7009 +2018-11-14 01:39:53,768 | epoch: [0/30] iter: [133/391] loss_D: 1.3833 loss_G: 0.7019 +2018-11-14 01:40:03,185 | epoch: [0/30] iter: [134/391] loss_D: 1.3843 loss_G: 0.7004 +2018-11-14 01:40:12,606 | epoch: [0/30] iter: [135/391] loss_D: 1.3832 loss_G: 0.7004 +2018-11-14 01:40:21,879 | epoch: [0/30] iter: [136/391] loss_D: 1.3832 loss_G: 0.6982 +2018-11-14 01:40:30,989 | epoch: [0/30] iter: [137/391] loss_D: 1.3844 loss_G: 0.6982 +2018-11-14 01:40:39,990 | epoch: [0/30] iter: [138/391] loss_D: 1.3790 loss_G: 0.6998 +2018-11-14 01:40:49,166 | epoch: [0/30] iter: [139/391] loss_D: 1.3856 loss_G: 0.6980 +2018-11-14 01:40:58,618 | epoch: [0/30] iter: [140/391] loss_D: 1.3816 loss_G: 0.6980 +2018-11-14 01:41:07,710 | epoch: [0/30] iter: [141/391] loss_D: 1.3838 loss_G: 0.6979 +2018-11-14 01:41:16,774 | epoch: [0/30] iter: [142/391] loss_D: 1.3866 loss_G: 0.6957 +2018-11-14 01:41:26,166 | epoch: [0/30] iter: [143/391] loss_D: 1.3841 loss_G: 0.6939 +2018-11-14 01:41:35,566 | epoch: [0/30] iter: [144/391] loss_D: 1.3846 loss_G: 0.6931 +2018-11-14 01:41:45,071 | epoch: [0/30] iter: [145/391] loss_D: 1.3857 loss_G: 0.6910 +2018-11-14 01:41:54,577 | epoch: [0/30] iter: [146/391] loss_D: 1.3869 loss_G: 0.6928 +2018-11-14 01:42:03,840 | epoch: [0/30] iter: [147/391] loss_D: 1.3879 loss_G: 0.6911 +2018-11-14 01:42:13,458 | epoch: [0/30] iter: [148/391] loss_D: 1.3912 loss_G: 0.6922 +2018-11-14 01:42:23,018 | epoch: [0/30] iter: [149/391] loss_D: 1.3868 loss_G: 0.6915 +2018-11-14 01:42:32,534 | epoch: [0/30] iter: [150/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-14 01:42:42,236 | epoch: [0/30] iter: [151/391] loss_D: 1.3878 loss_G: 0.6931 +2018-11-14 01:42:51,238 | epoch: [0/30] iter: [152/391] loss_D: 1.3864 loss_G: 0.6946 +2018-11-14 01:43:00,536 | epoch: [0/30] iter: [153/391] loss_D: 1.3865 loss_G: 0.6960 +2018-11-14 01:43:09,970 | epoch: [0/30] iter: [154/391] loss_D: 1.3838 loss_G: 0.6975 +2018-11-14 01:43:19,493 | epoch: [0/30] iter: [155/391] loss_D: 1.3858 loss_G: 0.6985 +2018-11-14 01:43:28,988 | epoch: [0/30] iter: [156/391] loss_D: 1.3834 loss_G: 0.6999 +2018-11-14 01:43:38,691 | epoch: [0/30] iter: [157/391] loss_D: 1.3825 loss_G: 0.6997 +2018-11-14 01:43:48,175 | epoch: [0/30] iter: [158/391] loss_D: 1.3840 loss_G: 0.6995 +2018-11-14 01:43:57,596 | epoch: [0/30] iter: [159/391] loss_D: 1.3837 loss_G: 0.7015 +2018-11-14 01:44:07,379 | epoch: [0/30] iter: [160/391] loss_D: 1.3851 loss_G: 0.6987 +2018-11-14 01:44:17,158 | epoch: [0/30] iter: [161/391] loss_D: 1.3839 loss_G: 0.7006 +2018-11-14 01:44:26,606 | epoch: [0/30] iter: [162/391] loss_D: 1.3803 loss_G: 0.7036 +2018-11-14 01:44:36,216 | epoch: [0/30] iter: [163/391] loss_D: 1.3812 loss_G: 0.7032 +2018-11-14 01:44:45,731 | epoch: [0/30] iter: [164/391] loss_D: 1.3872 loss_G: 0.6996 +2018-11-14 01:44:54,869 | epoch: [0/30] iter: [165/391] loss_D: 1.3862 loss_G: 0.6966 +2018-11-14 01:45:04,102 | epoch: [0/30] iter: [166/391] loss_D: 1.3872 loss_G: 0.6976 +2018-11-14 01:45:13,403 | epoch: [0/30] iter: [167/391] loss_D: 1.3857 loss_G: 0.6975 +2018-11-14 01:45:23,031 | epoch: [0/30] iter: [168/391] loss_D: 1.3889 loss_G: 0.6975 +2018-11-14 01:45:32,286 | epoch: [0/30] iter: [169/391] loss_D: 1.3902 loss_G: 0.6952 +2018-11-14 01:45:42,335 | epoch: [0/30] iter: [170/391] loss_D: 1.3862 loss_G: 0.6942 +2018-11-14 01:45:51,529 | epoch: [0/30] iter: [171/391] loss_D: 1.3923 loss_G: 0.6932 +2018-11-14 01:46:00,567 | epoch: [0/30] iter: [172/391] loss_D: 1.3870 loss_G: 0.6940 +2018-11-14 01:46:09,718 | epoch: [0/30] iter: [173/391] loss_D: 1.3843 loss_G: 0.6947 +2018-11-14 01:46:18,918 | epoch: [0/30] iter: [174/391] loss_D: 1.3906 loss_G: 0.6935 +2018-11-14 01:46:28,184 | epoch: [0/30] iter: [175/391] loss_D: 1.3887 loss_G: 0.6921 +2018-11-14 01:46:37,132 | epoch: [0/30] iter: [176/391] loss_D: 1.3889 loss_G: 0.6911 +2018-11-14 01:46:46,512 | epoch: [0/30] iter: [177/391] loss_D: 1.3878 loss_G: 0.6911 +2018-11-14 01:46:55,987 | epoch: [0/30] iter: [178/391] loss_D: 1.3887 loss_G: 0.6903 +2018-11-14 01:47:05,665 | epoch: [0/30] iter: [179/391] loss_D: 1.3910 loss_G: 0.6897 +2018-11-14 01:47:14,790 | epoch: [0/30] iter: [180/391] loss_D: 1.3884 loss_G: 0.6908 +2018-11-14 01:47:24,456 | epoch: [0/30] iter: [181/391] loss_D: 1.3884 loss_G: 0.6908 +2018-11-14 01:47:33,560 | epoch: [0/30] iter: [182/391] loss_D: 1.3913 loss_G: 0.6901 +2018-11-14 01:47:43,096 | epoch: [0/30] iter: [183/391] loss_D: 1.3883 loss_G: 0.6916 +2018-11-14 01:47:52,074 | epoch: [0/30] iter: [184/391] loss_D: 1.3892 loss_G: 0.6915 +2018-11-14 01:48:01,119 | epoch: [0/30] iter: [185/391] loss_D: 1.3884 loss_G: 0.6926 +2018-11-14 01:48:10,401 | epoch: [0/30] iter: [186/391] loss_D: 1.3872 loss_G: 0.6936 +2018-11-14 01:48:19,772 | epoch: [0/30] iter: [187/391] loss_D: 1.3852 loss_G: 0.6939 +2018-11-14 01:48:29,144 | epoch: [0/30] iter: [188/391] loss_D: 1.3825 loss_G: 0.6965 +2018-11-14 01:48:38,906 | epoch: [0/30] iter: [189/391] loss_D: 1.3850 loss_G: 0.6952 +2018-11-14 01:48:48,677 | epoch: [0/30] iter: [190/391] loss_D: 1.3833 loss_G: 0.6964 +2018-11-14 01:48:58,738 | epoch: [0/30] iter: [191/391] loss_D: 1.3828 loss_G: 0.6971 +2018-11-14 01:49:08,267 | epoch: [0/30] iter: [192/391] loss_D: 1.3830 loss_G: 0.6981 +2018-11-14 01:49:17,650 | epoch: [0/30] iter: [193/391] loss_D: 1.3837 loss_G: 0.6971 +2018-11-14 01:49:27,447 | epoch: [0/30] iter: [194/391] loss_D: 1.3795 loss_G: 0.6993 +2018-11-14 01:49:36,546 | epoch: [0/30] iter: [195/391] loss_D: 1.3806 loss_G: 0.6982 +2018-11-14 01:49:45,853 | epoch: [0/30] iter: [196/391] loss_D: 1.3809 loss_G: 0.6965 +2018-11-14 01:49:54,995 | epoch: [0/30] iter: [197/391] loss_D: 1.3789 loss_G: 0.6977 +2018-11-14 01:50:04,584 | epoch: [0/30] iter: [198/391] loss_D: 1.3808 loss_G: 0.6929 +2018-11-14 01:50:14,371 | epoch: [0/30] iter: [199/391] loss_D: 1.3790 loss_G: 0.6954 +2018-11-14 01:50:23,643 | epoch: [0/30] iter: [200/391] loss_D: 1.3838 loss_G: 0.6947 +2018-11-14 01:54:30,732 | epoch: [0/30] iter: [201/391] loss_D: 1.3867 loss_G: 0.6914 +2018-11-14 01:54:40,120 | epoch: [0/30] iter: [202/391] loss_D: 1.3893 loss_G: 0.6898 +2018-11-14 01:54:49,418 | epoch: [0/30] iter: [203/391] loss_D: 1.3802 loss_G: 0.6939 +2018-11-14 01:54:59,123 | epoch: [0/30] iter: [204/391] loss_D: 1.3885 loss_G: 0.6868 +2018-11-14 01:55:07,990 | epoch: [0/30] iter: [205/391] loss_D: 1.3882 loss_G: 0.6888 +2018-11-14 01:55:17,543 | epoch: [0/30] iter: [206/391] loss_D: 1.3899 loss_G: 0.6878 +2018-11-14 01:55:27,120 | epoch: [0/30] iter: [207/391] loss_D: 1.3904 loss_G: 0.6870 +2018-11-14 01:55:36,220 | epoch: [0/30] iter: [208/391] loss_D: 1.3931 loss_G: 0.6861 +2018-11-14 01:55:45,350 | epoch: [0/30] iter: [209/391] loss_D: 1.3936 loss_G: 0.6884 +2018-11-14 01:55:54,517 | epoch: [0/30] iter: [210/391] loss_D: 1.3874 loss_G: 0.6918 +2018-11-14 01:56:03,520 | epoch: [0/30] iter: [211/391] loss_D: 1.3899 loss_G: 0.6930 +2018-11-14 01:56:12,678 | epoch: [0/30] iter: [212/391] loss_D: 1.3933 loss_G: 0.6953 +2018-11-14 01:56:22,076 | epoch: [0/30] iter: [213/391] loss_D: 1.3914 loss_G: 0.6981 +2018-11-14 01:56:31,050 | epoch: [0/30] iter: [214/391] loss_D: 1.3844 loss_G: 0.7023 +2018-11-14 01:56:40,900 | epoch: [0/30] iter: [215/391] loss_D: 1.3863 loss_G: 0.7009 +2018-11-14 01:56:50,510 | epoch: [0/30] iter: [216/391] loss_D: 1.3852 loss_G: 0.7046 +2018-11-14 01:56:59,884 | epoch: [0/30] iter: [217/391] loss_D: 1.3835 loss_G: 0.7050 +2018-11-14 01:57:09,165 | epoch: [0/30] iter: [218/391] loss_D: 1.3828 loss_G: 0.7075 +2018-11-14 01:57:18,573 | epoch: [0/30] iter: [219/391] loss_D: 1.3855 loss_G: 0.7020 +2018-11-14 01:57:27,668 | epoch: [0/30] iter: [220/391] loss_D: 1.3839 loss_G: 0.7055 +2018-11-14 01:57:36,506 | epoch: [0/30] iter: [221/391] loss_D: 1.3806 loss_G: 0.7058 +2018-11-14 01:57:45,793 | epoch: [0/30] iter: [222/391] loss_D: 1.3866 loss_G: 0.7007 +2018-11-14 01:57:54,840 | epoch: [0/30] iter: [223/391] loss_D: 1.3808 loss_G: 0.7037 +2018-11-14 01:58:04,350 | epoch: [0/30] iter: [224/391] loss_D: 1.3809 loss_G: 0.7041 +2018-11-14 01:58:13,304 | epoch: [0/30] iter: [225/391] loss_D: 1.3837 loss_G: 0.7037 +2018-11-14 01:58:22,377 | epoch: [0/30] iter: [226/391] loss_D: 1.3865 loss_G: 0.7048 +2018-11-14 01:58:31,763 | epoch: [0/30] iter: [227/391] loss_D: 1.3923 loss_G: 0.7002 +2018-11-14 01:58:41,738 | epoch: [0/30] iter: [228/391] loss_D: 1.3878 loss_G: 0.6987 +2018-11-14 01:58:51,466 | epoch: [0/30] iter: [229/391] loss_D: 1.3881 loss_G: 0.7009 +2018-11-14 01:59:00,717 | epoch: [0/30] iter: [230/391] loss_D: 1.3968 loss_G: 0.6980 +2018-11-14 01:59:09,643 | epoch: [0/30] iter: [231/391] loss_D: 1.3922 loss_G: 0.6954 +2018-11-14 01:59:18,943 | epoch: [0/30] iter: [232/391] loss_D: 1.3919 loss_G: 0.6956 +2018-11-14 01:59:28,078 | epoch: [0/30] iter: [233/391] loss_D: 1.3914 loss_G: 0.6998 +2018-11-14 01:59:36,991 | epoch: [0/30] iter: [234/391] loss_D: 1.3888 loss_G: 0.7004 +2018-11-14 01:59:46,136 | epoch: [0/30] iter: [235/391] loss_D: 1.3873 loss_G: 0.6996 +2018-11-14 01:59:55,249 | epoch: [0/30] iter: [236/391] loss_D: 1.3833 loss_G: 0.7022 +2018-11-14 02:00:04,311 | epoch: [0/30] iter: [237/391] loss_D: 1.3827 loss_G: 0.7034 +2018-11-14 02:00:13,594 | epoch: [0/30] iter: [238/391] loss_D: 1.3819 loss_G: 0.7054 +2018-11-14 02:00:22,431 | epoch: [0/30] iter: [239/391] loss_D: 1.3825 loss_G: 0.7045 +2018-11-14 02:00:31,910 | epoch: [0/30] iter: [240/391] loss_D: 1.3784 loss_G: 0.7052 +2018-11-14 02:00:36,096 | epoch: [0/30] iter: [241/391] loss_D: 1.3794 loss_G: 0.7062 +2018-11-14 02:00:39,941 | epoch: [0/30] iter: [242/391] loss_D: 1.3823 loss_G: 0.7011 +2018-11-14 02:00:44,310 | epoch: [0/30] iter: [243/391] loss_D: 1.3816 loss_G: 0.7021 +2018-11-14 02:00:48,401 | epoch: [0/30] iter: [244/391] loss_D: 1.3862 loss_G: 0.6976 +2018-11-14 02:00:52,646 | epoch: [0/30] iter: [245/391] loss_D: 1.3847 loss_G: 0.6947 +2018-11-14 02:00:56,753 | epoch: [0/30] iter: [246/391] loss_D: 1.3893 loss_G: 0.6911 +2018-11-14 02:01:01,136 | epoch: [0/30] iter: [247/391] loss_D: 1.3875 loss_G: 0.6906 +2018-11-14 02:01:06,365 | epoch: [0/30] iter: [248/391] loss_D: 1.3898 loss_G: 0.6889 +2018-11-14 02:01:13,351 | epoch: [0/30] iter: [249/391] loss_D: 1.3856 loss_G: 0.6895 +2018-11-14 02:01:20,006 | epoch: [0/30] iter: [250/391] loss_D: 1.3846 loss_G: 0.6902 +2018-11-14 02:01:27,438 | epoch: [0/30] iter: [251/391] loss_D: 1.3891 loss_G: 0.6895 +2018-11-14 02:01:34,125 | epoch: [0/30] iter: [252/391] loss_D: 1.3851 loss_G: 0.6908 +2018-11-14 02:01:40,747 | epoch: [0/30] iter: [253/391] loss_D: 1.3869 loss_G: 0.6920 +2018-11-14 02:01:47,604 | epoch: [0/30] iter: [254/391] loss_D: 1.3827 loss_G: 0.6921 +2018-11-14 02:01:54,918 | epoch: [0/30] iter: [255/391] loss_D: 1.3822 loss_G: 0.6927 +2018-11-14 02:02:01,968 | epoch: [0/30] iter: [256/391] loss_D: 1.3829 loss_G: 0.6909 +2018-11-14 02:02:08,880 | epoch: [0/30] iter: [257/391] loss_D: 1.3824 loss_G: 0.6931 +2018-11-14 02:02:16,227 | epoch: [0/30] iter: [258/391] loss_D: 1.3839 loss_G: 0.6946 +2018-11-14 02:02:23,273 | epoch: [0/30] iter: [259/391] loss_D: 1.3817 loss_G: 0.6924 +2018-11-14 02:02:29,931 | epoch: [0/30] iter: [260/391] loss_D: 1.3853 loss_G: 0.6918 +2018-11-14 02:02:37,316 | epoch: [0/30] iter: [261/391] loss_D: 1.3843 loss_G: 0.6932 +2018-11-14 02:02:44,222 | epoch: [0/30] iter: [262/391] loss_D: 1.3873 loss_G: 0.6905 +2018-11-14 02:02:51,224 | epoch: [0/30] iter: [263/391] loss_D: 1.3852 loss_G: 0.6924 +2018-11-14 02:02:58,504 | epoch: [0/30] iter: [264/391] loss_D: 1.3865 loss_G: 0.6898 +2018-11-14 02:03:05,423 | epoch: [0/30] iter: [265/391] loss_D: 1.3883 loss_G: 0.6886 +2018-11-14 02:03:12,614 | epoch: [0/30] iter: [266/391] loss_D: 1.3893 loss_G: 0.6908 +2018-11-14 02:03:20,085 | epoch: [0/30] iter: [267/391] loss_D: 1.3867 loss_G: 0.6925 +2018-11-14 02:03:26,860 | epoch: [0/30] iter: [268/391] loss_D: 1.3881 loss_G: 0.6944 +2018-11-14 02:03:33,563 | epoch: [0/30] iter: [269/391] loss_D: 1.3868 loss_G: 0.6902 +2018-11-14 02:03:40,402 | epoch: [0/30] iter: [270/391] loss_D: 1.3878 loss_G: 0.6940 +2018-11-14 02:03:47,366 | epoch: [0/30] iter: [271/391] loss_D: 1.3889 loss_G: 0.6930 +2018-11-14 02:03:54,410 | epoch: [0/30] iter: [272/391] loss_D: 1.3911 loss_G: 0.6937 +2018-11-14 02:04:01,995 | epoch: [0/30] iter: [273/391] loss_D: 1.3891 loss_G: 0.6951 +2018-11-14 02:04:08,943 | epoch: [0/30] iter: [274/391] loss_D: 1.3883 loss_G: 0.6959 +2018-11-14 02:04:15,906 | epoch: [0/30] iter: [275/391] loss_D: 1.3897 loss_G: 0.6938 +2018-11-14 02:04:22,946 | epoch: [0/30] iter: [276/391] loss_D: 1.3896 loss_G: 0.6956 +2018-11-14 02:04:30,040 | epoch: [0/30] iter: [277/391] loss_D: 1.3898 loss_G: 0.6952 +2018-11-14 02:04:37,198 | epoch: [0/30] iter: [278/391] loss_D: 1.3913 loss_G: 0.6974 +2018-11-14 02:04:44,634 | epoch: [0/30] iter: [279/391] loss_D: 1.3947 loss_G: 0.6934 +2018-11-14 02:04:51,707 | epoch: [0/30] iter: [280/391] loss_D: 1.3939 loss_G: 0.6930 +2018-11-14 02:04:58,601 | epoch: [0/30] iter: [281/391] loss_D: 1.3917 loss_G: 0.6942 +2018-11-14 02:05:05,541 | epoch: [0/30] iter: [282/391] loss_D: 1.3877 loss_G: 0.6961 +2018-11-14 02:05:12,638 | epoch: [0/30] iter: [283/391] loss_D: 1.3889 loss_G: 0.6953 +2018-11-14 02:05:19,623 | epoch: [0/30] iter: [284/391] loss_D: 1.3874 loss_G: 0.6967 +2018-11-14 02:05:26,415 | epoch: [0/30] iter: [285/391] loss_D: 1.3867 loss_G: 0.6955 +2018-11-14 02:05:33,371 | epoch: [0/30] iter: [286/391] loss_D: 1.3866 loss_G: 0.6983 +2018-11-14 02:05:40,213 | epoch: [0/30] iter: [287/391] loss_D: 1.3842 loss_G: 0.6994 +2018-11-14 02:05:47,331 | epoch: [0/30] iter: [288/391] loss_D: 1.3868 loss_G: 0.6984 +2018-11-14 02:05:54,468 | epoch: [0/30] iter: [289/391] loss_D: 1.3836 loss_G: 0.7005 +2018-11-14 02:06:00,952 | epoch: [0/30] iter: [290/391] loss_D: 1.3817 loss_G: 0.7016 +2018-11-14 02:06:08,002 | epoch: [0/30] iter: [291/391] loss_D: 1.3816 loss_G: 0.7027 +2018-11-14 02:06:15,312 | epoch: [0/30] iter: [292/391] loss_D: 1.3803 loss_G: 0.7022 +2018-11-14 02:06:22,755 | epoch: [0/30] iter: [293/391] loss_D: 1.3804 loss_G: 0.7058 +2018-11-14 02:06:29,884 | epoch: [0/30] iter: [294/391] loss_D: 1.3785 loss_G: 0.7037 +2018-11-14 02:06:36,730 | epoch: [0/30] iter: [295/391] loss_D: 1.3778 loss_G: 0.7066 +2018-11-14 02:06:43,713 | epoch: [0/30] iter: [296/391] loss_D: 1.3800 loss_G: 0.7030 +2018-11-14 02:06:51,223 | epoch: [0/30] iter: [297/391] loss_D: 1.3804 loss_G: 0.7042 +2018-11-14 02:06:58,681 | epoch: [0/30] iter: [298/391] loss_D: 1.3793 loss_G: 0.7040 +2018-11-14 02:07:05,619 | epoch: [0/30] iter: [299/391] loss_D: 1.3823 loss_G: 0.7004 +2018-11-14 02:07:12,548 | epoch: [0/30] iter: [300/391] loss_D: 1.3874 loss_G: 0.6961 +2018-11-14 02:10:08,587 | epoch: [0/30] iter: [301/391] loss_D: 1.3944 loss_G: 0.6866 +2018-11-14 02:10:13,051 | epoch: [0/30] iter: [302/391] loss_D: 1.3974 loss_G: 0.6836 +2018-11-14 02:10:17,324 | epoch: [0/30] iter: [303/391] loss_D: 1.3976 loss_G: 0.6825 +2018-11-14 02:10:23,112 | epoch: [0/30] iter: [304/391] loss_D: 1.3968 loss_G: 0.6824 +2018-11-14 02:10:29,591 | epoch: [0/30] iter: [305/391] loss_D: 1.3935 loss_G: 0.6830 +2018-11-14 02:10:36,720 | epoch: [0/30] iter: [306/391] loss_D: 1.3907 loss_G: 0.6850 +2018-11-14 02:10:43,631 | epoch: [0/30] iter: [307/391] loss_D: 1.3958 loss_G: 0.6859 +2018-11-14 02:10:50,755 | epoch: [0/30] iter: [308/391] loss_D: 1.3887 loss_G: 0.6883 +2018-11-14 02:10:57,928 | epoch: [0/30] iter: [309/391] loss_D: 1.3892 loss_G: 0.6899 +2018-11-14 02:11:04,704 | epoch: [0/30] iter: [310/391] loss_D: 1.3870 loss_G: 0.6926 +2018-11-14 02:11:11,318 | epoch: [0/30] iter: [311/391] loss_D: 1.3858 loss_G: 0.6935 +2018-11-14 02:11:18,598 | epoch: [0/30] iter: [312/391] loss_D: 1.3862 loss_G: 0.6940 +2018-11-14 02:11:25,426 | epoch: [0/30] iter: [313/391] loss_D: 1.3838 loss_G: 0.6951 +2018-11-14 02:11:32,434 | epoch: [0/30] iter: [314/391] loss_D: 1.3843 loss_G: 0.6954 +2018-11-14 02:11:39,716 | epoch: [0/30] iter: [315/391] loss_D: 1.3845 loss_G: 0.6962 +2018-11-14 02:11:46,321 | epoch: [0/30] iter: [316/391] loss_D: 1.3853 loss_G: 0.6948 +2018-11-14 02:11:53,097 | epoch: [0/30] iter: [317/391] loss_D: 1.3833 loss_G: 0.6951 +2018-11-14 02:12:00,062 | epoch: [0/30] iter: [318/391] loss_D: 1.3858 loss_G: 0.6954 +2018-11-14 02:12:07,149 | epoch: [0/30] iter: [319/391] loss_D: 1.3853 loss_G: 0.6955 +2018-11-14 02:12:13,947 | epoch: [0/30] iter: [320/391] loss_D: 1.3852 loss_G: 0.6939 +2018-11-14 02:12:20,733 | epoch: [0/30] iter: [321/391] loss_D: 1.3845 loss_G: 0.6941 +2018-11-14 02:12:27,681 | epoch: [0/30] iter: [322/391] loss_D: 1.3863 loss_G: 0.6928 +2018-11-14 02:12:35,097 | epoch: [0/30] iter: [323/391] loss_D: 1.3831 loss_G: 0.6926 +2018-11-14 02:12:42,165 | epoch: [0/30] iter: [324/391] loss_D: 1.3835 loss_G: 0.6928 +2018-11-14 02:12:49,258 | epoch: [0/30] iter: [325/391] loss_D: 1.3822 loss_G: 0.6935 +2018-11-14 02:12:56,810 | epoch: [0/30] iter: [326/391] loss_D: 1.3812 loss_G: 0.6935 +2018-11-14 02:13:03,676 | epoch: [0/30] iter: [327/391] loss_D: 1.3786 loss_G: 0.6939 +2018-11-14 02:13:10,599 | epoch: [0/30] iter: [328/391] loss_D: 1.3793 loss_G: 0.6912 +2018-11-14 02:13:17,521 | epoch: [0/30] iter: [329/391] loss_D: 1.3799 loss_G: 0.6911 +2018-11-14 02:13:24,510 | epoch: [0/30] iter: [330/391] loss_D: 1.3776 loss_G: 0.6902 +2018-11-14 02:13:31,344 | epoch: [0/30] iter: [331/391] loss_D: 1.3826 loss_G: 0.6861 +2018-11-14 02:13:38,472 | epoch: [0/30] iter: [332/391] loss_D: 1.3892 loss_G: 0.6856 +2018-11-14 02:13:45,788 | epoch: [0/30] iter: [333/391] loss_D: 1.3860 loss_G: 0.6916 +2018-11-14 02:13:53,187 | epoch: [0/30] iter: [334/391] loss_D: 1.3925 loss_G: 0.6853 +2018-11-14 02:13:59,896 | epoch: [0/30] iter: [335/391] loss_D: 1.3914 loss_G: 0.6939 +2018-11-14 02:14:06,935 | epoch: [0/30] iter: [336/391] loss_D: 1.3885 loss_G: 0.6963 +2018-11-14 02:14:13,743 | epoch: [0/30] iter: [337/391] loss_D: 1.3932 loss_G: 0.6980 +2018-11-14 02:14:20,937 | epoch: [0/30] iter: [338/391] loss_D: 1.3908 loss_G: 0.7017 +2018-11-14 02:14:28,245 | epoch: [0/30] iter: [339/391] loss_D: 1.3887 loss_G: 0.7037 +2018-11-14 02:14:35,206 | epoch: [0/30] iter: [340/391] loss_D: 1.3841 loss_G: 0.7068 +2018-11-14 02:14:42,655 | epoch: [0/30] iter: [341/391] loss_D: 1.3893 loss_G: 0.7063 +2018-11-14 02:14:49,674 | epoch: [0/30] iter: [342/391] loss_D: 1.3899 loss_G: 0.7072 +2018-11-14 02:14:56,622 | epoch: [0/30] iter: [343/391] loss_D: 1.3851 loss_G: 0.7084 +2018-11-14 02:15:03,415 | epoch: [0/30] iter: [344/391] loss_D: 1.3858 loss_G: 0.7077 +2018-11-14 02:15:10,041 | epoch: [0/30] iter: [345/391] loss_D: 1.3851 loss_G: 0.7074 +2018-11-14 02:15:17,245 | epoch: [0/30] iter: [346/391] loss_D: 1.3762 loss_G: 0.7145 +2018-11-14 02:15:24,261 | epoch: [0/30] iter: [347/391] loss_D: 1.3798 loss_G: 0.7094 +2018-11-14 02:15:31,493 | epoch: [0/30] iter: [348/391] loss_D: 1.3802 loss_G: 0.7134 +2018-11-14 02:15:38,512 | epoch: [0/30] iter: [349/391] loss_D: 1.3855 loss_G: 0.7093 +2018-11-14 02:15:44,989 | epoch: [0/30] iter: [350/391] loss_D: 1.3832 loss_G: 0.7069 +2018-11-14 02:15:52,277 | epoch: [0/30] iter: [351/391] loss_D: 1.3852 loss_G: 0.7004 +2018-11-14 02:15:59,466 | epoch: [0/30] iter: [352/391] loss_D: 1.3840 loss_G: 0.6997 +2018-11-14 02:16:06,123 | epoch: [0/30] iter: [353/391] loss_D: 1.3851 loss_G: 0.6965 +2018-11-14 02:16:13,486 | epoch: [0/30] iter: [354/391] loss_D: 1.3877 loss_G: 0.6929 +2018-11-14 02:16:20,341 | epoch: [0/30] iter: [355/391] loss_D: 1.3889 loss_G: 0.6878 +2018-11-14 02:16:27,331 | epoch: [0/30] iter: [356/391] loss_D: 1.3871 loss_G: 0.6881 +2018-11-14 02:16:34,574 | epoch: [0/30] iter: [357/391] loss_D: 1.3844 loss_G: 0.6857 +2018-11-14 02:16:41,957 | epoch: [0/30] iter: [358/391] loss_D: 1.3823 loss_G: 0.6868 +2018-11-14 02:16:49,026 | epoch: [0/30] iter: [359/391] loss_D: 1.3767 loss_G: 0.6860 +2018-11-14 02:16:56,027 | epoch: [0/30] iter: [360/391] loss_D: 1.3727 loss_G: 0.6874 +2018-11-14 02:17:02,836 | epoch: [0/30] iter: [361/391] loss_D: 1.3812 loss_G: 0.6860 +2018-11-14 02:17:10,233 | epoch: [0/30] iter: [362/391] loss_D: 1.3939 loss_G: 0.6863 +2018-11-14 02:17:16,888 | epoch: [0/30] iter: [363/391] loss_D: 1.3850 loss_G: 0.6746 +2018-11-14 02:17:23,534 | epoch: [0/30] iter: [364/391] loss_D: 1.3942 loss_G: 0.6776 +2018-11-14 02:17:30,036 | epoch: [0/30] iter: [365/391] loss_D: 1.3855 loss_G: 0.6788 +2018-11-14 02:17:37,107 | epoch: [0/30] iter: [366/391] loss_D: 1.4064 loss_G: 0.6712 +2018-11-14 02:17:44,106 | epoch: [0/30] iter: [367/391] loss_D: 1.4006 loss_G: 0.6850 +2018-11-14 02:17:50,967 | epoch: [0/30] iter: [368/391] loss_D: 1.3950 loss_G: 0.6877 +2018-11-14 02:17:58,094 | epoch: [0/30] iter: [369/391] loss_D: 1.3948 loss_G: 0.6954 +2018-11-14 02:18:05,335 | epoch: [0/30] iter: [370/391] loss_D: 1.3899 loss_G: 0.7001 +2018-11-14 02:18:12,905 | epoch: [0/30] iter: [371/391] loss_D: 1.3879 loss_G: 0.7021 +2018-11-14 02:18:20,426 | epoch: [0/30] iter: [372/391] loss_D: 1.3856 loss_G: 0.7078 +2018-11-14 02:18:27,895 | epoch: [0/30] iter: [373/391] loss_D: 1.3860 loss_G: 0.7068 +2018-11-14 02:18:34,518 | epoch: [0/30] iter: [374/391] loss_D: 1.3842 loss_G: 0.7071 +2018-11-14 02:18:41,389 | epoch: [0/30] iter: [375/391] loss_D: 1.3813 loss_G: 0.7092 +2018-11-14 02:18:48,523 | epoch: [0/30] iter: [376/391] loss_D: 1.3808 loss_G: 0.7101 +2018-11-14 02:18:55,253 | epoch: [0/30] iter: [377/391] loss_D: 1.3839 loss_G: 0.7059 +2018-11-14 02:19:02,555 | epoch: [0/30] iter: [378/391] loss_D: 1.3772 loss_G: 0.7119 +2018-11-14 02:19:09,259 | epoch: [0/30] iter: [379/391] loss_D: 1.3811 loss_G: 0.7080 +2018-11-14 02:19:15,855 | epoch: [0/30] iter: [380/391] loss_D: 1.3767 loss_G: 0.7153 +2018-11-14 02:19:22,813 | epoch: [0/30] iter: [381/391] loss_D: 1.3748 loss_G: 0.7147 +2018-11-14 02:19:29,723 | epoch: [0/30] iter: [382/391] loss_D: 1.3778 loss_G: 0.7098 +2018-11-14 02:19:36,487 | epoch: [0/30] iter: [383/391] loss_D: 1.3874 loss_G: 0.7087 +2018-11-14 02:19:43,445 | epoch: [0/30] iter: [384/391] loss_D: 1.3775 loss_G: 0.7086 +2018-11-14 02:19:50,703 | epoch: [0/30] iter: [385/391] loss_D: 1.3774 loss_G: 0.7059 +2018-11-14 02:19:58,005 | epoch: [0/30] iter: [386/391] loss_D: 1.3859 loss_G: 0.7051 +2018-11-14 02:20:04,827 | epoch: [0/30] iter: [387/391] loss_D: 1.3841 loss_G: 0.7016 +2018-11-14 02:20:11,628 | epoch: [0/30] iter: [388/391] loss_D: 1.3904 loss_G: 0.6989 +2018-11-14 02:20:18,516 | epoch: [0/30] iter: [389/391] loss_D: 1.3856 loss_G: 0.6965 +2018-11-14 02:20:22,943 | epoch: [0/30] iter: [390/391] loss_D: 1.3890 loss_G: 0.6923 +2018-11-14 02:20:30,479 | epoch: [1/30] iter: [0/391] loss_D: 1.3962 loss_G: 0.6884 +2018-11-14 02:20:37,627 | epoch: [1/30] iter: [1/391] loss_D: 1.3905 loss_G: 0.6887 +2018-11-14 02:20:44,622 | epoch: [1/30] iter: [2/391] loss_D: 1.3966 loss_G: 0.6864 +2018-11-14 02:20:51,618 | epoch: [1/30] iter: [3/391] loss_D: 1.3927 loss_G: 0.6856 +2018-11-14 02:20:58,582 | epoch: [1/30] iter: [4/391] loss_D: 1.3958 loss_G: 0.6858 +2018-11-14 02:21:05,319 | epoch: [1/30] iter: [5/391] loss_D: 1.3932 loss_G: 0.6850 +2018-11-14 02:21:12,246 | epoch: [1/30] iter: [6/391] loss_D: 1.3925 loss_G: 0.6855 +2018-11-14 02:21:19,147 | epoch: [1/30] iter: [7/391] loss_D: 1.3909 loss_G: 0.6870 +2018-11-14 02:21:25,820 | epoch: [1/30] iter: [8/391] loss_D: 1.3896 loss_G: 0.6866 +2018-11-14 02:21:32,919 | epoch: [1/30] iter: [9/391] loss_D: 1.3888 loss_G: 0.6881 +2018-11-14 02:24:42,534 | epoch: [1/30] iter: [10/391] loss_D: 1.3886 loss_G: 0.6884 +2018-11-14 02:24:46,521 | epoch: [1/30] iter: [11/391] loss_D: 1.3888 loss_G: 0.6886 +2018-11-14 02:24:50,530 | epoch: [1/30] iter: [12/391] loss_D: 1.3888 loss_G: 0.6892 +2018-11-14 02:24:54,692 | epoch: [1/30] iter: [13/391] loss_D: 1.3876 loss_G: 0.6898 +2018-11-14 02:25:00,516 | epoch: [1/30] iter: [14/391] loss_D: 1.3867 loss_G: 0.6900 +2018-11-14 02:25:07,679 | epoch: [1/30] iter: [15/391] loss_D: 1.3869 loss_G: 0.6903 +2018-11-14 02:25:14,542 | epoch: [1/30] iter: [16/391] loss_D: 1.3852 loss_G: 0.6908 +2018-11-14 02:25:21,803 | epoch: [1/30] iter: [17/391] loss_D: 1.3859 loss_G: 0.6911 +2018-11-14 02:25:28,932 | epoch: [1/30] iter: [18/391] loss_D: 1.3854 loss_G: 0.6927 +2018-11-14 02:25:36,285 | epoch: [1/30] iter: [19/391] loss_D: 1.3858 loss_G: 0.6928 +2018-11-14 02:25:43,028 | epoch: [1/30] iter: [20/391] loss_D: 1.3851 loss_G: 0.6928 +2018-11-14 02:25:49,717 | epoch: [1/30] iter: [21/391] loss_D: 1.3827 loss_G: 0.6932 +2018-11-14 02:25:57,155 | epoch: [1/30] iter: [22/391] loss_D: 1.3827 loss_G: 0.6935 +2018-11-14 02:26:04,046 | epoch: [1/30] iter: [23/391] loss_D: 1.3845 loss_G: 0.6931 +2018-11-14 02:26:11,334 | epoch: [1/30] iter: [24/391] loss_D: 1.3834 loss_G: 0.6928 +2018-11-14 02:26:18,371 | epoch: [1/30] iter: [25/391] loss_D: 1.3831 loss_G: 0.6939 +2018-11-14 02:26:25,166 | epoch: [1/30] iter: [26/391] loss_D: 1.3826 loss_G: 0.6941 +2018-11-14 02:26:32,704 | epoch: [1/30] iter: [27/391] loss_D: 1.3801 loss_G: 0.6948 +2018-11-14 02:26:39,421 | epoch: [1/30] iter: [28/391] loss_D: 1.3849 loss_G: 0.6942 +2018-11-14 02:26:46,031 | epoch: [1/30] iter: [29/391] loss_D: 1.3820 loss_G: 0.6945 +2018-11-14 02:26:52,613 | epoch: [1/30] iter: [30/391] loss_D: 1.3803 loss_G: 0.6926 +2018-11-14 02:26:59,806 | epoch: [1/30] iter: [31/391] loss_D: 1.3836 loss_G: 0.6929 +2018-11-14 02:27:06,710 | epoch: [1/30] iter: [32/391] loss_D: 1.3827 loss_G: 0.6930 +2018-11-14 02:27:13,578 | epoch: [1/30] iter: [33/391] loss_D: 1.3774 loss_G: 0.6951 +2018-11-14 02:27:20,916 | epoch: [1/30] iter: [34/391] loss_D: 1.3823 loss_G: 0.6922 +2018-11-14 02:27:27,679 | epoch: [1/30] iter: [35/391] loss_D: 1.3837 loss_G: 0.6906 +2018-11-14 02:27:34,922 | epoch: [1/30] iter: [36/391] loss_D: 1.3828 loss_G: 0.6914 +2018-11-14 02:27:41,884 | epoch: [1/30] iter: [37/391] loss_D: 1.3874 loss_G: 0.6901 +2018-11-14 02:27:48,859 | epoch: [1/30] iter: [38/391] loss_D: 1.3848 loss_G: 0.6918 +2018-11-14 02:27:55,478 | epoch: [1/30] iter: [39/391] loss_D: 1.3821 loss_G: 0.6933 +2018-11-14 02:28:02,426 | epoch: [1/30] iter: [40/391] loss_D: 1.3833 loss_G: 0.6942 +2018-11-14 02:28:09,021 | epoch: [1/30] iter: [41/391] loss_D: 1.3864 loss_G: 0.6903 +2018-11-14 02:28:16,311 | epoch: [1/30] iter: [42/391] loss_D: 1.3885 loss_G: 0.6906 +2018-11-14 02:28:23,548 | epoch: [1/30] iter: [43/391] loss_D: 1.3865 loss_G: 0.6954 +2018-11-14 02:28:30,918 | epoch: [1/30] iter: [44/391] loss_D: 1.3873 loss_G: 0.6932 +2018-11-14 02:28:37,775 | epoch: [1/30] iter: [45/391] loss_D: 1.3857 loss_G: 0.6958 +2018-11-14 02:28:45,056 | epoch: [1/30] iter: [46/391] loss_D: 1.3906 loss_G: 0.6937 +2018-11-14 02:28:51,721 | epoch: [1/30] iter: [47/391] loss_D: 1.3857 loss_G: 0.6986 +2018-11-14 02:28:58,467 | epoch: [1/30] iter: [48/391] loss_D: 1.3875 loss_G: 0.6999 +2018-11-14 02:29:05,394 | epoch: [1/30] iter: [49/391] loss_D: 1.3832 loss_G: 0.6984 +2018-11-14 02:29:12,479 | epoch: [1/30] iter: [50/391] loss_D: 1.3873 loss_G: 0.7009 +2018-11-14 02:29:19,324 | epoch: [1/30] iter: [51/391] loss_D: 1.3855 loss_G: 0.7024 +2018-11-14 02:29:26,452 | epoch: [1/30] iter: [52/391] loss_D: 1.3822 loss_G: 0.7026 +2018-11-14 02:29:33,551 | epoch: [1/30] iter: [53/391] loss_D: 1.3843 loss_G: 0.7028 +2018-11-14 02:29:40,607 | epoch: [1/30] iter: [54/391] loss_D: 1.3870 loss_G: 0.7030 +2018-11-14 02:29:47,235 | epoch: [1/30] iter: [55/391] loss_D: 1.3829 loss_G: 0.7054 +2018-11-14 02:29:54,183 | epoch: [1/30] iter: [56/391] loss_D: 1.3883 loss_G: 0.7026 +2018-11-14 02:30:01,384 | epoch: [1/30] iter: [57/391] loss_D: 1.3866 loss_G: 0.7024 +2018-11-14 02:30:08,111 | epoch: [1/30] iter: [58/391] loss_D: 1.3892 loss_G: 0.7015 +2018-11-14 02:30:14,966 | epoch: [1/30] iter: [59/391] loss_D: 1.3912 loss_G: 0.6961 +2018-11-14 02:30:21,385 | epoch: [1/30] iter: [60/391] loss_D: 1.3876 loss_G: 0.7003 +2018-11-14 02:30:28,159 | epoch: [1/30] iter: [61/391] loss_D: 1.3915 loss_G: 0.6977 +2018-11-14 02:30:35,334 | epoch: [1/30] iter: [62/391] loss_D: 1.3875 loss_G: 0.6980 +2018-11-14 02:30:42,535 | epoch: [1/30] iter: [63/391] loss_D: 1.3879 loss_G: 0.6982 +2018-11-14 02:30:49,169 | epoch: [1/30] iter: [64/391] loss_D: 1.3854 loss_G: 0.6978 +2018-11-14 02:30:55,970 | epoch: [1/30] iter: [65/391] loss_D: 1.3867 loss_G: 0.6954 +2018-11-14 02:31:02,935 | epoch: [1/30] iter: [66/391] loss_D: 1.3878 loss_G: 0.6963 +2018-11-14 02:31:10,232 | epoch: [1/30] iter: [67/391] loss_D: 1.3882 loss_G: 0.6945 +2018-11-14 02:31:16,604 | epoch: [1/30] iter: [68/391] loss_D: 1.3864 loss_G: 0.6950 +2018-11-14 02:31:23,587 | epoch: [1/30] iter: [69/391] loss_D: 1.3877 loss_G: 0.6947 +2018-11-14 02:31:30,479 | epoch: [1/30] iter: [70/391] loss_D: 1.3857 loss_G: 0.6943 +2018-11-14 02:31:37,648 | epoch: [1/30] iter: [71/391] loss_D: 1.3872 loss_G: 0.6945 +2018-11-14 02:31:44,433 | epoch: [1/30] iter: [72/391] loss_D: 1.3864 loss_G: 0.6941 +2018-11-14 02:31:51,382 | epoch: [1/30] iter: [73/391] loss_D: 1.3866 loss_G: 0.6928 +2018-11-14 02:31:58,440 | epoch: [1/30] iter: [74/391] loss_D: 1.3854 loss_G: 0.6928 +2018-11-14 02:32:05,201 | epoch: [1/30] iter: [75/391] loss_D: 1.3861 loss_G: 0.6939 +2018-11-14 02:32:12,090 | epoch: [1/30] iter: [76/391] loss_D: 1.3849 loss_G: 0.6941 +2018-11-14 02:32:18,983 | epoch: [1/30] iter: [77/391] loss_D: 1.3856 loss_G: 0.6928 +2018-11-14 02:32:26,344 | epoch: [1/30] iter: [78/391] loss_D: 1.3851 loss_G: 0.6930 +2018-11-14 02:32:33,423 | epoch: [1/30] iter: [79/391] loss_D: 1.3848 loss_G: 0.6927 +2018-11-14 02:32:40,651 | epoch: [1/30] iter: [80/391] loss_D: 1.3855 loss_G: 0.6928 +2018-11-14 02:32:48,098 | epoch: [1/30] iter: [81/391] loss_D: 1.3831 loss_G: 0.6922 +2018-11-14 02:32:55,440 | epoch: [1/30] iter: [82/391] loss_D: 1.3841 loss_G: 0.6914 +2018-11-14 02:33:02,887 | epoch: [1/30] iter: [83/391] loss_D: 1.3836 loss_G: 0.6913 +2018-11-14 02:33:10,028 | epoch: [1/30] iter: [84/391] loss_D: 1.3820 loss_G: 0.6909 +2018-11-14 02:33:17,202 | epoch: [1/30] iter: [85/391] loss_D: 1.3871 loss_G: 0.6902 +2018-11-14 02:33:23,937 | epoch: [1/30] iter: [86/391] loss_D: 1.3858 loss_G: 0.6895 +2018-11-14 02:33:30,897 | epoch: [1/30] iter: [87/391] loss_D: 1.3853 loss_G: 0.6899 +2018-11-14 02:33:37,908 | epoch: [1/30] iter: [88/391] loss_D: 1.3880 loss_G: 0.6882 +2018-11-14 02:33:44,979 | epoch: [1/30] iter: [89/391] loss_D: 1.3876 loss_G: 0.6872 +2018-11-14 02:33:52,086 | epoch: [1/30] iter: [90/391] loss_D: 1.3927 loss_G: 0.6872 +2018-11-14 02:33:59,036 | epoch: [1/30] iter: [91/391] loss_D: 1.3885 loss_G: 0.6899 +2018-11-14 02:34:06,298 | epoch: [1/30] iter: [92/391] loss_D: 1.3851 loss_G: 0.6939 +2018-11-14 02:34:13,265 | epoch: [1/30] iter: [93/391] loss_D: 1.3896 loss_G: 0.6911 +2018-11-14 02:34:20,463 | epoch: [1/30] iter: [94/391] loss_D: 1.3880 loss_G: 0.6931 +2018-11-14 02:34:27,755 | epoch: [1/30] iter: [95/391] loss_D: 1.3908 loss_G: 0.6939 +2018-11-14 02:34:34,738 | epoch: [1/30] iter: [96/391] loss_D: 1.3897 loss_G: 0.6938 +2018-11-14 02:34:42,065 | epoch: [1/30] iter: [97/391] loss_D: 1.3873 loss_G: 0.6937 +2018-11-14 02:34:49,042 | epoch: [1/30] iter: [98/391] loss_D: 1.3894 loss_G: 0.6957 +2018-11-14 02:34:55,967 | epoch: [1/30] iter: [99/391] loss_D: 1.3884 loss_G: 0.6943 +2018-11-14 02:35:02,988 | epoch: [1/30] iter: [100/391] loss_D: 1.3871 loss_G: 0.6965 +2018-11-14 02:35:09,957 | epoch: [1/30] iter: [101/391] loss_D: 1.3875 loss_G: 0.6945 +2018-11-14 02:35:17,067 | epoch: [1/30] iter: [102/391] loss_D: 1.3874 loss_G: 0.6970 +2018-11-14 02:35:23,940 | epoch: [1/30] iter: [103/391] loss_D: 1.3879 loss_G: 0.6953 +2018-11-14 02:35:30,809 | epoch: [1/30] iter: [104/391] loss_D: 1.3870 loss_G: 0.6961 +2018-11-14 02:35:37,991 | epoch: [1/30] iter: [105/391] loss_D: 1.3873 loss_G: 0.6957 +2018-11-14 02:35:44,971 | epoch: [1/30] iter: [106/391] loss_D: 1.3855 loss_G: 0.6970 +2018-11-14 02:35:52,061 | epoch: [1/30] iter: [107/391] loss_D: 1.3870 loss_G: 0.6966 +2018-11-14 02:35:58,858 | epoch: [1/30] iter: [108/391] loss_D: 1.3867 loss_G: 0.6953 +2018-11-14 02:36:05,887 | epoch: [1/30] iter: [109/391] loss_D: 1.3849 loss_G: 0.6967 +2018-11-14 02:38:59,257 | epoch: [1/30] iter: [110/391] loss_D: 1.3861 loss_G: 0.6970 +2018-11-14 02:39:03,197 | epoch: [1/30] iter: [111/391] loss_D: 1.3847 loss_G: 0.6971 +2018-11-14 02:39:07,171 | epoch: [1/30] iter: [112/391] loss_D: 1.3834 loss_G: 0.6979 +2018-11-14 02:39:11,576 | epoch: [1/30] iter: [113/391] loss_D: 1.3842 loss_G: 0.6976 +2018-11-14 02:39:17,035 | epoch: [1/30] iter: [114/391] loss_D: 1.3831 loss_G: 0.6990 +2018-11-14 02:39:24,069 | epoch: [1/30] iter: [115/391] loss_D: 1.3811 loss_G: 0.7006 +2018-11-14 02:39:31,092 | epoch: [1/30] iter: [116/391] loss_D: 1.3844 loss_G: 0.6996 +2018-11-14 02:39:38,498 | epoch: [1/30] iter: [117/391] loss_D: 1.3845 loss_G: 0.6994 +2018-11-14 02:39:45,233 | epoch: [1/30] iter: [118/391] loss_D: 1.3856 loss_G: 0.6976 +2018-11-14 02:39:52,765 | epoch: [1/30] iter: [119/391] loss_D: 1.3864 loss_G: 0.6977 +2018-11-14 02:39:59,783 | epoch: [1/30] iter: [120/391] loss_D: 1.3854 loss_G: 0.6960 +2018-11-14 02:40:06,697 | epoch: [1/30] iter: [121/391] loss_D: 1.3866 loss_G: 0.6933 +2018-11-14 02:40:13,790 | epoch: [1/30] iter: [122/391] loss_D: 1.3871 loss_G: 0.6945 +2018-11-14 02:40:20,788 | epoch: [1/30] iter: [123/391] loss_D: 1.3864 loss_G: 0.6931 +2018-11-14 02:40:28,038 | epoch: [1/30] iter: [124/391] loss_D: 1.3876 loss_G: 0.6928 +2018-11-14 02:40:34,932 | epoch: [1/30] iter: [125/391] loss_D: 1.3861 loss_G: 0.6919 +2018-11-14 02:40:41,923 | epoch: [1/30] iter: [126/391] loss_D: 1.3873 loss_G: 0.6922 +2018-11-14 02:40:49,108 | epoch: [1/30] iter: [127/391] loss_D: 1.3868 loss_G: 0.6917 +2018-11-14 02:40:56,343 | epoch: [1/30] iter: [128/391] loss_D: 1.3868 loss_G: 0.6910 +2018-11-14 02:41:03,620 | epoch: [1/30] iter: [129/391] loss_D: 1.3881 loss_G: 0.6901 +2018-11-14 02:41:10,059 | epoch: [1/30] iter: [130/391] loss_D: 1.3859 loss_G: 0.6912 +2018-11-14 02:41:17,227 | epoch: [1/30] iter: [131/391] loss_D: 1.3854 loss_G: 0.6912 +2018-11-14 02:41:23,955 | epoch: [1/30] iter: [132/391] loss_D: 1.3862 loss_G: 0.6907 +2018-11-14 02:41:30,658 | epoch: [1/30] iter: [133/391] loss_D: 1.3859 loss_G: 0.6905 +2018-11-14 02:41:37,967 | epoch: [1/30] iter: [134/391] loss_D: 1.3866 loss_G: 0.6904 +2018-11-14 02:41:44,666 | epoch: [1/30] iter: [135/391] loss_D: 1.3850 loss_G: 0.6903 +2018-11-14 02:41:51,606 | epoch: [1/30] iter: [136/391] loss_D: 1.3857 loss_G: 0.6897 +2018-11-14 02:41:58,311 | epoch: [1/30] iter: [137/391] loss_D: 1.3861 loss_G: 0.6904 +2018-11-14 02:42:05,234 | epoch: [1/30] iter: [138/391] loss_D: 1.3879 loss_G: 0.6893 +2018-11-14 02:42:12,071 | epoch: [1/30] iter: [139/391] loss_D: 1.3880 loss_G: 0.6892 +2018-11-14 02:42:19,004 | epoch: [1/30] iter: [140/391] loss_D: 1.3901 loss_G: 0.6889 +2018-11-14 02:42:26,022 | epoch: [1/30] iter: [141/391] loss_D: 1.3878 loss_G: 0.6901 +2018-11-14 02:42:33,099 | epoch: [1/30] iter: [142/391] loss_D: 1.3880 loss_G: 0.6903 +2018-11-14 02:42:40,479 | epoch: [1/30] iter: [143/391] loss_D: 1.3877 loss_G: 0.6902 +2018-11-14 02:42:47,476 | epoch: [1/30] iter: [144/391] loss_D: 1.3873 loss_G: 0.6909 +2018-11-14 02:42:54,765 | epoch: [1/30] iter: [145/391] loss_D: 1.3885 loss_G: 0.6903 +2018-11-14 02:43:01,999 | epoch: [1/30] iter: [146/391] loss_D: 1.3885 loss_G: 0.6913 +2018-11-14 02:43:09,214 | epoch: [1/30] iter: [147/391] loss_D: 1.3874 loss_G: 0.6913 +2018-11-14 02:43:15,931 | epoch: [1/30] iter: [148/391] loss_D: 1.3855 loss_G: 0.6925 +2018-11-14 02:43:20,919 | epoch: [1/30] iter: [149/391] loss_D: 1.3858 loss_G: 0.6921 +2018-11-14 02:43:24,824 | epoch: [1/30] iter: [150/391] loss_D: 1.3857 loss_G: 0.6931 +2018-11-14 02:43:29,017 | epoch: [1/30] iter: [151/391] loss_D: 1.3870 loss_G: 0.6942 +2018-11-14 02:43:33,212 | epoch: [1/30] iter: [152/391] loss_D: 1.3876 loss_G: 0.6936 +2018-11-14 02:43:37,406 | epoch: [1/30] iter: [153/391] loss_D: 1.3850 loss_G: 0.6948 +2018-11-14 02:43:41,478 | epoch: [1/30] iter: [154/391] loss_D: 1.3857 loss_G: 0.6943 +2018-11-14 02:43:45,661 | epoch: [1/30] iter: [155/391] loss_D: 1.3861 loss_G: 0.6950 +2018-11-14 02:43:50,079 | epoch: [1/30] iter: [156/391] loss_D: 1.3860 loss_G: 0.6946 +2018-11-14 02:43:57,099 | epoch: [1/30] iter: [157/391] loss_D: 1.3852 loss_G: 0.6956 +2018-11-14 02:44:04,019 | epoch: [1/30] iter: [158/391] loss_D: 1.3857 loss_G: 0.6951 +2018-11-14 02:44:11,400 | epoch: [1/30] iter: [159/391] loss_D: 1.3855 loss_G: 0.6949 +2018-11-14 02:44:18,504 | epoch: [1/30] iter: [160/391] loss_D: 1.3847 loss_G: 0.6958 +2018-11-14 02:44:25,180 | epoch: [1/30] iter: [161/391] loss_D: 1.3837 loss_G: 0.6967 +2018-11-14 02:44:32,518 | epoch: [1/30] iter: [162/391] loss_D: 1.3832 loss_G: 0.6966 +2018-11-14 02:44:39,468 | epoch: [1/30] iter: [163/391] loss_D: 1.3839 loss_G: 0.6971 +2018-11-14 02:44:46,624 | epoch: [1/30] iter: [164/391] loss_D: 1.3834 loss_G: 0.6966 +2018-11-14 02:44:53,693 | epoch: [1/30] iter: [165/391] loss_D: 1.3831 loss_G: 0.6967 +2018-11-14 02:45:01,012 | epoch: [1/30] iter: [166/391] loss_D: 1.3813 loss_G: 0.6968 +2018-11-14 02:45:07,392 | epoch: [1/30] iter: [167/391] loss_D: 1.3821 loss_G: 0.6972 +2018-11-14 02:45:11,450 | epoch: [1/30] iter: [168/391] loss_D: 1.3816 loss_G: 0.6970 +2018-11-14 02:45:15,322 | epoch: [1/30] iter: [169/391] loss_D: 1.3825 loss_G: 0.6967 +2018-11-14 02:45:19,342 | epoch: [1/30] iter: [170/391] loss_D: 1.3831 loss_G: 0.6971 +2018-11-14 02:45:23,313 | epoch: [1/30] iter: [171/391] loss_D: 1.3812 loss_G: 0.6966 +2018-11-14 02:45:27,482 | epoch: [1/30] iter: [172/391] loss_D: 1.3810 loss_G: 0.6983 +2018-11-14 02:45:32,918 | epoch: [1/30] iter: [173/391] loss_D: 1.3843 loss_G: 0.6948 +2018-11-14 02:45:39,775 | epoch: [1/30] iter: [174/391] loss_D: 1.3827 loss_G: 0.6944 +2018-11-14 02:45:47,018 | epoch: [1/30] iter: [175/391] loss_D: 1.3819 loss_G: 0.6962 +2018-11-14 02:45:53,665 | epoch: [1/30] iter: [176/391] loss_D: 1.3815 loss_G: 0.6930 +2018-11-14 02:46:00,375 | epoch: [1/30] iter: [177/391] loss_D: 1.3825 loss_G: 0.6934 +2018-11-14 02:46:07,291 | epoch: [1/30] iter: [178/391] loss_D: 1.3817 loss_G: 0.6898 +2018-11-14 02:46:14,275 | epoch: [1/30] iter: [179/391] loss_D: 1.3843 loss_G: 0.6894 +2018-11-14 02:46:21,192 | epoch: [1/30] iter: [180/391] loss_D: 1.3853 loss_G: 0.6882 +2018-11-14 02:46:28,199 | epoch: [1/30] iter: [181/391] loss_D: 1.3865 loss_G: 0.6882 +2018-11-14 02:46:34,771 | epoch: [1/30] iter: [182/391] loss_D: 1.3878 loss_G: 0.6904 +2018-11-14 02:46:38,964 | epoch: [1/30] iter: [183/391] loss_D: 1.3872 loss_G: 0.6899 +2018-11-14 02:46:43,097 | epoch: [1/30] iter: [184/391] loss_D: 1.3858 loss_G: 0.6903 +2018-11-14 02:46:47,181 | epoch: [1/30] iter: [185/391] loss_D: 1.3851 loss_G: 0.6921 +2018-11-14 02:46:51,433 | epoch: [1/30] iter: [186/391] loss_D: 1.3847 loss_G: 0.6919 +2018-11-14 02:46:55,636 | epoch: [1/30] iter: [187/391] loss_D: 1.3926 loss_G: 0.6897 +2018-11-14 02:47:01,084 | epoch: [1/30] iter: [188/391] loss_D: 1.3890 loss_G: 0.6933 +2018-11-14 02:47:07,837 | epoch: [1/30] iter: [189/391] loss_D: 1.3866 loss_G: 0.6987 +2018-11-14 02:47:14,817 | epoch: [1/30] iter: [190/391] loss_D: 1.3868 loss_G: 0.6968 +2018-11-14 02:47:21,908 | epoch: [1/30] iter: [191/391] loss_D: 1.3869 loss_G: 0.6980 +2018-11-14 02:47:28,934 | epoch: [1/30] iter: [192/391] loss_D: 1.3837 loss_G: 0.6997 +2018-11-14 02:47:36,275 | epoch: [1/30] iter: [193/391] loss_D: 1.3854 loss_G: 0.6983 +2018-11-14 02:47:43,432 | epoch: [1/30] iter: [194/391] loss_D: 1.3859 loss_G: 0.7016 +2018-11-14 02:47:50,691 | epoch: [1/30] iter: [195/391] loss_D: 1.3857 loss_G: 0.7012 +2018-11-14 02:47:57,743 | epoch: [1/30] iter: [196/391] loss_D: 1.3849 loss_G: 0.7031 +2018-11-14 02:48:04,987 | epoch: [1/30] iter: [197/391] loss_D: 1.3839 loss_G: 0.7033 +2018-11-14 02:48:12,035 | epoch: [1/30] iter: [198/391] loss_D: 1.3813 loss_G: 0.7039 +2018-11-14 02:48:19,380 | epoch: [1/30] iter: [199/391] loss_D: 1.3808 loss_G: 0.7048 +2018-11-14 02:48:26,409 | epoch: [1/30] iter: [200/391] loss_D: 1.3805 loss_G: 0.7079 +2018-11-14 02:48:33,091 | epoch: [1/30] iter: [201/391] loss_D: 1.3786 loss_G: 0.7081 +2018-11-14 02:48:40,043 | epoch: [1/30] iter: [202/391] loss_D: 1.3813 loss_G: 0.7083 +2018-11-14 02:48:46,922 | epoch: [1/30] iter: [203/391] loss_D: 1.3809 loss_G: 0.7110 +2018-11-14 02:48:54,317 | epoch: [1/30] iter: [204/391] loss_D: 1.3822 loss_G: 0.7070 +2018-11-14 02:49:00,145 | epoch: [1/30] iter: [205/391] loss_D: 1.3803 loss_G: 0.7124 +2018-11-14 02:49:04,109 | epoch: [1/30] iter: [206/391] loss_D: 1.3821 loss_G: 0.7089 +2018-11-14 02:49:08,106 | epoch: [1/30] iter: [207/391] loss_D: 1.3806 loss_G: 0.7067 +2018-11-14 02:49:12,171 | epoch: [1/30] iter: [208/391] loss_D: 1.3898 loss_G: 0.7080 +2018-11-14 02:49:16,074 | epoch: [1/30] iter: [209/391] loss_D: 1.3904 loss_G: 0.7014 +2018-11-14 02:51:49,154 | epoch: [1/30] iter: [210/391] loss_D: 1.3887 loss_G: 0.6955 +2018-11-14 02:51:53,160 | epoch: [1/30] iter: [211/391] loss_D: 1.3903 loss_G: 0.6909 +2018-11-14 02:51:57,545 | epoch: [1/30] iter: [212/391] loss_D: 1.3914 loss_G: 0.6877 +2018-11-14 02:52:01,812 | epoch: [1/30] iter: [213/391] loss_D: 1.3919 loss_G: 0.6861 +2018-11-14 02:52:06,062 | epoch: [1/30] iter: [214/391] loss_D: 1.3921 loss_G: 0.6862 +2018-11-14 02:52:11,941 | epoch: [1/30] iter: [215/391] loss_D: 1.3876 loss_G: 0.6853 +2018-11-14 02:52:17,568 | epoch: [1/30] iter: [216/391] loss_D: 1.3882 loss_G: 0.6868 +2018-11-14 02:52:22,490 | epoch: [1/30] iter: [217/391] loss_D: 1.3831 loss_G: 0.6878 +2018-11-14 02:52:28,572 | epoch: [1/30] iter: [218/391] loss_D: 1.3817 loss_G: 0.6890 +2018-11-14 02:52:33,089 | epoch: [1/30] iter: [219/391] loss_D: 1.3818 loss_G: 0.6901 +2018-11-14 02:52:37,695 | epoch: [1/30] iter: [220/391] loss_D: 1.3806 loss_G: 0.6897 +2018-11-14 02:52:45,014 | epoch: [1/30] iter: [221/391] loss_D: 1.3789 loss_G: 0.6910 +2018-11-14 02:52:49,878 | epoch: [1/30] iter: [222/391] loss_D: 1.3787 loss_G: 0.6899 +2018-11-14 02:52:53,987 | epoch: [1/30] iter: [223/391] loss_D: 1.3748 loss_G: 0.6886 +2018-11-14 02:52:58,756 | epoch: [1/30] iter: [224/391] loss_D: 1.3763 loss_G: 0.6883 +2018-11-14 02:53:06,016 | epoch: [1/30] iter: [225/391] loss_D: 1.3777 loss_G: 0.6854 +2018-11-14 02:53:10,809 | epoch: [1/30] iter: [226/391] loss_D: 1.3878 loss_G: 0.6760 +2018-11-14 02:53:15,219 | epoch: [1/30] iter: [227/391] loss_D: 1.3845 loss_G: 0.6851 +2018-11-14 02:53:20,984 | epoch: [1/30] iter: [228/391] loss_D: 1.3972 loss_G: 0.6749 +2018-11-14 02:53:27,502 | epoch: [1/30] iter: [229/391] loss_D: 1.4002 loss_G: 0.6859 +2018-11-14 02:53:33,379 | epoch: [1/30] iter: [230/391] loss_D: 1.3956 loss_G: 0.6827 +2018-11-14 02:53:38,335 | epoch: [1/30] iter: [231/391] loss_D: 1.3936 loss_G: 0.6892 +2018-11-14 02:53:44,451 | epoch: [1/30] iter: [232/391] loss_D: 1.3938 loss_G: 0.6957 +2018-11-14 02:53:48,977 | epoch: [1/30] iter: [233/391] loss_D: 1.3847 loss_G: 0.7018 +2018-11-14 02:53:53,496 | epoch: [1/30] iter: [234/391] loss_D: 1.3911 loss_G: 0.7036 +2018-11-14 02:53:57,730 | epoch: [1/30] iter: [235/391] loss_D: 1.3887 loss_G: 0.7037 +2018-11-14 02:54:01,777 | epoch: [1/30] iter: [236/391] loss_D: 1.3866 loss_G: 0.7073 +2018-11-14 02:54:05,906 | epoch: [1/30] iter: [237/391] loss_D: 1.3854 loss_G: 0.7095 +2018-11-14 02:54:11,965 | epoch: [1/30] iter: [238/391] loss_D: 1.3829 loss_G: 0.7091 +2018-11-14 02:54:17,998 | epoch: [1/30] iter: [239/391] loss_D: 1.3814 loss_G: 0.7121 +2018-11-14 02:54:22,995 | epoch: [1/30] iter: [240/391] loss_D: 1.3866 loss_G: 0.7081 +2018-11-14 02:54:28,864 | epoch: [1/30] iter: [241/391] loss_D: 1.3879 loss_G: 0.7070 +2018-11-14 02:54:33,221 | epoch: [1/30] iter: [242/391] loss_D: 1.3902 loss_G: 0.6998 +2018-11-14 02:54:37,818 | epoch: [1/30] iter: [243/391] loss_D: 1.3921 loss_G: 0.6999 +2018-11-14 02:54:45,198 | epoch: [1/30] iter: [244/391] loss_D: 1.3972 loss_G: 0.6958 +2018-11-14 02:54:50,446 | epoch: [1/30] iter: [245/391] loss_D: 1.3900 loss_G: 0.6960 +2018-11-14 02:54:56,611 | epoch: [1/30] iter: [246/391] loss_D: 1.3918 loss_G: 0.6938 +2018-11-14 02:55:01,232 | epoch: [1/30] iter: [247/391] loss_D: 1.3869 loss_G: 0.6943 +2018-11-14 02:55:05,632 | epoch: [1/30] iter: [248/391] loss_D: 1.3842 loss_G: 0.6921 +2018-11-14 02:55:10,001 | epoch: [1/30] iter: [249/391] loss_D: 1.3840 loss_G: 0.6934 +2018-11-14 02:55:14,799 | epoch: [1/30] iter: [250/391] loss_D: 1.3828 loss_G: 0.6933 +2018-11-14 02:55:22,162 | epoch: [1/30] iter: [251/391] loss_D: 1.3812 loss_G: 0.6927 +2018-11-14 02:55:26,963 | epoch: [1/30] iter: [252/391] loss_D: 1.3805 loss_G: 0.6921 +2018-11-14 02:55:31,305 | epoch: [1/30] iter: [253/391] loss_D: 1.3801 loss_G: 0.6908 +2018-11-14 02:55:35,906 | epoch: [1/30] iter: [254/391] loss_D: 1.3797 loss_G: 0.6899 +2018-11-14 02:55:40,286 | epoch: [1/30] iter: [255/391] loss_D: 1.3815 loss_G: 0.6874 +2018-11-14 02:55:46,967 | epoch: [1/30] iter: [256/391] loss_D: 1.3841 loss_G: 0.6839 +2018-11-14 02:55:52,903 | epoch: [1/30] iter: [257/391] loss_D: 1.3920 loss_G: 0.6827 +2018-11-14 02:55:57,384 | epoch: [1/30] iter: [258/391] loss_D: 1.3962 loss_G: 0.6860 +2018-11-14 02:56:01,948 | epoch: [1/30] iter: [259/391] loss_D: 1.3876 loss_G: 0.6902 +2018-11-14 02:56:06,029 | epoch: [1/30] iter: [260/391] loss_D: 1.3880 loss_G: 0.6894 +2018-11-14 02:56:11,346 | epoch: [1/30] iter: [261/391] loss_D: 1.3852 loss_G: 0.6966 +2018-11-14 02:56:18,380 | epoch: [1/30] iter: [262/391] loss_D: 1.3877 loss_G: 0.6986 +2018-11-14 02:56:22,934 | epoch: [1/30] iter: [263/391] loss_D: 1.3855 loss_G: 0.7017 +2018-11-14 02:56:27,425 | epoch: [1/30] iter: [264/391] loss_D: 1.3846 loss_G: 0.7010 +2018-11-14 02:56:31,948 | epoch: [1/30] iter: [265/391] loss_D: 1.3852 loss_G: 0.7030 +2018-11-14 02:56:36,402 | epoch: [1/30] iter: [266/391] loss_D: 1.3864 loss_G: 0.7050 +2018-11-14 02:56:43,039 | epoch: [1/30] iter: [267/391] loss_D: 1.3851 loss_G: 0.7043 +2018-11-14 02:56:48,757 | epoch: [1/30] iter: [268/391] loss_D: 1.3815 loss_G: 0.7065 +2018-11-14 02:56:53,116 | epoch: [1/30] iter: [269/391] loss_D: 1.3816 loss_G: 0.7052 +2018-11-14 02:56:57,626 | epoch: [1/30] iter: [270/391] loss_D: 1.3828 loss_G: 0.7039 +2018-11-14 02:57:01,894 | epoch: [1/30] iter: [271/391] loss_D: 1.3855 loss_G: 0.7048 +2018-11-14 02:57:06,436 | epoch: [1/30] iter: [272/391] loss_D: 1.3864 loss_G: 0.7042 +2018-11-14 02:57:14,031 | epoch: [1/30] iter: [273/391] loss_D: 1.3830 loss_G: 0.7029 +2018-11-14 02:57:19,024 | epoch: [1/30] iter: [274/391] loss_D: 1.3867 loss_G: 0.7011 +2018-11-14 02:57:24,928 | epoch: [1/30] iter: [275/391] loss_D: 1.3890 loss_G: 0.6988 +2018-11-14 02:57:31,023 | epoch: [1/30] iter: [276/391] loss_D: 1.3883 loss_G: 0.7003 +2018-11-14 02:57:36,358 | epoch: [1/30] iter: [277/391] loss_D: 1.3886 loss_G: 0.6957 +2018-11-14 02:57:41,595 | epoch: [1/30] iter: [278/391] loss_D: 1.3902 loss_G: 0.6948 +2018-11-14 02:57:46,054 | epoch: [1/30] iter: [279/391] loss_D: 1.3898 loss_G: 0.6952 +2018-11-14 02:57:50,821 | epoch: [1/30] iter: [280/391] loss_D: 1.3921 loss_G: 0.6960 +2018-11-14 02:57:55,195 | epoch: [1/30] iter: [281/391] loss_D: 1.3899 loss_G: 0.6948 +2018-11-14 02:57:59,309 | epoch: [1/30] iter: [282/391] loss_D: 1.3869 loss_G: 0.6972 +2018-11-14 02:58:03,994 | epoch: [1/30] iter: [283/391] loss_D: 1.3886 loss_G: 0.6960 +2018-11-14 02:58:09,375 | epoch: [1/30] iter: [284/391] loss_D: 1.3853 loss_G: 0.6981 +2018-11-14 02:58:13,767 | epoch: [1/30] iter: [285/391] loss_D: 1.3873 loss_G: 0.6948 +2018-11-14 02:58:18,388 | epoch: [1/30] iter: [286/391] loss_D: 1.3857 loss_G: 0.6949 +2018-11-14 02:58:25,883 | epoch: [1/30] iter: [287/391] loss_D: 1.3871 loss_G: 0.6927 +2018-11-14 02:58:31,152 | epoch: [1/30] iter: [288/391] loss_D: 1.3873 loss_G: 0.6911 +2018-11-14 02:58:36,861 | epoch: [1/30] iter: [289/391] loss_D: 1.3868 loss_G: 0.6889 +2018-11-14 02:58:41,305 | epoch: [1/30] iter: [290/391] loss_D: 1.3879 loss_G: 0.6903 +2018-11-14 02:58:45,952 | epoch: [1/30] iter: [291/391] loss_D: 1.3860 loss_G: 0.6897 +2018-11-14 02:58:53,493 | epoch: [1/30] iter: [292/391] loss_D: 1.3878 loss_G: 0.6899 +2018-11-14 02:58:58,706 | epoch: [1/30] iter: [293/391] loss_D: 1.3866 loss_G: 0.6895 +2018-11-14 02:59:04,799 | epoch: [1/30] iter: [294/391] loss_D: 1.3841 loss_G: 0.6898 +2018-11-14 02:59:09,314 | epoch: [1/30] iter: [295/391] loss_D: 1.3850 loss_G: 0.6911 +2018-11-14 02:59:13,682 | epoch: [1/30] iter: [296/391] loss_D: 1.3857 loss_G: 0.6890 +2018-11-14 02:59:18,250 | epoch: [1/30] iter: [297/391] loss_D: 1.3801 loss_G: 0.6934 +2018-11-14 02:59:23,396 | epoch: [1/30] iter: [298/391] loss_D: 1.3806 loss_G: 0.6923 +2018-11-14 02:59:30,878 | epoch: [1/30] iter: [299/391] loss_D: 1.3786 loss_G: 0.6945 +2018-11-14 02:59:35,855 | epoch: [1/30] iter: [300/391] loss_D: 1.3777 loss_G: 0.6949 +2018-11-14 02:59:41,400 | epoch: [1/30] iter: [301/391] loss_D: 1.3807 loss_G: 0.6931 +2018-11-14 02:59:45,829 | epoch: [1/30] iter: [302/391] loss_D: 1.3771 loss_G: 0.6951 +2018-11-14 02:59:50,492 | epoch: [1/30] iter: [303/391] loss_D: 1.3763 loss_G: 0.6937 +2018-11-14 02:59:54,666 | epoch: [1/30] iter: [304/391] loss_D: 1.3747 loss_G: 0.6911 +2018-11-14 02:59:59,791 | epoch: [1/30] iter: [305/391] loss_D: 1.3762 loss_G: 0.6919 +2018-11-14 03:00:06,969 | epoch: [1/30] iter: [306/391] loss_D: 1.3855 loss_G: 0.6857 +2018-11-14 03:00:12,447 | epoch: [1/30] iter: [307/391] loss_D: 1.3830 loss_G: 0.6874 +2018-11-14 03:00:18,066 | epoch: [1/30] iter: [308/391] loss_D: 1.3784 loss_G: 0.6955 +2018-11-14 03:00:24,169 | epoch: [1/30] iter: [309/391] loss_D: 1.3836 loss_G: 0.6911 +2018-11-14 03:03:05,871 | epoch: [1/30] iter: [310/391] loss_D: 1.3856 loss_G: 0.6926 +2018-11-14 03:03:10,146 | epoch: [1/30] iter: [311/391] loss_D: 1.3813 loss_G: 0.6968 +2018-11-14 03:03:14,270 | epoch: [1/30] iter: [312/391] loss_D: 1.3850 loss_G: 0.6950 +2018-11-14 03:03:20,516 | epoch: [1/30] iter: [313/391] loss_D: 1.3893 loss_G: 0.6941 +2018-11-14 03:03:26,278 | epoch: [1/30] iter: [314/391] loss_D: 1.3945 loss_G: 0.6953 +2018-11-14 03:03:31,167 | epoch: [1/30] iter: [315/391] loss_D: 1.3881 loss_G: 0.6970 +2018-11-14 03:03:37,196 | epoch: [1/30] iter: [316/391] loss_D: 1.3884 loss_G: 0.6991 +2018-11-14 03:03:41,346 | epoch: [1/30] iter: [317/391] loss_D: 1.3900 loss_G: 0.6991 +2018-11-14 03:03:45,540 | epoch: [1/30] iter: [318/391] loss_D: 1.3866 loss_G: 0.6996 +2018-11-14 03:03:49,889 | epoch: [1/30] iter: [319/391] loss_D: 1.3852 loss_G: 0.7016 +2018-11-14 03:03:54,596 | epoch: [1/30] iter: [320/391] loss_D: 1.3881 loss_G: 0.7053 +2018-11-14 03:04:01,944 | epoch: [1/30] iter: [321/391] loss_D: 1.3820 loss_G: 0.7079 +2018-11-14 03:04:06,891 | epoch: [1/30] iter: [322/391] loss_D: 1.3822 loss_G: 0.7081 +2018-11-14 03:04:13,252 | epoch: [1/30] iter: [323/391] loss_D: 1.3818 loss_G: 0.7113 +2018-11-14 03:04:17,669 | epoch: [1/30] iter: [324/391] loss_D: 1.3799 loss_G: 0.7131 +2018-11-14 03:04:22,335 | epoch: [1/30] iter: [325/391] loss_D: 1.3791 loss_G: 0.7118 +2018-11-14 03:04:29,538 | epoch: [1/30] iter: [326/391] loss_D: 1.3789 loss_G: 0.7112 +2018-11-14 03:04:34,583 | epoch: [1/30] iter: [327/391] loss_D: 1.3771 loss_G: 0.7083 +2018-11-14 03:04:40,794 | epoch: [1/30] iter: [328/391] loss_D: 1.3818 loss_G: 0.7089 +2018-11-14 03:04:45,290 | epoch: [1/30] iter: [329/391] loss_D: 1.3845 loss_G: 0.6991 +2018-11-14 03:04:49,965 | epoch: [1/30] iter: [330/391] loss_D: 1.3873 loss_G: 0.6965 +2018-11-14 03:04:54,230 | epoch: [1/30] iter: [331/391] loss_D: 1.3936 loss_G: 0.6889 +2018-11-14 03:04:58,537 | epoch: [1/30] iter: [332/391] loss_D: 1.3951 loss_G: 0.6880 +2018-11-14 03:05:02,869 | epoch: [1/30] iter: [333/391] loss_D: 1.3944 loss_G: 0.6867 +2018-11-14 03:05:08,812 | epoch: [1/30] iter: [334/391] loss_D: 1.3937 loss_G: 0.6864 +2018-11-14 03:05:14,773 | epoch: [1/30] iter: [335/391] loss_D: 1.3928 loss_G: 0.6842 +2018-11-14 03:05:19,427 | epoch: [1/30] iter: [336/391] loss_D: 1.3956 loss_G: 0.6862 +2018-11-14 03:05:23,890 | epoch: [1/30] iter: [337/391] loss_D: 1.3917 loss_G: 0.6894 +2018-11-14 03:05:30,210 | epoch: [1/30] iter: [338/391] loss_D: 1.3913 loss_G: 0.6918 +2018-11-14 03:05:36,665 | epoch: [1/30] iter: [339/391] loss_D: 1.3924 loss_G: 0.6923 +2018-11-14 03:05:42,162 | epoch: [1/30] iter: [340/391] loss_D: 1.3890 loss_G: 0.6939 +2018-11-14 03:05:47,049 | epoch: [1/30] iter: [341/391] loss_D: 1.3915 loss_G: 0.6957 +2018-11-14 03:05:51,296 | epoch: [1/30] iter: [342/391] loss_D: 1.3909 loss_G: 0.6963 +2018-11-14 03:05:56,560 | epoch: [1/30] iter: [343/391] loss_D: 1.3877 loss_G: 0.6996 +2018-11-14 03:06:03,365 | epoch: [1/30] iter: [344/391] loss_D: 1.3885 loss_G: 0.6987 +2018-11-14 03:06:08,496 | epoch: [1/30] iter: [345/391] loss_D: 1.3857 loss_G: 0.6994 +2018-11-14 03:06:14,003 | epoch: [1/30] iter: [346/391] loss_D: 1.3848 loss_G: 0.6999 +2018-11-14 03:06:18,423 | epoch: [1/30] iter: [347/391] loss_D: 1.3863 loss_G: 0.6987 +2018-11-14 03:06:23,175 | epoch: [1/30] iter: [348/391] loss_D: 1.3849 loss_G: 0.6996 +2018-11-14 03:06:27,503 | epoch: [1/30] iter: [349/391] loss_D: 1.3848 loss_G: 0.6990 +2018-11-14 03:06:33,375 | epoch: [1/30] iter: [350/391] loss_D: 1.3862 loss_G: 0.6995 +2018-11-14 03:06:40,045 | epoch: [1/30] iter: [351/391] loss_D: 1.3859 loss_G: 0.6967 +2018-11-14 03:06:45,377 | epoch: [1/30] iter: [352/391] loss_D: 1.3840 loss_G: 0.6953 +2018-11-14 03:06:50,457 | epoch: [1/30] iter: [353/391] loss_D: 1.3857 loss_G: 0.6958 +2018-11-14 03:06:54,860 | epoch: [1/30] iter: [354/391] loss_D: 1.3879 loss_G: 0.6940 +2018-11-14 03:06:59,591 | epoch: [1/30] iter: [355/391] loss_D: 1.3895 loss_G: 0.6937 +2018-11-14 03:07:03,975 | epoch: [1/30] iter: [356/391] loss_D: 1.3837 loss_G: 0.6931 +2018-11-14 03:07:09,991 | epoch: [1/30] iter: [357/391] loss_D: 1.3865 loss_G: 0.6922 +2018-11-14 03:07:16,775 | epoch: [1/30] iter: [358/391] loss_D: 1.3838 loss_G: 0.6912 +2018-11-14 03:07:23,032 | epoch: [1/30] iter: [359/391] loss_D: 1.3857 loss_G: 0.6910 +2018-11-14 03:07:27,731 | epoch: [1/30] iter: [360/391] loss_D: 1.3885 loss_G: 0.6900 +2018-11-14 03:07:33,570 | epoch: [1/30] iter: [361/391] loss_D: 1.3837 loss_G: 0.6900 +2018-11-14 03:07:38,092 | epoch: [1/30] iter: [362/391] loss_D: 1.3856 loss_G: 0.6902 +2018-11-14 03:07:42,579 | epoch: [1/30] iter: [363/391] loss_D: 1.3838 loss_G: 0.6913 +2018-11-14 03:07:49,834 | epoch: [1/30] iter: [364/391] loss_D: 1.3830 loss_G: 0.6913 +2018-11-14 03:07:54,852 | epoch: [1/30] iter: [365/391] loss_D: 1.3816 loss_G: 0.6916 +2018-11-14 03:08:00,947 | epoch: [1/30] iter: [366/391] loss_D: 1.3750 loss_G: 0.6953 +2018-11-14 03:08:06,494 | epoch: [1/30] iter: [367/391] loss_D: 1.3758 loss_G: 0.6990 +2018-11-14 03:08:11,742 | epoch: [1/30] iter: [368/391] loss_D: 1.3746 loss_G: 0.6960 +2018-11-14 03:08:17,466 | epoch: [1/30] iter: [369/391] loss_D: 1.3771 loss_G: 0.6949 +2018-11-14 03:08:21,800 | epoch: [1/30] iter: [370/391] loss_D: 1.3707 loss_G: 0.7008 +2018-11-14 03:08:26,310 | epoch: [1/30] iter: [371/391] loss_D: 1.3838 loss_G: 0.6898 +2018-11-14 03:08:30,523 | epoch: [1/30] iter: [372/391] loss_D: 1.3965 loss_G: 0.6862 +2018-11-14 03:08:35,099 | epoch: [1/30] iter: [373/391] loss_D: 1.4073 loss_G: 0.6780 +2018-11-14 03:08:42,440 | epoch: [1/30] iter: [374/391] loss_D: 1.4020 loss_G: 0.6865 +2018-11-14 03:08:47,436 | epoch: [1/30] iter: [375/391] loss_D: 1.4009 loss_G: 0.6861 +2018-11-14 03:08:53,275 | epoch: [1/30] iter: [376/391] loss_D: 1.4033 loss_G: 0.6887 +2018-11-14 03:08:59,255 | epoch: [1/30] iter: [377/391] loss_D: 1.3936 loss_G: 0.6945 +2018-11-14 03:09:03,904 | epoch: [1/30] iter: [378/391] loss_D: 1.3902 loss_G: 0.6991 +2018-11-14 03:09:08,228 | epoch: [1/30] iter: [379/391] loss_D: 1.3851 loss_G: 0.7049 +2018-11-14 03:09:13,929 | epoch: [1/30] iter: [380/391] loss_D: 1.3835 loss_G: 0.7083 +2018-11-14 03:09:20,704 | epoch: [1/30] iter: [381/391] loss_D: 1.3806 loss_G: 0.7113 +2018-11-14 03:09:26,160 | epoch: [1/30] iter: [382/391] loss_D: 1.3789 loss_G: 0.7123 +2018-11-14 03:09:30,996 | epoch: [1/30] iter: [383/391] loss_D: 1.3772 loss_G: 0.7148 +2018-11-14 03:09:35,338 | epoch: [1/30] iter: [384/391] loss_D: 1.3790 loss_G: 0.7117 +2018-11-14 03:09:39,776 | epoch: [1/30] iter: [385/391] loss_D: 1.3797 loss_G: 0.7099 +2018-11-14 03:09:43,863 | epoch: [1/30] iter: [386/391] loss_D: 1.3895 loss_G: 0.7013 +2018-11-14 03:09:48,140 | epoch: [1/30] iter: [387/391] loss_D: 1.3922 loss_G: 0.6928 +2018-11-14 03:09:52,941 | epoch: [1/30] iter: [388/391] loss_D: 1.3940 loss_G: 0.6935 +2018-11-14 03:09:58,429 | epoch: [1/30] iter: [389/391] loss_D: 1.4008 loss_G: 0.6884 +2018-11-14 03:10:02,219 | epoch: [1/30] iter: [390/391] loss_D: 1.4009 loss_G: 0.6878 +2018-11-14 03:10:07,901 | epoch: [2/30] iter: [0/391] loss_D: 1.4028 loss_G: 0.6874 +2018-11-14 03:10:13,688 | epoch: [2/30] iter: [1/391] loss_D: 1.3957 loss_G: 0.6909 +2018-11-14 03:10:19,737 | epoch: [2/30] iter: [2/391] loss_D: 1.3940 loss_G: 0.6899 +2018-11-14 03:10:24,885 | epoch: [2/30] iter: [3/391] loss_D: 1.3919 loss_G: 0.6927 +2018-11-14 03:10:30,363 | epoch: [2/30] iter: [4/391] loss_D: 1.3888 loss_G: 0.6949 +2018-11-14 03:10:34,860 | epoch: [2/30] iter: [5/391] loss_D: 1.3896 loss_G: 0.6926 +2018-11-14 03:10:39,520 | epoch: [2/30] iter: [6/391] loss_D: 1.3869 loss_G: 0.6950 +2018-11-14 03:10:43,851 | epoch: [2/30] iter: [7/391] loss_D: 1.3858 loss_G: 0.6956 +2018-11-14 03:10:49,481 | epoch: [2/30] iter: [8/391] loss_D: 1.3852 loss_G: 0.6970 +2018-11-14 03:10:56,328 | epoch: [2/30] iter: [9/391] loss_D: 1.3808 loss_G: 0.6981 +2018-11-14 03:11:01,602 | epoch: [2/30] iter: [10/391] loss_D: 1.3839 loss_G: 0.6966 +2018-11-14 03:11:07,019 | epoch: [2/30] iter: [11/391] loss_D: 1.3844 loss_G: 0.6964 +2018-11-14 03:11:13,153 | epoch: [2/30] iter: [12/391] loss_D: 1.3812 loss_G: 0.6977 +2018-11-14 03:11:19,300 | epoch: [2/30] iter: [13/391] loss_D: 1.3799 loss_G: 0.6998 +2018-11-14 03:11:24,233 | epoch: [2/30] iter: [14/391] loss_D: 1.3808 loss_G: 0.6968 +2018-11-14 03:11:30,144 | epoch: [2/30] iter: [15/391] loss_D: 1.3778 loss_G: 0.6976 +2018-11-14 03:11:34,490 | epoch: [2/30] iter: [16/391] loss_D: 1.3805 loss_G: 0.6989 +2018-11-14 03:11:38,427 | epoch: [2/30] iter: [17/391] loss_D: 1.3760 loss_G: 0.6961 +2018-11-14 03:11:42,545 | epoch: [2/30] iter: [18/391] loss_D: 1.3796 loss_G: 0.6998 +2018-11-14 03:14:42,897 | epoch: [2/30] iter: [19/391] loss_D: 1.3842 loss_G: 0.6922 +2018-11-14 03:14:47,007 | epoch: [2/30] iter: [20/391] loss_D: 1.3847 loss_G: 0.6951 +2018-11-14 03:14:51,220 | epoch: [2/30] iter: [21/391] loss_D: 1.3843 loss_G: 0.6903 +2018-11-14 03:14:55,429 | epoch: [2/30] iter: [22/391] loss_D: 1.3879 loss_G: 0.6867 +2018-11-14 03:15:02,415 | epoch: [2/30] iter: [23/391] loss_D: 1.3896 loss_G: 0.6903 +2018-11-14 03:15:09,280 | epoch: [2/30] iter: [24/391] loss_D: 1.3951 loss_G: 0.6874 +2018-11-14 03:15:16,485 | epoch: [2/30] iter: [25/391] loss_D: 1.3905 loss_G: 0.6879 +2018-11-14 03:15:23,346 | epoch: [2/30] iter: [26/391] loss_D: 1.3905 loss_G: 0.6911 +2018-11-14 03:15:30,503 | epoch: [2/30] iter: [27/391] loss_D: 1.3931 loss_G: 0.6894 +2018-11-14 03:15:37,766 | epoch: [2/30] iter: [28/391] loss_D: 1.3942 loss_G: 0.6908 +2018-11-14 03:15:44,791 | epoch: [2/30] iter: [29/391] loss_D: 1.3954 loss_G: 0.6914 +2018-11-14 03:15:51,987 | epoch: [2/30] iter: [30/391] loss_D: 1.3934 loss_G: 0.6927 +2018-11-14 03:15:58,441 | epoch: [2/30] iter: [31/391] loss_D: 1.3923 loss_G: 0.6952 +2018-11-14 03:16:05,666 | epoch: [2/30] iter: [32/391] loss_D: 1.3917 loss_G: 0.6955 +2018-11-14 03:16:12,447 | epoch: [2/30] iter: [33/391] loss_D: 1.3920 loss_G: 0.6965 +2018-11-14 03:16:19,690 | epoch: [2/30] iter: [34/391] loss_D: 1.3885 loss_G: 0.6970 +2018-11-14 03:16:26,725 | epoch: [2/30] iter: [35/391] loss_D: 1.3904 loss_G: 0.6973 +2018-11-14 03:16:34,043 | epoch: [2/30] iter: [36/391] loss_D: 1.3903 loss_G: 0.6964 +2018-11-14 03:16:41,021 | epoch: [2/30] iter: [37/391] loss_D: 1.3876 loss_G: 0.6980 +2018-11-14 03:16:48,016 | epoch: [2/30] iter: [38/391] loss_D: 1.3886 loss_G: 0.6977 +2018-11-14 03:16:55,014 | epoch: [2/30] iter: [39/391] loss_D: 1.3885 loss_G: 0.6972 +2018-11-14 03:17:02,260 | epoch: [2/30] iter: [40/391] loss_D: 1.3897 loss_G: 0.6976 +2018-11-14 03:17:07,219 | epoch: [2/30] iter: [41/391] loss_D: 1.3868 loss_G: 0.6981 +2018-11-14 03:17:11,213 | epoch: [2/30] iter: [42/391] loss_D: 1.3862 loss_G: 0.6995 +2018-11-14 03:17:15,333 | epoch: [2/30] iter: [43/391] loss_D: 1.3878 loss_G: 0.6988 +2018-11-14 03:17:19,336 | epoch: [2/30] iter: [44/391] loss_D: 1.3864 loss_G: 0.6974 +2018-11-14 03:17:23,467 | epoch: [2/30] iter: [45/391] loss_D: 1.3877 loss_G: 0.6963 +2018-11-14 03:17:27,501 | epoch: [2/30] iter: [46/391] loss_D: 1.3847 loss_G: 0.6987 +2018-11-14 03:17:31,665 | epoch: [2/30] iter: [47/391] loss_D: 1.3850 loss_G: 0.6981 +2018-11-14 03:17:35,904 | epoch: [2/30] iter: [48/391] loss_D: 1.3864 loss_G: 0.6975 +2018-11-14 03:17:40,560 | epoch: [2/30] iter: [49/391] loss_D: 1.3862 loss_G: 0.6974 +2018-11-14 03:17:47,887 | epoch: [2/30] iter: [50/391] loss_D: 1.3849 loss_G: 0.6973 +2018-11-14 03:17:54,965 | epoch: [2/30] iter: [51/391] loss_D: 1.3840 loss_G: 0.6979 +2018-11-14 03:18:02,039 | epoch: [2/30] iter: [52/391] loss_D: 1.3856 loss_G: 0.6967 +2018-11-14 03:18:09,351 | epoch: [2/30] iter: [53/391] loss_D: 1.3854 loss_G: 0.6953 +2018-11-14 03:18:16,815 | epoch: [2/30] iter: [54/391] loss_D: 1.3832 loss_G: 0.6975 +2018-11-14 03:18:23,475 | epoch: [2/30] iter: [55/391] loss_D: 1.3844 loss_G: 0.6972 +2018-11-14 03:18:30,511 | epoch: [2/30] iter: [56/391] loss_D: 1.3848 loss_G: 0.6964 +2018-11-14 03:18:37,727 | epoch: [2/30] iter: [57/391] loss_D: 1.3867 loss_G: 0.6948 +2018-11-14 03:18:44,533 | epoch: [2/30] iter: [58/391] loss_D: 1.3859 loss_G: 0.6955 +2018-11-14 03:18:51,442 | epoch: [2/30] iter: [59/391] loss_D: 1.3851 loss_G: 0.6948 +2018-11-14 03:18:58,954 | epoch: [2/30] iter: [60/391] loss_D: 1.3847 loss_G: 0.6951 +2018-11-14 03:19:06,110 | epoch: [2/30] iter: [61/391] loss_D: 1.3834 loss_G: 0.6944 +2018-11-14 03:19:13,085 | epoch: [2/30] iter: [62/391] loss_D: 1.3882 loss_G: 0.6922 +2018-11-14 03:19:20,270 | epoch: [2/30] iter: [63/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-14 03:19:27,263 | epoch: [2/30] iter: [64/391] loss_D: 1.3858 loss_G: 0.6922 +2018-11-14 03:19:33,548 | epoch: [2/30] iter: [65/391] loss_D: 1.3859 loss_G: 0.6921 +2018-11-14 03:19:37,681 | epoch: [2/30] iter: [66/391] loss_D: 1.3874 loss_G: 0.6912 +2018-11-14 03:19:41,711 | epoch: [2/30] iter: [67/391] loss_D: 1.3879 loss_G: 0.6921 +2018-11-14 03:19:45,781 | epoch: [2/30] iter: [68/391] loss_D: 1.3877 loss_G: 0.6916 +2018-11-14 03:19:49,874 | epoch: [2/30] iter: [69/391] loss_D: 1.3879 loss_G: 0.6919 +2018-11-14 03:19:54,085 | epoch: [2/30] iter: [70/391] loss_D: 1.3881 loss_G: 0.6913 +2018-11-14 03:20:00,116 | epoch: [2/30] iter: [71/391] loss_D: 1.3890 loss_G: 0.6911 +2018-11-14 03:20:07,173 | epoch: [2/30] iter: [72/391] loss_D: 1.3886 loss_G: 0.6899 +2018-11-14 03:20:14,056 | epoch: [2/30] iter: [73/391] loss_D: 1.3883 loss_G: 0.6915 +2018-11-14 03:20:20,787 | epoch: [2/30] iter: [74/391] loss_D: 1.3870 loss_G: 0.6916 +2018-11-14 03:20:27,769 | epoch: [2/30] iter: [75/391] loss_D: 1.3883 loss_G: 0.6908 +2018-11-14 03:20:35,003 | epoch: [2/30] iter: [76/391] loss_D: 1.3874 loss_G: 0.6914 +2018-11-14 03:20:41,965 | epoch: [2/30] iter: [77/391] loss_D: 1.3876 loss_G: 0.6915 +2018-11-14 03:20:49,106 | epoch: [2/30] iter: [78/391] loss_D: 1.3882 loss_G: 0.6919 +2018-11-14 03:20:55,575 | epoch: [2/30] iter: [79/391] loss_D: 1.3877 loss_G: 0.6921 +2018-11-14 03:21:02,445 | epoch: [2/30] iter: [80/391] loss_D: 1.3868 loss_G: 0.6930 +2018-11-14 03:21:09,666 | epoch: [2/30] iter: [81/391] loss_D: 1.3884 loss_G: 0.6929 +2018-11-14 03:21:16,836 | epoch: [2/30] iter: [82/391] loss_D: 1.3861 loss_G: 0.6930 +2018-11-14 03:21:23,720 | epoch: [2/30] iter: [83/391] loss_D: 1.3865 loss_G: 0.6936 +2018-11-14 03:21:30,519 | epoch: [2/30] iter: [84/391] loss_D: 1.3857 loss_G: 0.6942 +2018-11-14 03:21:37,093 | epoch: [2/30] iter: [85/391] loss_D: 1.3864 loss_G: 0.6924 +2018-11-14 03:21:43,779 | epoch: [2/30] iter: [86/391] loss_D: 1.3871 loss_G: 0.6939 +2018-11-14 03:21:51,041 | epoch: [2/30] iter: [87/391] loss_D: 1.3872 loss_G: 0.6935 +2018-11-14 03:21:57,492 | epoch: [2/30] iter: [88/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-14 03:22:01,576 | epoch: [2/30] iter: [89/391] loss_D: 1.3869 loss_G: 0.6925 +2018-11-14 03:22:05,735 | epoch: [2/30] iter: [90/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-14 03:22:09,618 | epoch: [2/30] iter: [91/391] loss_D: 1.3873 loss_G: 0.6943 +2018-11-14 03:22:13,629 | epoch: [2/30] iter: [92/391] loss_D: 1.3859 loss_G: 0.6935 +2018-11-14 03:22:17,807 | epoch: [2/30] iter: [93/391] loss_D: 1.3865 loss_G: 0.6932 +2018-11-14 03:22:21,978 | epoch: [2/30] iter: [94/391] loss_D: 1.3880 loss_G: 0.6937 +2018-11-14 03:22:27,773 | epoch: [2/30] iter: [95/391] loss_D: 1.3862 loss_G: 0.6939 +2018-11-14 03:22:34,834 | epoch: [2/30] iter: [96/391] loss_D: 1.3866 loss_G: 0.6937 +2018-11-14 03:22:41,799 | epoch: [2/30] iter: [97/391] loss_D: 1.3866 loss_G: 0.6942 +2018-11-14 03:22:49,020 | epoch: [2/30] iter: [98/391] loss_D: 1.3851 loss_G: 0.6945 +2018-11-14 03:22:55,938 | epoch: [2/30] iter: [99/391] loss_D: 1.3854 loss_G: 0.6945 +2018-11-14 03:23:02,874 | epoch: [2/30] iter: [100/391] loss_D: 1.3867 loss_G: 0.6936 +2018-11-14 03:23:09,779 | epoch: [2/30] iter: [101/391] loss_D: 1.3862 loss_G: 0.6941 +2018-11-14 03:23:16,343 | epoch: [2/30] iter: [102/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-14 03:23:23,398 | epoch: [2/30] iter: [103/391] loss_D: 1.3854 loss_G: 0.6944 +2018-11-14 03:23:30,359 | epoch: [2/30] iter: [104/391] loss_D: 1.3864 loss_G: 0.6935 +2018-11-14 03:23:37,436 | epoch: [2/30] iter: [105/391] loss_D: 1.3865 loss_G: 0.6939 +2018-11-14 03:23:44,400 | epoch: [2/30] iter: [106/391] loss_D: 1.3858 loss_G: 0.6944 +2018-11-14 03:23:51,141 | epoch: [2/30] iter: [107/391] loss_D: 1.3856 loss_G: 0.6944 +2018-11-14 03:23:58,147 | epoch: [2/30] iter: [108/391] loss_D: 1.3868 loss_G: 0.6936 +2018-11-14 03:24:05,054 | epoch: [2/30] iter: [109/391] loss_D: 1.3867 loss_G: 0.6938 +2018-11-14 03:24:11,935 | epoch: [2/30] iter: [110/391] loss_D: 1.3858 loss_G: 0.6938 +2018-11-14 03:24:18,735 | epoch: [2/30] iter: [111/391] loss_D: 1.3853 loss_G: 0.6943 +2018-11-14 03:24:25,728 | epoch: [2/30] iter: [112/391] loss_D: 1.3852 loss_G: 0.6943 +2018-11-14 03:24:32,611 | epoch: [2/30] iter: [113/391] loss_D: 1.3853 loss_G: 0.6949 +2018-11-14 03:24:39,172 | epoch: [2/30] iter: [114/391] loss_D: 1.3858 loss_G: 0.6944 +2018-11-14 03:24:46,129 | epoch: [2/30] iter: [115/391] loss_D: 1.3857 loss_G: 0.6942 +2018-11-14 03:24:51,000 | epoch: [2/30] iter: [116/391] loss_D: 1.3850 loss_G: 0.6948 +2018-11-14 03:24:55,127 | epoch: [2/30] iter: [117/391] loss_D: 1.3845 loss_G: 0.6944 +2018-11-14 03:24:59,278 | epoch: [2/30] iter: [118/391] loss_D: 1.3827 loss_G: 0.6944 +2018-11-14 03:27:29,455 | epoch: [2/30] iter: [119/391] loss_D: 1.3822 loss_G: 0.6946 +2018-11-14 03:27:33,572 | epoch: [2/30] iter: [120/391] loss_D: 1.3824 loss_G: 0.6955 +2018-11-14 03:27:38,371 | epoch: [2/30] iter: [121/391] loss_D: 1.3816 loss_G: 0.6948 +2018-11-14 03:27:45,188 | epoch: [2/30] iter: [122/391] loss_D: 1.3811 loss_G: 0.6951 +2018-11-14 03:27:52,726 | epoch: [2/30] iter: [123/391] loss_D: 1.3824 loss_G: 0.6957 +2018-11-14 03:27:59,663 | epoch: [2/30] iter: [124/391] loss_D: 1.3811 loss_G: 0.6950 +2018-11-14 03:28:06,786 | epoch: [2/30] iter: [125/391] loss_D: 1.3791 loss_G: 0.6953 +2018-11-14 03:28:14,071 | epoch: [2/30] iter: [126/391] loss_D: 1.3770 loss_G: 0.6942 +2018-11-14 03:28:21,426 | epoch: [2/30] iter: [127/391] loss_D: 1.3803 loss_G: 0.6910 +2018-11-14 03:28:28,321 | epoch: [2/30] iter: [128/391] loss_D: 1.3860 loss_G: 0.6880 +2018-11-14 03:28:35,317 | epoch: [2/30] iter: [129/391] loss_D: 1.3876 loss_G: 0.6846 +2018-11-14 03:28:42,318 | epoch: [2/30] iter: [130/391] loss_D: 1.3937 loss_G: 0.6841 +2018-11-14 03:28:49,660 | epoch: [2/30] iter: [131/391] loss_D: 1.3906 loss_G: 0.6851 +2018-11-14 03:28:56,887 | epoch: [2/30] iter: [132/391] loss_D: 1.3964 loss_G: 0.6865 +2018-11-14 03:29:04,100 | epoch: [2/30] iter: [133/391] loss_D: 1.3902 loss_G: 0.6924 +2018-11-14 03:29:11,263 | epoch: [2/30] iter: [134/391] loss_D: 1.3915 loss_G: 0.6934 +2018-11-14 03:29:15,771 | epoch: [2/30] iter: [135/391] loss_D: 1.3911 loss_G: 0.6942 +2018-11-14 03:29:19,878 | epoch: [2/30] iter: [136/391] loss_D: 1.3887 loss_G: 0.6980 +2018-11-14 03:29:23,870 | epoch: [2/30] iter: [137/391] loss_D: 1.3853 loss_G: 0.6989 +2018-11-14 03:29:28,028 | epoch: [2/30] iter: [138/391] loss_D: 1.3866 loss_G: 0.6986 +2018-11-14 03:29:31,944 | epoch: [2/30] iter: [139/391] loss_D: 1.3852 loss_G: 0.6994 +2018-11-14 03:29:36,118 | epoch: [2/30] iter: [140/391] loss_D: 1.3838 loss_G: 0.7001 +2018-11-14 03:29:42,668 | epoch: [2/30] iter: [141/391] loss_D: 1.3851 loss_G: 0.6994 +2018-11-14 03:29:49,356 | epoch: [2/30] iter: [142/391] loss_D: 1.3834 loss_G: 0.7009 +2018-11-14 03:29:56,619 | epoch: [2/30] iter: [143/391] loss_D: 1.3826 loss_G: 0.7026 +2018-11-14 03:30:03,818 | epoch: [2/30] iter: [144/391] loss_D: 1.3831 loss_G: 0.7004 +2018-11-14 03:30:10,585 | epoch: [2/30] iter: [145/391] loss_D: 1.3798 loss_G: 0.7032 +2018-11-14 03:30:17,934 | epoch: [2/30] iter: [146/391] loss_D: 1.3831 loss_G: 0.7034 +2018-11-14 03:30:25,259 | epoch: [2/30] iter: [147/391] loss_D: 1.3790 loss_G: 0.7043 +2018-11-14 03:30:32,496 | epoch: [2/30] iter: [148/391] loss_D: 1.3812 loss_G: 0.7042 +2018-11-14 03:30:39,546 | epoch: [2/30] iter: [149/391] loss_D: 1.3784 loss_G: 0.7048 +2018-11-14 03:30:46,780 | epoch: [2/30] iter: [150/391] loss_D: 1.3796 loss_G: 0.7043 +2018-11-14 03:30:51,524 | epoch: [2/30] iter: [151/391] loss_D: 1.3816 loss_G: 0.7023 +2018-11-14 03:30:55,484 | epoch: [2/30] iter: [152/391] loss_D: 1.3807 loss_G: 0.7029 +2018-11-14 03:30:59,393 | epoch: [2/30] iter: [153/391] loss_D: 1.3828 loss_G: 0.7016 +2018-11-14 03:31:03,512 | epoch: [2/30] iter: [154/391] loss_D: 1.3897 loss_G: 0.6972 +2018-11-14 03:31:07,581 | epoch: [2/30] iter: [155/391] loss_D: 1.3897 loss_G: 0.6959 +2018-11-14 03:31:11,859 | epoch: [2/30] iter: [156/391] loss_D: 1.3950 loss_G: 0.6897 +2018-11-14 03:31:15,813 | epoch: [2/30] iter: [157/391] loss_D: 1.3975 loss_G: 0.6871 +2018-11-14 03:31:19,891 | epoch: [2/30] iter: [158/391] loss_D: 1.3958 loss_G: 0.6856 +2018-11-14 03:31:24,338 | epoch: [2/30] iter: [159/391] loss_D: 1.3925 loss_G: 0.6863 +2018-11-14 03:31:31,365 | epoch: [2/30] iter: [160/391] loss_D: 1.3943 loss_G: 0.6857 +2018-11-14 03:31:38,650 | epoch: [2/30] iter: [161/391] loss_D: 1.3926 loss_G: 0.6862 +2018-11-14 03:31:45,419 | epoch: [2/30] iter: [162/391] loss_D: 1.3919 loss_G: 0.6865 +2018-11-14 03:31:52,374 | epoch: [2/30] iter: [163/391] loss_D: 1.3912 loss_G: 0.6877 +2018-11-14 03:31:59,354 | epoch: [2/30] iter: [164/391] loss_D: 1.3889 loss_G: 0.6882 +2018-11-14 03:32:06,253 | epoch: [2/30] iter: [165/391] loss_D: 1.3882 loss_G: 0.6890 +2018-11-14 03:32:13,115 | epoch: [2/30] iter: [166/391] loss_D: 1.3883 loss_G: 0.6893 +2018-11-14 03:32:20,017 | epoch: [2/30] iter: [167/391] loss_D: 1.3878 loss_G: 0.6903 +2018-11-14 03:32:27,356 | epoch: [2/30] iter: [168/391] loss_D: 1.3875 loss_G: 0.6904 +2018-11-14 03:32:34,647 | epoch: [2/30] iter: [169/391] loss_D: 1.3870 loss_G: 0.6912 +2018-11-14 03:32:41,487 | epoch: [2/30] iter: [170/391] loss_D: 1.3851 loss_G: 0.6913 +2018-11-14 03:32:48,727 | epoch: [2/30] iter: [171/391] loss_D: 1.3853 loss_G: 0.6913 +2018-11-14 03:32:56,023 | epoch: [2/30] iter: [172/391] loss_D: 1.3843 loss_G: 0.6919 +2018-11-14 03:33:03,444 | epoch: [2/30] iter: [173/391] loss_D: 1.3829 loss_G: 0.6920 +2018-11-14 03:33:07,922 | epoch: [2/30] iter: [174/391] loss_D: 1.3828 loss_G: 0.6918 +2018-11-14 03:33:11,923 | epoch: [2/30] iter: [175/391] loss_D: 1.3830 loss_G: 0.6913 +2018-11-14 03:33:16,121 | epoch: [2/30] iter: [176/391] loss_D: 1.3817 loss_G: 0.6913 +2018-11-14 03:33:20,173 | epoch: [2/30] iter: [177/391] loss_D: 1.3835 loss_G: 0.6913 +2018-11-14 03:33:24,234 | epoch: [2/30] iter: [178/391] loss_D: 1.3827 loss_G: 0.6905 +2018-11-14 03:33:28,405 | epoch: [2/30] iter: [179/391] loss_D: 1.3814 loss_G: 0.6883 +2018-11-14 03:33:32,774 | epoch: [2/30] iter: [180/391] loss_D: 1.3817 loss_G: 0.6880 +2018-11-14 03:33:37,160 | epoch: [2/30] iter: [181/391] loss_D: 1.3842 loss_G: 0.6880 +2018-11-14 03:33:41,230 | epoch: [2/30] iter: [182/391] loss_D: 1.3859 loss_G: 0.6876 +2018-11-14 03:33:46,364 | epoch: [2/30] iter: [183/391] loss_D: 1.3831 loss_G: 0.6914 +2018-11-14 03:33:51,763 | epoch: [2/30] iter: [184/391] loss_D: 1.3886 loss_G: 0.6888 +2018-11-14 03:33:55,932 | epoch: [2/30] iter: [185/391] loss_D: 1.3845 loss_G: 0.6907 +2018-11-14 03:33:59,879 | epoch: [2/30] iter: [186/391] loss_D: 1.3844 loss_G: 0.6927 +2018-11-14 03:34:04,255 | epoch: [2/30] iter: [187/391] loss_D: 1.3878 loss_G: 0.6934 +2018-11-14 03:34:10,566 | epoch: [2/30] iter: [188/391] loss_D: 1.3832 loss_G: 0.6914 +2018-11-14 03:34:16,578 | epoch: [2/30] iter: [189/391] loss_D: 1.3897 loss_G: 0.6939 +2018-11-14 03:34:21,141 | epoch: [2/30] iter: [190/391] loss_D: 1.3906 loss_G: 0.6953 +2018-11-14 03:34:25,270 | epoch: [2/30] iter: [191/391] loss_D: 1.3826 loss_G: 0.6995 +2018-11-14 03:34:29,444 | epoch: [2/30] iter: [192/391] loss_D: 1.3866 loss_G: 0.6977 +2018-11-14 03:34:34,505 | epoch: [2/30] iter: [193/391] loss_D: 1.3844 loss_G: 0.6999 +2018-11-14 03:34:39,871 | epoch: [2/30] iter: [194/391] loss_D: 1.3845 loss_G: 0.6980 +2018-11-14 03:34:44,007 | epoch: [2/30] iter: [195/391] loss_D: 1.3892 loss_G: 0.6984 +2018-11-14 03:34:48,686 | epoch: [2/30] iter: [196/391] loss_D: 1.3878 loss_G: 0.7003 +2018-11-14 03:34:56,278 | epoch: [2/30] iter: [197/391] loss_D: 1.3859 loss_G: 0.7003 +2018-11-14 03:35:01,067 | epoch: [2/30] iter: [198/391] loss_D: 1.3915 loss_G: 0.6995 +2018-11-14 03:35:06,945 | epoch: [2/30] iter: [199/391] loss_D: 1.3906 loss_G: 0.7008 +2018-11-14 03:35:11,257 | epoch: [2/30] iter: [200/391] loss_D: 1.3874 loss_G: 0.7019 +2018-11-14 03:35:15,861 | epoch: [2/30] iter: [201/391] loss_D: 1.3867 loss_G: 0.7035 +2018-11-14 03:35:20,182 | epoch: [2/30] iter: [202/391] loss_D: 1.3837 loss_G: 0.7056 +2018-11-14 03:35:25,191 | epoch: [2/30] iter: [203/391] loss_D: 1.3837 loss_G: 0.7063 +2018-11-14 03:35:32,758 | epoch: [2/30] iter: [204/391] loss_D: 1.3815 loss_G: 0.7068 +2018-11-14 03:35:37,519 | epoch: [2/30] iter: [205/391] loss_D: 1.3818 loss_G: 0.7067 +2018-11-14 03:35:41,756 | epoch: [2/30] iter: [206/391] loss_D: 1.3774 loss_G: 0.7100 +2018-11-14 03:35:46,239 | epoch: [2/30] iter: [207/391] loss_D: 1.3754 loss_G: 0.7118 +2018-11-14 03:35:50,828 | epoch: [2/30] iter: [208/391] loss_D: 1.3780 loss_G: 0.7096 +2018-11-14 03:35:55,120 | epoch: [2/30] iter: [209/391] loss_D: 1.3770 loss_G: 0.7081 +2018-11-14 03:35:59,721 | epoch: [2/30] iter: [210/391] loss_D: 1.3802 loss_G: 0.7065 +2018-11-14 03:36:04,156 | epoch: [2/30] iter: [211/391] loss_D: 1.3774 loss_G: 0.7070 +2018-11-14 03:36:08,939 | epoch: [2/30] iter: [212/391] loss_D: 1.3821 loss_G: 0.7013 +2018-11-14 03:36:16,543 | epoch: [2/30] iter: [213/391] loss_D: 1.3914 loss_G: 0.6938 +2018-11-14 03:36:21,203 | epoch: [2/30] iter: [214/391] loss_D: 1.3925 loss_G: 0.6896 +2018-11-14 03:36:25,425 | epoch: [2/30] iter: [215/391] loss_D: 1.3940 loss_G: 0.6845 +2018-11-14 03:36:29,411 | epoch: [2/30] iter: [216/391] loss_D: 1.3963 loss_G: 0.6855 +2018-11-14 03:36:34,017 | epoch: [2/30] iter: [217/391] loss_D: 1.3960 loss_G: 0.6848 +2018-11-14 03:36:39,620 | epoch: [2/30] iter: [218/391] loss_D: 1.3923 loss_G: 0.6856 +2018-11-14 03:39:14,492 | epoch: [2/30] iter: [219/391] loss_D: 1.3896 loss_G: 0.6853 +2018-11-14 03:39:18,653 | epoch: [2/30] iter: [220/391] loss_D: 1.3941 loss_G: 0.6857 +2018-11-14 03:39:22,848 | epoch: [2/30] iter: [221/391] loss_D: 1.3897 loss_G: 0.6886 +2018-11-14 03:39:28,742 | epoch: [2/30] iter: [222/391] loss_D: 1.3861 loss_G: 0.6893 +2018-11-14 03:39:35,378 | epoch: [2/30] iter: [223/391] loss_D: 1.3851 loss_G: 0.6902 +2018-11-14 03:39:42,096 | epoch: [2/30] iter: [224/391] loss_D: 1.3866 loss_G: 0.6913 +2018-11-14 03:39:49,203 | epoch: [2/30] iter: [225/391] loss_D: 1.3858 loss_G: 0.6915 +2018-11-14 03:39:56,141 | epoch: [2/30] iter: [226/391] loss_D: 1.3838 loss_G: 0.6940 +2018-11-14 03:40:03,051 | epoch: [2/30] iter: [227/391] loss_D: 1.3830 loss_G: 0.6946 +2018-11-14 03:40:09,782 | epoch: [2/30] iter: [228/391] loss_D: 1.3808 loss_G: 0.6945 +2018-11-14 03:40:16,790 | epoch: [2/30] iter: [229/391] loss_D: 1.3844 loss_G: 0.6929 +2018-11-14 03:40:23,935 | epoch: [2/30] iter: [230/391] loss_D: 1.3820 loss_G: 0.6949 +2018-11-14 03:40:31,247 | epoch: [2/30] iter: [231/391] loss_D: 1.3760 loss_G: 0.6943 +2018-11-14 03:40:38,217 | epoch: [2/30] iter: [232/391] loss_D: 1.3768 loss_G: 0.6975 +2018-11-14 03:40:45,254 | epoch: [2/30] iter: [233/391] loss_D: 1.3828 loss_G: 0.6922 +2018-11-14 03:40:52,655 | epoch: [2/30] iter: [234/391] loss_D: 1.3806 loss_G: 0.6898 +2018-11-14 03:40:59,806 | epoch: [2/30] iter: [235/391] loss_D: 1.3854 loss_G: 0.6891 +2018-11-14 03:41:06,515 | epoch: [2/30] iter: [236/391] loss_D: 1.3890 loss_G: 0.6858 +2018-11-14 03:41:13,939 | epoch: [2/30] iter: [237/391] loss_D: 1.3954 loss_G: 0.6851 +2018-11-14 03:41:20,999 | epoch: [2/30] iter: [238/391] loss_D: 1.3939 loss_G: 0.6851 +2018-11-14 03:41:28,087 | epoch: [2/30] iter: [239/391] loss_D: 1.3872 loss_G: 0.6933 +2018-11-14 03:41:34,773 | epoch: [2/30] iter: [240/391] loss_D: 1.3938 loss_G: 0.6903 +2018-11-14 03:41:40,037 | epoch: [2/30] iter: [241/391] loss_D: 1.3890 loss_G: 0.6942 +2018-11-14 03:41:44,132 | epoch: [2/30] iter: [242/391] loss_D: 1.3947 loss_G: 0.6932 +2018-11-14 03:41:48,355 | epoch: [2/30] iter: [243/391] loss_D: 1.3876 loss_G: 0.6977 +2018-11-14 03:41:52,450 | epoch: [2/30] iter: [244/391] loss_D: 1.3895 loss_G: 0.6979 +2018-11-14 03:41:56,769 | epoch: [2/30] iter: [245/391] loss_D: 1.3893 loss_G: 0.6996 +2018-11-14 03:42:00,981 | epoch: [2/30] iter: [246/391] loss_D: 1.3880 loss_G: 0.6994 +2018-11-14 03:42:05,321 | epoch: [2/30] iter: [247/391] loss_D: 1.3862 loss_G: 0.7008 +2018-11-14 03:42:09,345 | epoch: [2/30] iter: [248/391] loss_D: 1.3853 loss_G: 0.7013 +2018-11-14 03:42:13,779 | epoch: [2/30] iter: [249/391] loss_D: 1.3859 loss_G: 0.7006 +2018-11-14 03:42:20,853 | epoch: [2/30] iter: [250/391] loss_D: 1.3861 loss_G: 0.7001 +2018-11-14 03:42:27,868 | epoch: [2/30] iter: [251/391] loss_D: 1.3867 loss_G: 0.6995 +2018-11-14 03:42:34,851 | epoch: [2/30] iter: [252/391] loss_D: 1.3866 loss_G: 0.6992 +2018-11-14 03:42:41,988 | epoch: [2/30] iter: [253/391] loss_D: 1.3861 loss_G: 0.6991 +2018-11-14 03:42:49,018 | epoch: [2/30] iter: [254/391] loss_D: 1.3872 loss_G: 0.6975 +2018-11-14 03:42:55,842 | epoch: [2/30] iter: [255/391] loss_D: 1.3863 loss_G: 0.6979 +2018-11-14 03:43:02,532 | epoch: [2/30] iter: [256/391] loss_D: 1.3862 loss_G: 0.6969 +2018-11-14 03:43:09,569 | epoch: [2/30] iter: [257/391] loss_D: 1.3887 loss_G: 0.6955 +2018-11-14 03:43:16,459 | epoch: [2/30] iter: [258/391] loss_D: 1.3865 loss_G: 0.6956 +2018-11-14 03:43:23,074 | epoch: [2/30] iter: [259/391] loss_D: 1.3890 loss_G: 0.6956 +2018-11-14 03:43:30,119 | epoch: [2/30] iter: [260/391] loss_D: 1.3867 loss_G: 0.6946 +2018-11-14 03:43:37,414 | epoch: [2/30] iter: [261/391] loss_D: 1.3878 loss_G: 0.6966 +2018-11-14 03:43:44,599 | epoch: [2/30] iter: [262/391] loss_D: 1.3874 loss_G: 0.6943 +2018-11-14 03:43:51,719 | epoch: [2/30] iter: [263/391] loss_D: 1.3855 loss_G: 0.6958 +2018-11-14 03:43:58,484 | epoch: [2/30] iter: [264/391] loss_D: 1.3880 loss_G: 0.6945 +2018-11-14 03:44:05,701 | epoch: [2/30] iter: [265/391] loss_D: 1.3877 loss_G: 0.6960 +2018-11-14 03:44:12,554 | epoch: [2/30] iter: [266/391] loss_D: 1.3861 loss_G: 0.6945 +2018-11-14 03:44:19,831 | epoch: [2/30] iter: [267/391] loss_D: 1.3861 loss_G: 0.6956 +2018-11-14 03:44:26,806 | epoch: [2/30] iter: [268/391] loss_D: 1.3873 loss_G: 0.6946 +2018-11-14 03:44:31,698 | epoch: [2/30] iter: [269/391] loss_D: 1.3865 loss_G: 0.6952 +2018-11-14 03:44:35,822 | epoch: [2/30] iter: [270/391] loss_D: 1.3871 loss_G: 0.6943 +2018-11-14 03:44:39,736 | epoch: [2/30] iter: [271/391] loss_D: 1.3887 loss_G: 0.6938 +2018-11-14 03:44:43,686 | epoch: [2/30] iter: [272/391] loss_D: 1.3881 loss_G: 0.6917 +2018-11-14 03:44:47,953 | epoch: [2/30] iter: [273/391] loss_D: 1.3876 loss_G: 0.6934 +2018-11-14 03:44:51,942 | epoch: [2/30] iter: [274/391] loss_D: 1.3884 loss_G: 0.6946 +2018-11-14 03:44:56,263 | epoch: [2/30] iter: [275/391] loss_D: 1.3887 loss_G: 0.6933 +2018-11-14 03:45:02,533 | epoch: [2/30] iter: [276/391] loss_D: 1.3871 loss_G: 0.6943 +2018-11-14 03:45:09,502 | epoch: [2/30] iter: [277/391] loss_D: 1.3874 loss_G: 0.6940 +2018-11-14 03:45:16,261 | epoch: [2/30] iter: [278/391] loss_D: 1.3856 loss_G: 0.6932 +2018-11-14 03:45:23,561 | epoch: [2/30] iter: [279/391] loss_D: 1.3876 loss_G: 0.6928 +2018-11-14 03:45:30,984 | epoch: [2/30] iter: [280/391] loss_D: 1.3861 loss_G: 0.6938 +2018-11-14 03:45:38,110 | epoch: [2/30] iter: [281/391] loss_D: 1.3866 loss_G: 0.6938 +2018-11-14 03:45:44,939 | epoch: [2/30] iter: [282/391] loss_D: 1.3852 loss_G: 0.6943 +2018-11-14 03:45:52,036 | epoch: [2/30] iter: [283/391] loss_D: 1.3846 loss_G: 0.6939 +2018-11-14 03:45:56,667 | epoch: [2/30] iter: [284/391] loss_D: 1.3854 loss_G: 0.6934 +2018-11-14 03:46:00,883 | epoch: [2/30] iter: [285/391] loss_D: 1.3845 loss_G: 0.6936 +2018-11-14 03:46:05,121 | epoch: [2/30] iter: [286/391] loss_D: 1.3827 loss_G: 0.6945 +2018-11-14 03:46:09,159 | epoch: [2/30] iter: [287/391] loss_D: 1.3857 loss_G: 0.6927 +2018-11-14 03:46:13,260 | epoch: [2/30] iter: [288/391] loss_D: 1.3843 loss_G: 0.6933 +2018-11-14 03:46:18,011 | epoch: [2/30] iter: [289/391] loss_D: 1.3836 loss_G: 0.6930 +2018-11-14 03:46:24,930 | epoch: [2/30] iter: [290/391] loss_D: 1.3849 loss_G: 0.6932 +2018-11-14 03:46:31,607 | epoch: [2/30] iter: [291/391] loss_D: 1.3832 loss_G: 0.6930 +2018-11-14 03:46:38,545 | epoch: [2/30] iter: [292/391] loss_D: 1.3840 loss_G: 0.6919 +2018-11-14 03:46:45,476 | epoch: [2/30] iter: [293/391] loss_D: 1.3833 loss_G: 0.6931 +2018-11-14 03:46:52,412 | epoch: [2/30] iter: [294/391] loss_D: 1.3844 loss_G: 0.6917 +2018-11-14 03:46:59,495 | epoch: [2/30] iter: [295/391] loss_D: 1.3851 loss_G: 0.6930 +2018-11-14 03:47:06,085 | epoch: [2/30] iter: [296/391] loss_D: 1.3830 loss_G: 0.6935 +2018-11-14 03:47:13,313 | epoch: [2/30] iter: [297/391] loss_D: 1.3870 loss_G: 0.6929 +2018-11-14 03:47:20,623 | epoch: [2/30] iter: [298/391] loss_D: 1.3850 loss_G: 0.6930 +2018-11-14 03:47:27,714 | epoch: [2/30] iter: [299/391] loss_D: 1.3863 loss_G: 0.6911 +2018-11-14 03:47:34,779 | epoch: [2/30] iter: [300/391] loss_D: 1.3827 loss_G: 0.6931 +2018-11-14 03:47:41,661 | epoch: [2/30] iter: [301/391] loss_D: 1.3900 loss_G: 0.6924 +2018-11-14 03:47:48,782 | epoch: [2/30] iter: [302/391] loss_D: 1.3881 loss_G: 0.6934 +2018-11-14 03:47:55,859 | epoch: [2/30] iter: [303/391] loss_D: 1.3876 loss_G: 0.6911 +2018-11-14 03:48:03,339 | epoch: [2/30] iter: [304/391] loss_D: 1.3925 loss_G: 0.6913 +2018-11-14 03:48:10,319 | epoch: [2/30] iter: [305/391] loss_D: 1.3910 loss_G: 0.6919 +2018-11-14 03:48:17,056 | epoch: [2/30] iter: [306/391] loss_D: 1.3885 loss_G: 0.6926 +2018-11-14 03:48:24,051 | epoch: [2/30] iter: [307/391] loss_D: 1.3890 loss_G: 0.6926 +2018-11-14 03:48:28,683 | epoch: [2/30] iter: [308/391] loss_D: 1.3924 loss_G: 0.6921 +2018-11-14 03:48:32,798 | epoch: [2/30] iter: [309/391] loss_D: 1.3926 loss_G: 0.6924 +2018-11-14 03:48:36,961 | epoch: [2/30] iter: [310/391] loss_D: 1.3902 loss_G: 0.6938 +2018-11-14 03:48:41,075 | epoch: [2/30] iter: [311/391] loss_D: 1.3886 loss_G: 0.6945 +2018-11-14 03:48:45,223 | epoch: [2/30] iter: [312/391] loss_D: 1.3907 loss_G: 0.6926 +2018-11-14 03:48:49,442 | epoch: [2/30] iter: [313/391] loss_D: 1.3900 loss_G: 0.6946 +2018-11-14 03:48:54,119 | epoch: [2/30] iter: [314/391] loss_D: 1.3878 loss_G: 0.6958 +2018-11-14 03:49:01,262 | epoch: [2/30] iter: [315/391] loss_D: 1.3884 loss_G: 0.6950 +2018-11-14 03:49:08,671 | epoch: [2/30] iter: [316/391] loss_D: 1.3879 loss_G: 0.6951 +2018-11-14 03:49:15,840 | epoch: [2/30] iter: [317/391] loss_D: 1.3891 loss_G: 0.6944 +2018-11-14 03:49:22,893 | epoch: [2/30] iter: [318/391] loss_D: 1.3875 loss_G: 0.6946 +2018-11-14 03:52:04,547 | epoch: [2/30] iter: [319/391] loss_D: 1.3872 loss_G: 0.6946 +2018-11-14 03:52:08,692 | epoch: [2/30] iter: [320/391] loss_D: 1.3878 loss_G: 0.6945 +2018-11-14 03:52:12,968 | epoch: [2/30] iter: [321/391] loss_D: 1.3872 loss_G: 0.6955 +2018-11-14 03:52:17,341 | epoch: [2/30] iter: [322/391] loss_D: 1.3868 loss_G: 0.6948 +2018-11-14 03:52:24,399 | epoch: [2/30] iter: [323/391] loss_D: 1.3870 loss_G: 0.6941 +2018-11-14 03:52:31,319 | epoch: [2/30] iter: [324/391] loss_D: 1.3857 loss_G: 0.6944 +2018-11-14 03:52:38,101 | epoch: [2/30] iter: [325/391] loss_D: 1.3858 loss_G: 0.6946 +2018-11-14 03:52:44,974 | epoch: [2/30] iter: [326/391] loss_D: 1.3860 loss_G: 0.6936 +2018-11-14 03:52:52,331 | epoch: [2/30] iter: [327/391] loss_D: 1.3865 loss_G: 0.6952 +2018-11-14 03:52:59,040 | epoch: [2/30] iter: [328/391] loss_D: 1.3866 loss_G: 0.6936 +2018-11-14 03:53:06,160 | epoch: [2/30] iter: [329/391] loss_D: 1.3859 loss_G: 0.6941 +2018-11-14 03:53:13,390 | epoch: [2/30] iter: [330/391] loss_D: 1.3857 loss_G: 0.6943 +2018-11-14 03:53:20,316 | epoch: [2/30] iter: [331/391] loss_D: 1.3859 loss_G: 0.6940 +2018-11-14 03:53:27,573 | epoch: [2/30] iter: [332/391] loss_D: 1.3863 loss_G: 0.6941 +2018-11-14 03:53:34,502 | epoch: [2/30] iter: [333/391] loss_D: 1.3860 loss_G: 0.6941 +2018-11-14 03:53:41,356 | epoch: [2/30] iter: [334/391] loss_D: 1.3871 loss_G: 0.6938 +2018-11-14 03:53:48,471 | epoch: [2/30] iter: [335/391] loss_D: 1.3861 loss_G: 0.6938 +2018-11-14 03:53:55,041 | epoch: [2/30] iter: [336/391] loss_D: 1.3853 loss_G: 0.6940 +2018-11-14 03:53:58,967 | epoch: [2/30] iter: [337/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-14 03:54:02,971 | epoch: [2/30] iter: [338/391] loss_D: 1.3865 loss_G: 0.6942 +2018-11-14 03:54:07,137 | epoch: [2/30] iter: [339/391] loss_D: 1.3857 loss_G: 0.6940 +2018-11-14 03:54:11,257 | epoch: [2/30] iter: [340/391] loss_D: 1.3858 loss_G: 0.6936 +2018-11-14 03:54:15,525 | epoch: [2/30] iter: [341/391] loss_D: 1.3852 loss_G: 0.6933 +2018-11-14 03:54:21,410 | epoch: [2/30] iter: [342/391] loss_D: 1.3854 loss_G: 0.6940 +2018-11-14 03:54:28,179 | epoch: [2/30] iter: [343/391] loss_D: 1.3848 loss_G: 0.6942 +2018-11-14 03:54:35,704 | epoch: [2/30] iter: [344/391] loss_D: 1.3851 loss_G: 0.6936 +2018-11-14 03:54:42,833 | epoch: [2/30] iter: [345/391] loss_D: 1.3849 loss_G: 0.6940 +2018-11-14 03:54:49,960 | epoch: [2/30] iter: [346/391] loss_D: 1.3850 loss_G: 0.6952 +2018-11-14 03:54:57,014 | epoch: [2/30] iter: [347/391] loss_D: 1.3849 loss_G: 0.6943 +2018-11-14 03:55:03,861 | epoch: [2/30] iter: [348/391] loss_D: 1.3848 loss_G: 0.6943 +2018-11-14 03:55:10,878 | epoch: [2/30] iter: [349/391] loss_D: 1.3855 loss_G: 0.6945 +2018-11-14 03:55:18,031 | epoch: [2/30] iter: [350/391] loss_D: 1.3854 loss_G: 0.6945 +2018-11-14 03:55:25,431 | epoch: [2/30] iter: [351/391] loss_D: 1.3849 loss_G: 0.6943 +2018-11-14 03:55:32,447 | epoch: [2/30] iter: [352/391] loss_D: 1.3860 loss_G: 0.6942 +2018-11-14 03:55:39,323 | epoch: [2/30] iter: [353/391] loss_D: 1.3846 loss_G: 0.6949 +2018-11-14 03:55:46,172 | epoch: [2/30] iter: [354/391] loss_D: 1.3842 loss_G: 0.6936 +2018-11-14 03:55:53,331 | epoch: [2/30] iter: [355/391] loss_D: 1.3855 loss_G: 0.6938 +2018-11-14 03:56:00,384 | epoch: [2/30] iter: [356/391] loss_D: 1.3883 loss_G: 0.6923 +2018-11-14 03:56:07,156 | epoch: [2/30] iter: [357/391] loss_D: 1.3850 loss_G: 0.6938 +2018-11-14 03:56:14,075 | epoch: [2/30] iter: [358/391] loss_D: 1.3865 loss_G: 0.6937 +2018-11-14 03:56:21,431 | epoch: [2/30] iter: [359/391] loss_D: 1.3864 loss_G: 0.6926 +2018-11-14 03:56:28,571 | epoch: [2/30] iter: [360/391] loss_D: 1.3862 loss_G: 0.6931 +2018-11-14 03:56:35,149 | epoch: [2/30] iter: [361/391] loss_D: 1.3862 loss_G: 0.6926 +2018-11-14 03:56:42,056 | epoch: [2/30] iter: [362/391] loss_D: 1.3877 loss_G: 0.6932 +2018-11-14 03:56:48,711 | epoch: [2/30] iter: [363/391] loss_D: 1.3876 loss_G: 0.6927 +2018-11-14 03:56:53,521 | epoch: [2/30] iter: [364/391] loss_D: 1.3867 loss_G: 0.6931 +2018-11-14 03:56:57,515 | epoch: [2/30] iter: [365/391] loss_D: 1.3874 loss_G: 0.6919 +2018-11-14 03:57:01,353 | epoch: [2/30] iter: [366/391] loss_D: 1.3869 loss_G: 0.6920 +2018-11-14 03:57:05,600 | epoch: [2/30] iter: [367/391] loss_D: 1.3861 loss_G: 0.6922 +2018-11-14 03:57:09,907 | epoch: [2/30] iter: [368/391] loss_D: 1.3874 loss_G: 0.6926 +2018-11-14 03:57:14,647 | epoch: [2/30] iter: [369/391] loss_D: 1.3875 loss_G: 0.6910 +2018-11-14 03:57:22,015 | epoch: [2/30] iter: [370/391] loss_D: 1.3881 loss_G: 0.6913 +2018-11-14 03:57:28,920 | epoch: [2/30] iter: [371/391] loss_D: 1.3871 loss_G: 0.6917 +2018-11-14 03:57:35,996 | epoch: [2/30] iter: [372/391] loss_D: 1.3884 loss_G: 0.6914 +2018-11-14 03:57:42,712 | epoch: [2/30] iter: [373/391] loss_D: 1.3870 loss_G: 0.6922 +2018-11-14 03:57:49,862 | epoch: [2/30] iter: [374/391] loss_D: 1.3868 loss_G: 0.6923 +2018-11-14 03:57:56,991 | epoch: [2/30] iter: [375/391] loss_D: 1.3885 loss_G: 0.6919 +2018-11-14 03:58:04,147 | epoch: [2/30] iter: [376/391] loss_D: 1.3876 loss_G: 0.6925 +2018-11-14 03:58:11,248 | epoch: [2/30] iter: [377/391] loss_D: 1.3883 loss_G: 0.6918 +2018-11-14 03:58:18,388 | epoch: [2/30] iter: [378/391] loss_D: 1.3878 loss_G: 0.6922 +2018-11-14 03:58:25,514 | epoch: [2/30] iter: [379/391] loss_D: 1.3870 loss_G: 0.6921 +2018-11-14 03:58:32,505 | epoch: [2/30] iter: [380/391] loss_D: 1.3871 loss_G: 0.6923 +2018-11-14 03:58:37,406 | epoch: [2/30] iter: [381/391] loss_D: 1.3875 loss_G: 0.6925 +2018-11-14 03:58:41,500 | epoch: [2/30] iter: [382/391] loss_D: 1.3877 loss_G: 0.6932 +2018-11-14 03:58:45,573 | epoch: [2/30] iter: [383/391] loss_D: 1.3870 loss_G: 0.6933 +2018-11-14 03:58:49,545 | epoch: [2/30] iter: [384/391] loss_D: 1.3873 loss_G: 0.6928 +2018-11-14 03:58:53,641 | epoch: [2/30] iter: [385/391] loss_D: 1.3870 loss_G: 0.6929 +2018-11-14 03:58:57,788 | epoch: [2/30] iter: [386/391] loss_D: 1.3869 loss_G: 0.6929 +2018-11-14 03:59:04,767 | epoch: [2/30] iter: [387/391] loss_D: 1.3863 loss_G: 0.6934 +2018-11-14 03:59:12,091 | epoch: [2/30] iter: [388/391] loss_D: 1.3873 loss_G: 0.6934 +2018-11-14 03:59:19,558 | epoch: [2/30] iter: [389/391] loss_D: 1.3860 loss_G: 0.6933 +2018-11-14 03:59:24,103 | epoch: [2/30] iter: [390/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-14 03:59:31,885 | epoch: [3/30] iter: [0/391] loss_D: 1.3867 loss_G: 0.6932 +2018-11-14 03:59:38,779 | epoch: [3/30] iter: [1/391] loss_D: 1.3865 loss_G: 0.6938 +2018-11-14 03:59:45,977 | epoch: [3/30] iter: [2/391] loss_D: 1.3868 loss_G: 0.6935 +2018-11-14 03:59:53,140 | epoch: [3/30] iter: [3/391] loss_D: 1.3864 loss_G: 0.6940 +2018-11-14 04:00:00,518 | epoch: [3/30] iter: [4/391] loss_D: 1.3858 loss_G: 0.6937 +2018-11-14 04:00:07,485 | epoch: [3/30] iter: [5/391] loss_D: 1.3864 loss_G: 0.6939 +2018-11-14 04:00:14,542 | epoch: [3/30] iter: [6/391] loss_D: 1.3860 loss_G: 0.6937 +2018-11-14 04:00:21,621 | epoch: [3/30] iter: [7/391] loss_D: 1.3860 loss_G: 0.6938 +2018-11-14 04:00:28,327 | epoch: [3/30] iter: [8/391] loss_D: 1.3865 loss_G: 0.6942 +2018-11-14 04:00:35,308 | epoch: [3/30] iter: [9/391] loss_D: 1.3855 loss_G: 0.6939 +2018-11-14 04:00:42,209 | epoch: [3/30] iter: [10/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-14 04:00:49,073 | epoch: [3/30] iter: [11/391] loss_D: 1.3859 loss_G: 0.6940 +2018-11-14 04:00:55,789 | epoch: [3/30] iter: [12/391] loss_D: 1.3856 loss_G: 0.6945 +2018-11-14 04:01:02,673 | epoch: [3/30] iter: [13/391] loss_D: 1.3861 loss_G: 0.6931 +2018-11-14 04:01:09,878 | epoch: [3/30] iter: [14/391] loss_D: 1.3864 loss_G: 0.6936 +2018-11-14 04:01:16,781 | epoch: [3/30] iter: [15/391] loss_D: 1.3862 loss_G: 0.6937 +2018-11-14 04:01:23,605 | epoch: [3/30] iter: [16/391] loss_D: 1.3855 loss_G: 0.6940 +2018-11-14 04:01:28,929 | epoch: [3/30] iter: [17/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-14 04:01:33,098 | epoch: [3/30] iter: [18/391] loss_D: 1.3861 loss_G: 0.6936 +2018-11-14 04:01:37,287 | epoch: [3/30] iter: [19/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-14 04:01:41,390 | epoch: [3/30] iter: [20/391] loss_D: 1.3875 loss_G: 0.6927 +2018-11-14 04:01:45,450 | epoch: [3/30] iter: [21/391] loss_D: 1.3864 loss_G: 0.6931 +2018-11-14 04:01:49,438 | epoch: [3/30] iter: [22/391] loss_D: 1.3865 loss_G: 0.6937 +2018-11-14 04:01:53,386 | epoch: [3/30] iter: [23/391] loss_D: 1.3866 loss_G: 0.6927 +2018-11-14 04:01:57,516 | epoch: [3/30] iter: [24/391] loss_D: 1.3865 loss_G: 0.6933 +2018-11-14 04:02:01,821 | epoch: [3/30] iter: [25/391] loss_D: 1.3868 loss_G: 0.6929 +2018-11-14 04:02:05,839 | epoch: [3/30] iter: [26/391] loss_D: 1.3859 loss_G: 0.6929 +2018-11-14 04:02:12,866 | epoch: [3/30] iter: [27/391] loss_D: 1.3857 loss_G: 0.6929 +2018-11-14 04:05:05,468 | epoch: [3/30] iter: [28/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-14 04:05:09,595 | epoch: [3/30] iter: [29/391] loss_D: 1.3860 loss_G: 0.6929 +2018-11-14 04:05:13,823 | epoch: [3/30] iter: [30/391] loss_D: 1.3860 loss_G: 0.6943 +2018-11-14 04:05:18,105 | epoch: [3/30] iter: [31/391] loss_D: 1.3856 loss_G: 0.6931 +2018-11-14 04:05:25,480 | epoch: [3/30] iter: [32/391] loss_D: 1.3858 loss_G: 0.6935 +2018-11-14 04:05:32,143 | epoch: [3/30] iter: [33/391] loss_D: 1.3854 loss_G: 0.6937 +2018-11-14 04:05:38,997 | epoch: [3/30] iter: [34/391] loss_D: 1.3854 loss_G: 0.6939 +2018-11-14 04:05:45,914 | epoch: [3/30] iter: [35/391] loss_D: 1.3858 loss_G: 0.6936 +2018-11-14 04:05:53,059 | epoch: [3/30] iter: [36/391] loss_D: 1.3857 loss_G: 0.6939 +2018-11-14 04:05:59,653 | epoch: [3/30] iter: [37/391] loss_D: 1.3850 loss_G: 0.6943 +2018-11-14 04:06:06,842 | epoch: [3/30] iter: [38/391] loss_D: 1.3859 loss_G: 0.6939 +2018-11-14 04:06:13,853 | epoch: [3/30] iter: [39/391] loss_D: 1.3847 loss_G: 0.6941 +2018-11-14 04:06:20,690 | epoch: [3/30] iter: [40/391] loss_D: 1.3847 loss_G: 0.6941 +2018-11-14 04:06:27,703 | epoch: [3/30] iter: [41/391] loss_D: 1.3847 loss_G: 0.6942 +2018-11-14 04:06:34,946 | epoch: [3/30] iter: [42/391] loss_D: 1.3848 loss_G: 0.6950 +2018-11-14 04:06:42,251 | epoch: [3/30] iter: [43/391] loss_D: 1.3839 loss_G: 0.6950 +2018-11-14 04:06:49,116 | epoch: [3/30] iter: [44/391] loss_D: 1.3846 loss_G: 0.6949 +2018-11-14 04:06:54,146 | epoch: [3/30] iter: [45/391] loss_D: 1.3843 loss_G: 0.6955 +2018-11-14 04:06:58,313 | epoch: [3/30] iter: [46/391] loss_D: 1.3838 loss_G: 0.6949 +2018-11-14 04:07:02,496 | epoch: [3/30] iter: [47/391] loss_D: 1.3828 loss_G: 0.6955 +2018-11-14 04:07:06,492 | epoch: [3/30] iter: [48/391] loss_D: 1.3827 loss_G: 0.6961 +2018-11-14 04:07:10,787 | epoch: [3/30] iter: [49/391] loss_D: 1.3851 loss_G: 0.6953 +2018-11-14 04:07:14,831 | epoch: [3/30] iter: [50/391] loss_D: 1.3862 loss_G: 0.6939 +2018-11-14 04:07:19,601 | epoch: [3/30] iter: [51/391] loss_D: 1.3866 loss_G: 0.6928 +2018-11-14 04:07:26,564 | epoch: [3/30] iter: [52/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-14 04:07:33,230 | epoch: [3/30] iter: [53/391] loss_D: 1.3859 loss_G: 0.6924 +2018-11-14 04:07:40,302 | epoch: [3/30] iter: [54/391] loss_D: 1.3871 loss_G: 0.6913 +2018-11-14 04:07:47,607 | epoch: [3/30] iter: [55/391] loss_D: 1.3859 loss_G: 0.6927 +2018-11-14 04:07:54,414 | epoch: [3/30] iter: [56/391] loss_D: 1.3849 loss_G: 0.6928 +2018-11-14 04:08:01,715 | epoch: [3/30] iter: [57/391] loss_D: 1.3851 loss_G: 0.6931 +2018-11-14 04:08:08,925 | epoch: [3/30] iter: [58/391] loss_D: 1.3841 loss_G: 0.6931 +2018-11-14 04:08:16,025 | epoch: [3/30] iter: [59/391] loss_D: 1.3833 loss_G: 0.6926 +2018-11-14 04:08:23,009 | epoch: [3/30] iter: [60/391] loss_D: 1.3838 loss_G: 0.6932 +2018-11-14 04:08:29,954 | epoch: [3/30] iter: [61/391] loss_D: 1.3835 loss_G: 0.6920 +2018-11-14 04:08:37,056 | epoch: [3/30] iter: [62/391] loss_D: 1.3837 loss_G: 0.6933 +2018-11-14 04:08:44,242 | epoch: [3/30] iter: [63/391] loss_D: 1.3828 loss_G: 0.6902 +2018-11-14 04:08:51,350 | epoch: [3/30] iter: [64/391] loss_D: 1.3840 loss_G: 0.6877 +2018-11-14 04:08:58,441 | epoch: [3/30] iter: [65/391] loss_D: 1.3853 loss_G: 0.6878 +2018-11-14 04:09:05,980 | epoch: [3/30] iter: [66/391] loss_D: 1.3926 loss_G: 0.6876 +2018-11-14 04:09:13,352 | epoch: [3/30] iter: [67/391] loss_D: 1.3870 loss_G: 0.6895 +2018-11-14 04:09:17,779 | epoch: [3/30] iter: [68/391] loss_D: 1.3911 loss_G: 0.6875 +2018-11-14 04:09:21,781 | epoch: [3/30] iter: [69/391] loss_D: 1.3906 loss_G: 0.6935 +2018-11-14 04:09:25,804 | epoch: [3/30] iter: [70/391] loss_D: 1.3872 loss_G: 0.6954 +2018-11-14 04:09:29,823 | epoch: [3/30] iter: [71/391] loss_D: 1.3877 loss_G: 0.6950 +2018-11-14 04:09:33,786 | epoch: [3/30] iter: [72/391] loss_D: 1.3871 loss_G: 0.6971 +2018-11-14 04:09:37,813 | epoch: [3/30] iter: [73/391] loss_D: 1.3847 loss_G: 0.6981 +2018-11-14 04:09:41,976 | epoch: [3/30] iter: [74/391] loss_D: 1.3856 loss_G: 0.6972 +2018-11-14 04:09:46,273 | epoch: [3/30] iter: [75/391] loss_D: 1.3869 loss_G: 0.6973 +2018-11-14 04:09:53,490 | epoch: [3/30] iter: [76/391] loss_D: 1.3853 loss_G: 0.6977 +2018-11-14 04:10:00,754 | epoch: [3/30] iter: [77/391] loss_D: 1.3846 loss_G: 0.6988 +2018-11-14 04:10:07,855 | epoch: [3/30] iter: [78/391] loss_D: 1.3846 loss_G: 0.6969 +2018-11-14 04:10:15,340 | epoch: [3/30] iter: [79/391] loss_D: 1.3845 loss_G: 0.6978 +2018-11-14 04:10:22,294 | epoch: [3/30] iter: [80/391] loss_D: 1.3822 loss_G: 0.6984 +2018-11-14 04:10:29,783 | epoch: [3/30] iter: [81/391] loss_D: 1.3842 loss_G: 0.6975 +2018-11-14 04:10:36,819 | epoch: [3/30] iter: [82/391] loss_D: 1.3843 loss_G: 0.6973 +2018-11-14 04:10:43,280 | epoch: [3/30] iter: [83/391] loss_D: 1.3830 loss_G: 0.6985 +2018-11-14 04:10:47,230 | epoch: [3/30] iter: [84/391] loss_D: 1.3830 loss_G: 0.6979 +2018-11-14 04:10:51,449 | epoch: [3/30] iter: [85/391] loss_D: 1.3834 loss_G: 0.6981 +2018-11-14 04:10:55,441 | epoch: [3/30] iter: [86/391] loss_D: 1.3849 loss_G: 0.6972 +2018-11-14 04:10:59,386 | epoch: [3/30] iter: [87/391] loss_D: 1.3838 loss_G: 0.6984 +2018-11-14 04:11:03,668 | epoch: [3/30] iter: [88/391] loss_D: 1.3833 loss_G: 0.6982 +2018-11-14 04:11:08,817 | epoch: [3/30] iter: [89/391] loss_D: 1.3844 loss_G: 0.6970 +2018-11-14 04:11:15,627 | epoch: [3/30] iter: [90/391] loss_D: 1.3842 loss_G: 0.6971 +2018-11-14 04:11:22,845 | epoch: [3/30] iter: [91/391] loss_D: 1.3846 loss_G: 0.6964 +2018-11-14 04:11:29,657 | epoch: [3/30] iter: [92/391] loss_D: 1.3838 loss_G: 0.6959 +2018-11-14 04:11:36,488 | epoch: [3/30] iter: [93/391] loss_D: 1.3848 loss_G: 0.6962 +2018-11-14 04:11:43,263 | epoch: [3/30] iter: [94/391] loss_D: 1.3837 loss_G: 0.6951 +2018-11-14 04:11:50,013 | epoch: [3/30] iter: [95/391] loss_D: 1.3855 loss_G: 0.6947 +2018-11-14 04:11:57,293 | epoch: [3/30] iter: [96/391] loss_D: 1.3836 loss_G: 0.6940 +2018-11-14 04:12:04,494 | epoch: [3/30] iter: [97/391] loss_D: 1.3830 loss_G: 0.6942 +2018-11-14 04:12:11,010 | epoch: [3/30] iter: [98/391] loss_D: 1.3815 loss_G: 0.6941 +2018-11-14 04:12:17,806 | epoch: [3/30] iter: [99/391] loss_D: 1.3806 loss_G: 0.6936 +2018-11-14 04:12:24,793 | epoch: [3/30] iter: [100/391] loss_D: 1.3800 loss_G: 0.6928 +2018-11-14 04:12:32,160 | epoch: [3/30] iter: [101/391] loss_D: 1.3820 loss_G: 0.6925 +2018-11-14 04:12:38,678 | epoch: [3/30] iter: [102/391] loss_D: 1.3765 loss_G: 0.6926 +2018-11-14 04:12:45,594 | epoch: [3/30] iter: [103/391] loss_D: 1.3796 loss_G: 0.6889 +2018-11-14 04:12:52,559 | epoch: [3/30] iter: [104/391] loss_D: 1.3780 loss_G: 0.6866 +2018-11-14 04:12:59,648 | epoch: [3/30] iter: [105/391] loss_D: 1.3838 loss_G: 0.6838 +2018-11-14 04:13:06,889 | epoch: [3/30] iter: [106/391] loss_D: 1.3869 loss_G: 0.6812 +2018-11-14 04:13:13,942 | epoch: [3/30] iter: [107/391] loss_D: 1.3909 loss_G: 0.6809 +2018-11-14 04:13:20,845 | epoch: [3/30] iter: [108/391] loss_D: 1.3912 loss_G: 0.6865 +2018-11-14 04:13:27,576 | epoch: [3/30] iter: [109/391] loss_D: 1.3869 loss_G: 0.6930 +2018-11-14 04:13:31,763 | epoch: [3/30] iter: [110/391] loss_D: 1.3863 loss_G: 0.6950 +2018-11-14 04:13:35,938 | epoch: [3/30] iter: [111/391] loss_D: 1.3814 loss_G: 0.6959 +2018-11-14 04:13:39,897 | epoch: [3/30] iter: [112/391] loss_D: 1.3807 loss_G: 0.7009 +2018-11-14 04:13:43,940 | epoch: [3/30] iter: [113/391] loss_D: 1.3776 loss_G: 0.7082 +2018-11-14 04:13:48,067 | epoch: [3/30] iter: [114/391] loss_D: 1.3833 loss_G: 0.7094 +2018-11-14 04:13:53,247 | epoch: [3/30] iter: [115/391] loss_D: 1.3788 loss_G: 0.7118 +2018-11-14 04:14:00,260 | epoch: [3/30] iter: [116/391] loss_D: 1.3742 loss_G: 0.7129 +2018-11-14 04:14:07,470 | epoch: [3/30] iter: [117/391] loss_D: 1.3769 loss_G: 0.7178 +2018-11-14 04:14:14,309 | epoch: [3/30] iter: [118/391] loss_D: 1.3779 loss_G: 0.7112 +2018-11-14 04:14:21,310 | epoch: [3/30] iter: [119/391] loss_D: 1.3861 loss_G: 0.7014 +2018-11-14 04:14:28,311 | epoch: [3/30] iter: [120/391] loss_D: 1.3959 loss_G: 0.6960 +2018-11-14 04:14:35,251 | epoch: [3/30] iter: [121/391] loss_D: 1.4014 loss_G: 0.6878 +2018-11-14 04:14:42,410 | epoch: [3/30] iter: [122/391] loss_D: 1.4014 loss_G: 0.6890 +2018-11-14 04:14:49,164 | epoch: [3/30] iter: [123/391] loss_D: 1.3905 loss_G: 0.6936 +2018-11-14 04:14:56,553 | epoch: [3/30] iter: [124/391] loss_D: 1.3873 loss_G: 0.6961 +2018-11-14 04:15:03,651 | epoch: [3/30] iter: [125/391] loss_D: 1.3813 loss_G: 0.6963 +2018-11-14 04:15:07,891 | epoch: [3/30] iter: [126/391] loss_D: 1.3820 loss_G: 0.6943 +2018-11-14 04:15:12,248 | epoch: [3/30] iter: [127/391] loss_D: 1.3833 loss_G: 0.6897 +2018-11-14 04:17:44,905 | epoch: [3/30] iter: [128/391] loss_D: 1.3855 loss_G: 0.6861 +2018-11-14 04:17:50,507 | epoch: [3/30] iter: [129/391] loss_D: 1.3937 loss_G: 0.6816 +2018-11-14 04:17:57,575 | epoch: [3/30] iter: [130/391] loss_D: 1.3960 loss_G: 0.6817 +2018-11-14 04:18:04,436 | epoch: [3/30] iter: [131/391] loss_D: 1.3964 loss_G: 0.6843 +2018-11-14 04:18:11,611 | epoch: [3/30] iter: [132/391] loss_D: 1.4008 loss_G: 0.6889 +2018-11-14 04:18:18,559 | epoch: [3/30] iter: [133/391] loss_D: 1.4008 loss_G: 0.6923 +2018-11-14 04:18:25,779 | epoch: [3/30] iter: [134/391] loss_D: 1.3924 loss_G: 0.6936 +2018-11-14 04:18:32,961 | epoch: [3/30] iter: [135/391] loss_D: 1.3957 loss_G: 0.6944 +2018-11-14 04:18:39,422 | epoch: [3/30] iter: [136/391] loss_D: 1.3903 loss_G: 0.6991 +2018-11-14 04:18:46,410 | epoch: [3/30] iter: [137/391] loss_D: 1.3902 loss_G: 0.6993 +2018-11-14 04:18:53,153 | epoch: [3/30] iter: [138/391] loss_D: 1.3891 loss_G: 0.7023 +2018-11-14 04:19:00,159 | epoch: [3/30] iter: [139/391] loss_D: 1.3878 loss_G: 0.7009 +2018-11-14 04:19:07,516 | epoch: [3/30] iter: [140/391] loss_D: 1.3853 loss_G: 0.6994 +2018-11-14 04:19:14,874 | epoch: [3/30] iter: [141/391] loss_D: 1.3836 loss_G: 0.7002 +2018-11-14 04:19:21,872 | epoch: [3/30] iter: [142/391] loss_D: 1.3849 loss_G: 0.6997 +2018-11-14 04:19:29,178 | epoch: [3/30] iter: [143/391] loss_D: 1.3845 loss_G: 0.6992 +2018-11-14 04:19:35,763 | epoch: [3/30] iter: [144/391] loss_D: 1.3849 loss_G: 0.6981 +2018-11-14 04:19:39,707 | epoch: [3/30] iter: [145/391] loss_D: 1.3854 loss_G: 0.6975 +2018-11-14 04:19:43,817 | epoch: [3/30] iter: [146/391] loss_D: 1.3862 loss_G: 0.6961 +2018-11-14 04:19:47,877 | epoch: [3/30] iter: [147/391] loss_D: 1.3874 loss_G: 0.6967 +2018-11-14 04:19:52,117 | epoch: [3/30] iter: [148/391] loss_D: 1.3856 loss_G: 0.6957 +2018-11-14 04:19:56,289 | epoch: [3/30] iter: [149/391] loss_D: 1.3871 loss_G: 0.6960 +2018-11-14 04:20:00,424 | epoch: [3/30] iter: [150/391] loss_D: 1.3883 loss_G: 0.6932 +2018-11-14 04:20:04,734 | epoch: [3/30] iter: [151/391] loss_D: 1.3864 loss_G: 0.6952 +2018-11-14 04:20:08,942 | epoch: [3/30] iter: [152/391] loss_D: 1.3872 loss_G: 0.6931 +2018-11-14 04:20:14,911 | epoch: [3/30] iter: [153/391] loss_D: 1.3912 loss_G: 0.6909 +2018-11-14 04:20:22,148 | epoch: [3/30] iter: [154/391] loss_D: 1.3896 loss_G: 0.6923 +2018-11-14 04:20:29,249 | epoch: [3/30] iter: [155/391] loss_D: 1.3892 loss_G: 0.6914 +2018-11-14 04:20:36,119 | epoch: [3/30] iter: [156/391] loss_D: 1.3905 loss_G: 0.6912 +2018-11-14 04:20:43,307 | epoch: [3/30] iter: [157/391] loss_D: 1.3905 loss_G: 0.6916 +2018-11-14 04:20:50,150 | epoch: [3/30] iter: [158/391] loss_D: 1.3908 loss_G: 0.6922 +2018-11-14 04:20:56,750 | epoch: [3/30] iter: [159/391] loss_D: 1.3883 loss_G: 0.6927 +2018-11-14 04:21:03,382 | epoch: [3/30] iter: [160/391] loss_D: 1.3892 loss_G: 0.6926 +2018-11-14 04:21:10,286 | epoch: [3/30] iter: [161/391] loss_D: 1.3910 loss_G: 0.6922 +2018-11-14 04:21:17,571 | epoch: [3/30] iter: [162/391] loss_D: 1.3897 loss_G: 0.6922 +2018-11-14 04:21:24,580 | epoch: [3/30] iter: [163/391] loss_D: 1.3879 loss_G: 0.6930 +2018-11-14 04:21:31,518 | epoch: [3/30] iter: [164/391] loss_D: 1.3886 loss_G: 0.6936 +2018-11-14 04:21:38,519 | epoch: [3/30] iter: [165/391] loss_D: 1.3870 loss_G: 0.6941 +2018-11-14 04:21:45,318 | epoch: [3/30] iter: [166/391] loss_D: 1.3871 loss_G: 0.6942 +2018-11-14 04:21:51,914 | epoch: [3/30] iter: [167/391] loss_D: 1.3865 loss_G: 0.6939 +2018-11-14 04:21:56,045 | epoch: [3/30] iter: [168/391] loss_D: 1.3846 loss_G: 0.6950 +2018-11-14 04:21:59,997 | epoch: [3/30] iter: [169/391] loss_D: 1.3838 loss_G: 0.6950 +2018-11-14 04:22:04,137 | epoch: [3/30] iter: [170/391] loss_D: 1.3859 loss_G: 0.6940 +2018-11-14 04:22:08,105 | epoch: [3/30] iter: [171/391] loss_D: 1.3834 loss_G: 0.6938 +2018-11-14 04:22:12,311 | epoch: [3/30] iter: [172/391] loss_D: 1.3853 loss_G: 0.6928 +2018-11-14 04:22:16,279 | epoch: [3/30] iter: [173/391] loss_D: 1.3831 loss_G: 0.6932 +2018-11-14 04:22:21,382 | epoch: [3/30] iter: [174/391] loss_D: 1.3827 loss_G: 0.6933 +2018-11-14 04:22:28,400 | epoch: [3/30] iter: [175/391] loss_D: 1.3850 loss_G: 0.6927 +2018-11-14 04:22:35,087 | epoch: [3/30] iter: [176/391] loss_D: 1.3819 loss_G: 0.6934 +2018-11-14 04:22:42,239 | epoch: [3/30] iter: [177/391] loss_D: 1.3816 loss_G: 0.6920 +2018-11-14 04:22:49,339 | epoch: [3/30] iter: [178/391] loss_D: 1.3823 loss_G: 0.6931 +2018-11-14 04:22:56,542 | epoch: [3/30] iter: [179/391] loss_D: 1.3810 loss_G: 0.6934 +2018-11-14 04:23:03,334 | epoch: [3/30] iter: [180/391] loss_D: 1.3832 loss_G: 0.6926 +2018-11-14 04:23:10,609 | epoch: [3/30] iter: [181/391] loss_D: 1.3842 loss_G: 0.6926 +2018-11-14 04:23:17,397 | epoch: [3/30] iter: [182/391] loss_D: 1.3797 loss_G: 0.6945 +2018-11-14 04:23:24,270 | epoch: [3/30] iter: [183/391] loss_D: 1.3834 loss_G: 0.6941 +2018-11-14 04:23:31,294 | epoch: [3/30] iter: [184/391] loss_D: 1.3836 loss_G: 0.6927 +2018-11-14 04:23:38,139 | epoch: [3/30] iter: [185/391] loss_D: 1.3843 loss_G: 0.6930 +2018-11-14 04:23:45,275 | epoch: [3/30] iter: [186/391] loss_D: 1.3874 loss_G: 0.6913 +2018-11-14 04:23:52,388 | epoch: [3/30] iter: [187/391] loss_D: 1.3838 loss_G: 0.6925 +2018-11-14 04:23:59,194 | epoch: [3/30] iter: [188/391] loss_D: 1.3868 loss_G: 0.6930 +2018-11-14 04:24:06,407 | epoch: [3/30] iter: [189/391] loss_D: 1.3893 loss_G: 0.6913 +2018-11-14 04:24:10,763 | epoch: [3/30] iter: [190/391] loss_D: 1.3894 loss_G: 0.6940 +2018-11-14 04:24:15,016 | epoch: [3/30] iter: [191/391] loss_D: 1.3895 loss_G: 0.6927 +2018-11-14 04:24:19,166 | epoch: [3/30] iter: [192/391] loss_D: 1.3935 loss_G: 0.6934 +2018-11-14 04:24:23,193 | epoch: [3/30] iter: [193/391] loss_D: 1.3892 loss_G: 0.6959 +2018-11-14 04:24:27,079 | epoch: [3/30] iter: [194/391] loss_D: 1.3875 loss_G: 0.6966 +2018-11-14 04:24:31,365 | epoch: [3/30] iter: [195/391] loss_D: 1.3876 loss_G: 0.6969 +2018-11-14 04:24:38,310 | epoch: [3/30] iter: [196/391] loss_D: 1.3879 loss_G: 0.6953 +2018-11-14 04:24:45,286 | epoch: [3/30] iter: [197/391] loss_D: 1.3879 loss_G: 0.6983 +2018-11-14 04:24:52,190 | epoch: [3/30] iter: [198/391] loss_D: 1.3861 loss_G: 0.6978 +2018-11-14 04:24:59,595 | epoch: [3/30] iter: [199/391] loss_D: 1.3868 loss_G: 0.6971 +2018-11-14 04:25:06,911 | epoch: [3/30] iter: [200/391] loss_D: 1.3845 loss_G: 0.6976 +2018-11-14 04:25:13,898 | epoch: [3/30] iter: [201/391] loss_D: 1.3847 loss_G: 0.6978 +2018-11-14 04:25:21,082 | epoch: [3/30] iter: [202/391] loss_D: 1.3833 loss_G: 0.6964 +2018-11-14 04:25:27,927 | epoch: [3/30] iter: [203/391] loss_D: 1.3842 loss_G: 0.6960 +2018-11-14 04:25:34,863 | epoch: [3/30] iter: [204/391] loss_D: 1.3808 loss_G: 0.6962 +2018-11-14 04:25:41,918 | epoch: [3/30] iter: [205/391] loss_D: 1.3848 loss_G: 0.6957 +2018-11-14 04:25:49,078 | epoch: [3/30] iter: [206/391] loss_D: 1.3823 loss_G: 0.6943 +2018-11-14 04:25:55,930 | epoch: [3/30] iter: [207/391] loss_D: 1.3837 loss_G: 0.6955 +2018-11-14 04:26:03,287 | epoch: [3/30] iter: [208/391] loss_D: 1.3833 loss_G: 0.6932 +2018-11-14 04:26:10,631 | epoch: [3/30] iter: [209/391] loss_D: 1.3841 loss_G: 0.6932 +2018-11-14 04:26:17,748 | epoch: [3/30] iter: [210/391] loss_D: 1.3813 loss_G: 0.6935 +2018-11-14 04:26:24,338 | epoch: [3/30] iter: [211/391] loss_D: 1.3824 loss_G: 0.6905 +2018-11-14 04:26:28,242 | epoch: [3/30] iter: [212/391] loss_D: 1.3820 loss_G: 0.6896 +2018-11-14 04:26:32,499 | epoch: [3/30] iter: [213/391] loss_D: 1.3856 loss_G: 0.6899 +2018-11-14 04:26:36,535 | epoch: [3/30] iter: [214/391] loss_D: 1.3905 loss_G: 0.6881 +2018-11-14 04:26:40,630 | epoch: [3/30] iter: [215/391] loss_D: 1.3851 loss_G: 0.6899 +2018-11-14 04:26:44,765 | epoch: [3/30] iter: [216/391] loss_D: 1.3883 loss_G: 0.6896 +2018-11-14 04:26:48,924 | epoch: [3/30] iter: [217/391] loss_D: 1.3918 loss_G: 0.6908 +2018-11-14 04:26:53,094 | epoch: [3/30] iter: [218/391] loss_D: 1.3902 loss_G: 0.6931 +2018-11-14 04:26:58,496 | epoch: [3/30] iter: [219/391] loss_D: 1.3908 loss_G: 0.6966 +2018-11-14 04:27:03,622 | epoch: [3/30] iter: [220/391] loss_D: 1.3886 loss_G: 0.6957 +2018-11-14 04:27:09,357 | epoch: [3/30] iter: [221/391] loss_D: 1.3908 loss_G: 0.6937 +2018-11-14 04:27:15,330 | epoch: [3/30] iter: [222/391] loss_D: 1.3928 loss_G: 0.6967 +2018-11-14 04:27:20,134 | epoch: [3/30] iter: [223/391] loss_D: 1.3906 loss_G: 0.6970 +2018-11-14 04:27:25,682 | epoch: [3/30] iter: [224/391] loss_D: 1.3887 loss_G: 0.6996 +2018-11-14 04:27:29,899 | epoch: [3/30] iter: [225/391] loss_D: 1.3890 loss_G: 0.7001 +2018-11-14 04:27:34,217 | epoch: [3/30] iter: [226/391] loss_D: 1.3847 loss_G: 0.6997 +2018-11-14 04:27:38,592 | epoch: [3/30] iter: [227/391] loss_D: 1.3852 loss_G: 0.7014 +2018-11-14 04:30:09,992 | epoch: [3/30] iter: [228/391] loss_D: 1.3820 loss_G: 0.7020 +2018-11-14 04:30:14,045 | epoch: [3/30] iter: [229/391] loss_D: 1.3837 loss_G: 0.7003 +2018-11-14 04:30:18,327 | epoch: [3/30] iter: [230/391] loss_D: 1.3832 loss_G: 0.7012 +2018-11-14 04:30:22,759 | epoch: [3/30] iter: [231/391] loss_D: 1.3814 loss_G: 0.6984 +2018-11-14 04:30:29,454 | epoch: [3/30] iter: [232/391] loss_D: 1.3827 loss_G: 0.6979 +2018-11-14 04:30:36,116 | epoch: [3/30] iter: [233/391] loss_D: 1.3816 loss_G: 0.6959 +2018-11-14 04:30:42,850 | epoch: [3/30] iter: [234/391] loss_D: 1.3837 loss_G: 0.6947 +2018-11-14 04:30:49,592 | epoch: [3/30] iter: [235/391] loss_D: 1.3802 loss_G: 0.6932 +2018-11-14 04:30:56,942 | epoch: [3/30] iter: [236/391] loss_D: 1.3811 loss_G: 0.6914 +2018-11-14 04:31:04,201 | epoch: [3/30] iter: [237/391] loss_D: 1.3838 loss_G: 0.6884 +2018-11-14 04:31:11,443 | epoch: [3/30] iter: [238/391] loss_D: 1.3873 loss_G: 0.6879 +2018-11-14 04:31:18,844 | epoch: [3/30] iter: [239/391] loss_D: 1.3812 loss_G: 0.6850 +2018-11-14 04:31:25,735 | epoch: [3/30] iter: [240/391] loss_D: 1.3890 loss_G: 0.6829 +2018-11-14 04:31:33,003 | epoch: [3/30] iter: [241/391] loss_D: 1.3907 loss_G: 0.6831 +2018-11-14 04:31:39,823 | epoch: [3/30] iter: [242/391] loss_D: 1.3971 loss_G: 0.6842 +2018-11-14 04:31:46,626 | epoch: [3/30] iter: [243/391] loss_D: 1.3972 loss_G: 0.6896 +2018-11-14 04:31:53,321 | epoch: [3/30] iter: [244/391] loss_D: 1.3912 loss_G: 0.6914 +2018-11-14 04:32:00,670 | epoch: [3/30] iter: [245/391] loss_D: 1.3924 loss_G: 0.6966 +2018-11-14 04:32:07,722 | epoch: [3/30] iter: [246/391] loss_D: 1.3889 loss_G: 0.6984 +2018-11-14 04:32:14,821 | epoch: [3/30] iter: [247/391] loss_D: 1.3899 loss_G: 0.6971 +2018-11-14 04:32:21,600 | epoch: [3/30] iter: [248/391] loss_D: 1.3917 loss_G: 0.6968 +2018-11-14 04:32:28,654 | epoch: [3/30] iter: [249/391] loss_D: 1.3928 loss_G: 0.6989 +2018-11-14 04:32:35,366 | epoch: [3/30] iter: [250/391] loss_D: 1.3899 loss_G: 0.6989 +2018-11-14 04:32:42,346 | epoch: [3/30] iter: [251/391] loss_D: 1.3896 loss_G: 0.7003 +2018-11-14 04:32:49,204 | epoch: [3/30] iter: [252/391] loss_D: 1.3894 loss_G: 0.6982 +2018-11-14 04:32:55,818 | epoch: [3/30] iter: [253/391] loss_D: 1.3875 loss_G: 0.6998 +2018-11-14 04:33:02,692 | epoch: [3/30] iter: [254/391] loss_D: 1.3870 loss_G: 0.6990 +2018-11-14 04:33:07,480 | epoch: [3/30] iter: [255/391] loss_D: 1.3869 loss_G: 0.7007 +2018-11-14 04:33:11,368 | epoch: [3/30] iter: [256/391] loss_D: 1.3857 loss_G: 0.7006 +2018-11-14 04:33:15,392 | epoch: [3/30] iter: [257/391] loss_D: 1.3861 loss_G: 0.7011 +2018-11-14 04:33:19,572 | epoch: [3/30] iter: [258/391] loss_D: 1.3854 loss_G: 0.7012 +2018-11-14 04:33:23,616 | epoch: [3/30] iter: [259/391] loss_D: 1.3850 loss_G: 0.7008 +2018-11-14 04:33:28,042 | epoch: [3/30] iter: [260/391] loss_D: 1.3860 loss_G: 0.6989 +2018-11-14 04:33:34,837 | epoch: [3/30] iter: [261/391] loss_D: 1.3849 loss_G: 0.6990 +2018-11-14 04:33:41,699 | epoch: [3/30] iter: [262/391] loss_D: 1.3835 loss_G: 0.7005 +2018-11-14 04:33:48,747 | epoch: [3/30] iter: [263/391] loss_D: 1.3857 loss_G: 0.7004 +2018-11-14 04:33:55,637 | epoch: [3/30] iter: [264/391] loss_D: 1.3835 loss_G: 0.7004 +2018-11-14 04:34:03,038 | epoch: [3/30] iter: [265/391] loss_D: 1.3832 loss_G: 0.6995 +2018-11-14 04:34:09,871 | epoch: [3/30] iter: [266/391] loss_D: 1.3869 loss_G: 0.7000 +2018-11-14 04:34:16,670 | epoch: [3/30] iter: [267/391] loss_D: 1.3835 loss_G: 0.7001 +2018-11-14 04:34:23,552 | epoch: [3/30] iter: [268/391] loss_D: 1.3843 loss_G: 0.6976 +2018-11-14 04:34:30,875 | epoch: [3/30] iter: [269/391] loss_D: 1.3858 loss_G: 0.6960 +2018-11-14 04:34:38,110 | epoch: [3/30] iter: [270/391] loss_D: 1.3875 loss_G: 0.6939 +2018-11-14 04:34:45,440 | epoch: [3/30] iter: [271/391] loss_D: 1.3850 loss_G: 0.6942 +2018-11-14 04:34:52,431 | epoch: [3/30] iter: [272/391] loss_D: 1.3858 loss_G: 0.6952 +2018-11-14 04:34:59,682 | epoch: [3/30] iter: [273/391] loss_D: 1.3843 loss_G: 0.6927 +2018-11-14 04:35:06,642 | epoch: [3/30] iter: [274/391] loss_D: 1.3848 loss_G: 0.6929 +2018-11-14 04:35:13,148 | epoch: [3/30] iter: [275/391] loss_D: 1.3854 loss_G: 0.6923 +2018-11-14 04:35:18,520 | epoch: [3/30] iter: [276/391] loss_D: 1.3840 loss_G: 0.6914 +2018-11-14 04:35:22,574 | epoch: [3/30] iter: [277/391] loss_D: 1.3872 loss_G: 0.6899 +2018-11-14 04:35:26,804 | epoch: [3/30] iter: [278/391] loss_D: 1.3858 loss_G: 0.6919 +2018-11-14 04:35:31,047 | epoch: [3/30] iter: [279/391] loss_D: 1.3856 loss_G: 0.6904 +2018-11-14 04:35:35,068 | epoch: [3/30] iter: [280/391] loss_D: 1.3881 loss_G: 0.6908 +2018-11-14 04:35:38,969 | epoch: [3/30] iter: [281/391] loss_D: 1.3870 loss_G: 0.6918 +2018-11-14 04:35:43,291 | epoch: [3/30] iter: [282/391] loss_D: 1.3856 loss_G: 0.6931 +2018-11-14 04:35:47,612 | epoch: [3/30] iter: [283/391] loss_D: 1.3844 loss_G: 0.6908 +2018-11-14 04:35:51,890 | epoch: [3/30] iter: [284/391] loss_D: 1.3839 loss_G: 0.6934 +2018-11-14 04:35:58,037 | epoch: [3/30] iter: [285/391] loss_D: 1.3807 loss_G: 0.6943 +2018-11-14 04:36:02,495 | epoch: [3/30] iter: [286/391] loss_D: 1.3810 loss_G: 0.6931 +2018-11-14 04:36:07,131 | epoch: [3/30] iter: [287/391] loss_D: 1.3834 loss_G: 0.6914 +2018-11-14 04:36:11,624 | epoch: [3/30] iter: [288/391] loss_D: 1.3810 loss_G: 0.6899 +2018-11-14 04:36:16,672 | epoch: [3/30] iter: [289/391] loss_D: 1.3747 loss_G: 0.6943 +2018-11-14 04:36:23,975 | epoch: [3/30] iter: [290/391] loss_D: 1.3799 loss_G: 0.6941 +2018-11-14 04:36:28,777 | epoch: [3/30] iter: [291/391] loss_D: 1.3799 loss_G: 0.6924 +2018-11-14 04:36:32,893 | epoch: [3/30] iter: [292/391] loss_D: 1.3826 loss_G: 0.6910 +2018-11-14 04:36:38,805 | epoch: [3/30] iter: [293/391] loss_D: 1.3768 loss_G: 0.6958 +2018-11-14 04:36:45,494 | epoch: [3/30] iter: [294/391] loss_D: 1.3766 loss_G: 0.6972 +2018-11-14 04:36:51,047 | epoch: [3/30] iter: [295/391] loss_D: 1.3695 loss_G: 0.6976 +2018-11-14 04:36:56,004 | epoch: [3/30] iter: [296/391] loss_D: 1.3791 loss_G: 0.6942 +2018-11-14 04:37:00,407 | epoch: [3/30] iter: [297/391] loss_D: 1.3706 loss_G: 0.7018 +2018-11-14 04:37:04,736 | epoch: [3/30] iter: [298/391] loss_D: 1.3757 loss_G: 0.7066 +2018-11-14 04:37:09,171 | epoch: [3/30] iter: [299/391] loss_D: 1.3788 loss_G: 0.7111 +2018-11-14 04:37:15,293 | epoch: [3/30] iter: [300/391] loss_D: 1.3796 loss_G: 0.7074 +2018-11-14 04:37:21,949 | epoch: [3/30] iter: [301/391] loss_D: 1.3746 loss_G: 0.7089 +2018-11-14 04:37:27,658 | epoch: [3/30] iter: [302/391] loss_D: 1.3835 loss_G: 0.7046 +2018-11-14 04:37:32,670 | epoch: [3/30] iter: [303/391] loss_D: 1.3828 loss_G: 0.7005 +2018-11-14 04:37:37,232 | epoch: [3/30] iter: [304/391] loss_D: 1.3863 loss_G: 0.6961 +2018-11-14 04:37:42,856 | epoch: [3/30] iter: [305/391] loss_D: 1.3879 loss_G: 0.6936 +2018-11-14 04:37:49,543 | epoch: [3/30] iter: [306/391] loss_D: 1.3863 loss_G: 0.6947 +2018-11-14 04:37:55,455 | epoch: [3/30] iter: [307/391] loss_D: 1.3866 loss_G: 0.6924 +2018-11-14 04:38:00,528 | epoch: [3/30] iter: [308/391] loss_D: 1.3853 loss_G: 0.6879 +2018-11-14 04:38:06,039 | epoch: [3/30] iter: [309/391] loss_D: 1.3836 loss_G: 0.6860 +2018-11-14 04:38:10,614 | epoch: [3/30] iter: [310/391] loss_D: 1.3873 loss_G: 0.6866 +2018-11-14 04:38:15,070 | epoch: [3/30] iter: [311/391] loss_D: 1.3959 loss_G: 0.6851 +2018-11-14 04:38:19,691 | epoch: [3/30] iter: [312/391] loss_D: 1.3970 loss_G: 0.6867 +2018-11-14 04:38:24,107 | epoch: [3/30] iter: [313/391] loss_D: 1.3963 loss_G: 0.6904 +2018-11-14 04:38:31,666 | epoch: [3/30] iter: [314/391] loss_D: 1.4003 loss_G: 0.6923 +2018-11-14 04:38:36,641 | epoch: [3/30] iter: [315/391] loss_D: 1.3922 loss_G: 0.6903 +2018-11-14 04:38:40,971 | epoch: [3/30] iter: [316/391] loss_D: 1.3999 loss_G: 0.6956 +2018-11-14 04:38:45,316 | epoch: [3/30] iter: [317/391] loss_D: 1.3961 loss_G: 0.7000 +2018-11-14 04:38:50,396 | epoch: [3/30] iter: [318/391] loss_D: 1.3931 loss_G: 0.7045 +2018-11-14 04:38:55,670 | epoch: [3/30] iter: [319/391] loss_D: 1.3932 loss_G: 0.7064 +2018-11-14 04:39:01,839 | epoch: [3/30] iter: [320/391] loss_D: 1.3907 loss_G: 0.7071 +2018-11-14 04:39:07,991 | epoch: [3/30] iter: [321/391] loss_D: 1.3896 loss_G: 0.7076 +2018-11-14 04:39:12,833 | epoch: [3/30] iter: [322/391] loss_D: 1.3848 loss_G: 0.7067 +2018-11-14 04:39:17,070 | epoch: [3/30] iter: [323/391] loss_D: 1.3874 loss_G: 0.7070 +2018-11-14 04:39:21,772 | epoch: [3/30] iter: [324/391] loss_D: 1.3889 loss_G: 0.7026 +2018-11-14 04:39:26,298 | epoch: [3/30] iter: [325/391] loss_D: 1.3921 loss_G: 0.7010 +2018-11-14 04:39:33,250 | epoch: [3/30] iter: [326/391] loss_D: 1.3907 loss_G: 0.6973 +2018-11-14 04:39:38,857 | epoch: [3/30] iter: [327/391] loss_D: 1.3914 loss_G: 0.6966 +2018-11-14 04:42:23,289 | epoch: [3/30] iter: [328/391] loss_D: 1.3914 loss_G: 0.6960 +2018-11-14 04:42:30,082 | epoch: [3/30] iter: [329/391] loss_D: 1.3924 loss_G: 0.6934 +2018-11-14 04:42:36,524 | epoch: [3/30] iter: [330/391] loss_D: 1.3925 loss_G: 0.6933 +2018-11-14 04:42:43,041 | epoch: [3/30] iter: [331/391] loss_D: 1.3878 loss_G: 0.6922 +2018-11-14 04:42:50,223 | epoch: [3/30] iter: [332/391] loss_D: 1.3881 loss_G: 0.6933 +2018-11-14 04:42:57,611 | epoch: [3/30] iter: [333/391] loss_D: 1.3873 loss_G: 0.6924 +2018-11-14 04:43:05,078 | epoch: [3/30] iter: [334/391] loss_D: 1.3862 loss_G: 0.6928 +2018-11-14 04:43:11,630 | epoch: [3/30] iter: [335/391] loss_D: 1.3849 loss_G: 0.6936 +2018-11-14 04:43:18,632 | epoch: [3/30] iter: [336/391] loss_D: 1.3842 loss_G: 0.6934 +2018-11-14 04:43:25,859 | epoch: [3/30] iter: [337/391] loss_D: 1.3850 loss_G: 0.6936 +2018-11-14 04:43:32,815 | epoch: [3/30] iter: [338/391] loss_D: 1.3840 loss_G: 0.6932 +2018-11-14 04:43:39,691 | epoch: [3/30] iter: [339/391] loss_D: 1.3846 loss_G: 0.6937 +2018-11-14 04:43:46,897 | epoch: [3/30] iter: [340/391] loss_D: 1.3868 loss_G: 0.6914 +2018-11-14 04:43:54,405 | epoch: [3/30] iter: [341/391] loss_D: 1.3808 loss_G: 0.6907 +2018-11-14 04:44:01,133 | epoch: [3/30] iter: [342/391] loss_D: 1.3850 loss_G: 0.6896 +2018-11-14 04:44:08,199 | epoch: [3/30] iter: [343/391] loss_D: 1.3903 loss_G: 0.6872 +2018-11-14 04:44:14,812 | epoch: [3/30] iter: [344/391] loss_D: 1.3922 loss_G: 0.6909 +2018-11-14 04:44:21,639 | epoch: [3/30] iter: [345/391] loss_D: 1.3869 loss_G: 0.6907 +2018-11-14 04:44:28,464 | epoch: [3/30] iter: [346/391] loss_D: 1.3887 loss_G: 0.6922 +2018-11-14 04:44:35,729 | epoch: [3/30] iter: [347/391] loss_D: 1.3880 loss_G: 0.6934 +2018-11-14 04:44:42,971 | epoch: [3/30] iter: [348/391] loss_D: 1.3893 loss_G: 0.6959 +2018-11-14 04:44:49,478 | epoch: [3/30] iter: [349/391] loss_D: 1.3864 loss_G: 0.6948 +2018-11-14 04:44:56,163 | epoch: [3/30] iter: [350/391] loss_D: 1.3888 loss_G: 0.6946 +2018-11-14 04:45:03,372 | epoch: [3/30] iter: [351/391] loss_D: 1.3863 loss_G: 0.6965 +2018-11-14 04:45:10,536 | epoch: [3/30] iter: [352/391] loss_D: 1.3868 loss_G: 0.6957 +2018-11-14 04:45:15,581 | epoch: [3/30] iter: [353/391] loss_D: 1.3875 loss_G: 0.6962 +2018-11-14 04:45:19,760 | epoch: [3/30] iter: [354/391] loss_D: 1.3868 loss_G: 0.6957 +2018-11-14 04:45:23,938 | epoch: [3/30] iter: [355/391] loss_D: 1.3865 loss_G: 0.6953 +2018-11-14 04:45:28,117 | epoch: [3/30] iter: [356/391] loss_D: 1.3874 loss_G: 0.6957 +2018-11-14 04:45:32,198 | epoch: [3/30] iter: [357/391] loss_D: 1.3849 loss_G: 0.6969 +2018-11-14 04:45:36,156 | epoch: [3/30] iter: [358/391] loss_D: 1.3866 loss_G: 0.6960 +2018-11-14 04:45:40,190 | epoch: [3/30] iter: [359/391] loss_D: 1.3873 loss_G: 0.6956 +2018-11-14 04:45:44,280 | epoch: [3/30] iter: [360/391] loss_D: 1.3861 loss_G: 0.6957 +2018-11-14 04:45:48,325 | epoch: [3/30] iter: [361/391] loss_D: 1.3849 loss_G: 0.6956 +2018-11-14 04:45:55,234 | epoch: [3/30] iter: [362/391] loss_D: 1.3862 loss_G: 0.6947 +2018-11-14 04:46:01,903 | epoch: [3/30] iter: [363/391] loss_D: 1.3868 loss_G: 0.6954 +2018-11-14 04:46:08,495 | epoch: [3/30] iter: [364/391] loss_D: 1.3862 loss_G: 0.6954 +2018-11-14 04:46:15,256 | epoch: [3/30] iter: [365/391] loss_D: 1.3854 loss_G: 0.6953 +2018-11-14 04:46:21,914 | epoch: [3/30] iter: [366/391] loss_D: 1.3840 loss_G: 0.6961 +2018-11-14 04:46:28,807 | epoch: [3/30] iter: [367/391] loss_D: 1.3853 loss_G: 0.6944 +2018-11-14 04:46:35,758 | epoch: [3/30] iter: [368/391] loss_D: 1.3865 loss_G: 0.6950 +2018-11-14 04:46:42,957 | epoch: [3/30] iter: [369/391] loss_D: 1.3871 loss_G: 0.6936 +2018-11-14 04:46:50,081 | epoch: [3/30] iter: [370/391] loss_D: 1.3868 loss_G: 0.6942 +2018-11-14 04:46:57,091 | epoch: [3/30] iter: [371/391] loss_D: 1.3868 loss_G: 0.6935 +2018-11-14 04:47:03,813 | epoch: [3/30] iter: [372/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-14 04:47:11,146 | epoch: [3/30] iter: [373/391] loss_D: 1.3873 loss_G: 0.6934 +2018-11-14 04:47:18,615 | epoch: [3/30] iter: [374/391] loss_D: 1.3855 loss_G: 0.6946 +2018-11-14 04:47:25,207 | epoch: [3/30] iter: [375/391] loss_D: 1.3858 loss_G: 0.6930 +2018-11-14 04:47:29,460 | epoch: [3/30] iter: [376/391] loss_D: 1.3872 loss_G: 0.6934 +2018-11-14 04:47:33,445 | epoch: [3/30] iter: [377/391] loss_D: 1.3873 loss_G: 0.6939 +2018-11-14 04:47:37,611 | epoch: [3/30] iter: [378/391] loss_D: 1.3874 loss_G: 0.6939 +2018-11-14 04:47:41,532 | epoch: [3/30] iter: [379/391] loss_D: 1.3872 loss_G: 0.6940 +2018-11-14 04:47:45,561 | epoch: [3/30] iter: [380/391] loss_D: 1.3876 loss_G: 0.6931 +2018-11-14 04:47:49,654 | epoch: [3/30] iter: [381/391] loss_D: 1.3879 loss_G: 0.6932 +2018-11-14 04:47:54,644 | epoch: [3/30] iter: [382/391] loss_D: 1.3865 loss_G: 0.6933 +2018-11-14 04:48:01,538 | epoch: [3/30] iter: [383/391] loss_D: 1.3865 loss_G: 0.6938 +2018-11-14 04:48:08,695 | epoch: [3/30] iter: [384/391] loss_D: 1.3869 loss_G: 0.6933 +2018-11-14 04:48:16,049 | epoch: [3/30] iter: [385/391] loss_D: 1.3870 loss_G: 0.6939 +2018-11-14 04:48:23,014 | epoch: [3/30] iter: [386/391] loss_D: 1.3849 loss_G: 0.6945 +2018-11-14 04:48:29,938 | epoch: [3/30] iter: [387/391] loss_D: 1.3844 loss_G: 0.6947 +2018-11-14 04:48:37,035 | epoch: [3/30] iter: [388/391] loss_D: 1.3854 loss_G: 0.6939 +2018-11-14 04:48:44,118 | epoch: [3/30] iter: [389/391] loss_D: 1.3858 loss_G: 0.6948 +2018-11-14 04:48:48,667 | epoch: [3/30] iter: [390/391] loss_D: 1.3865 loss_G: 0.6929 +2018-11-14 04:48:56,511 | epoch: [4/30] iter: [0/391] loss_D: 1.3854 loss_G: 0.6941 +2018-11-14 04:49:03,171 | epoch: [4/30] iter: [1/391] loss_D: 1.3847 loss_G: 0.6948 +2018-11-14 04:49:10,203 | epoch: [4/30] iter: [2/391] loss_D: 1.3853 loss_G: 0.6934 +2018-11-14 04:49:16,958 | epoch: [4/30] iter: [3/391] loss_D: 1.3848 loss_G: 0.6939 +2018-11-14 04:49:22,640 | epoch: [4/30] iter: [4/391] loss_D: 1.3855 loss_G: 0.6938 +2018-11-14 04:49:26,630 | epoch: [4/30] iter: [5/391] loss_D: 1.3835 loss_G: 0.6937 +2018-11-14 04:49:30,706 | epoch: [4/30] iter: [6/391] loss_D: 1.3832 loss_G: 0.6937 +2018-11-14 04:49:34,932 | epoch: [4/30] iter: [7/391] loss_D: 1.3867 loss_G: 0.6929 +2018-11-14 04:49:38,973 | epoch: [4/30] iter: [8/391] loss_D: 1.3830 loss_G: 0.6936 +2018-11-14 04:49:43,248 | epoch: [4/30] iter: [9/391] loss_D: 1.3854 loss_G: 0.6935 +2018-11-14 04:49:49,624 | epoch: [4/30] iter: [10/391] loss_D: 1.3846 loss_G: 0.6943 +2018-11-14 04:49:57,073 | epoch: [4/30] iter: [11/391] loss_D: 1.3858 loss_G: 0.6933 +2018-11-14 04:50:03,974 | epoch: [4/30] iter: [12/391] loss_D: 1.3830 loss_G: 0.6953 +2018-11-14 04:50:10,696 | epoch: [4/30] iter: [13/391] loss_D: 1.3827 loss_G: 0.6943 +2018-11-14 04:50:17,333 | epoch: [4/30] iter: [14/391] loss_D: 1.3833 loss_G: 0.6926 +2018-11-14 04:50:21,159 | epoch: [4/30] iter: [15/391] loss_D: 1.3845 loss_G: 0.6936 +2018-11-14 04:50:25,413 | epoch: [4/30] iter: [16/391] loss_D: 1.3845 loss_G: 0.6925 +2018-11-14 04:50:29,735 | epoch: [4/30] iter: [17/391] loss_D: 1.3833 loss_G: 0.6938 +2018-11-14 04:50:33,866 | epoch: [4/30] iter: [18/391] loss_D: 1.3860 loss_G: 0.6907 +2018-11-14 04:50:37,863 | epoch: [4/30] iter: [19/391] loss_D: 1.3844 loss_G: 0.6923 +2018-11-14 04:50:42,926 | epoch: [4/30] iter: [20/391] loss_D: 1.3865 loss_G: 0.6921 +2018-11-14 04:50:50,467 | epoch: [4/30] iter: [21/391] loss_D: 1.3859 loss_G: 0.6910 +2018-11-14 04:50:57,631 | epoch: [4/30] iter: [22/391] loss_D: 1.3884 loss_G: 0.6908 +2018-11-14 04:51:04,276 | epoch: [4/30] iter: [23/391] loss_D: 1.3883 loss_G: 0.6916 +2018-11-14 04:51:10,960 | epoch: [4/30] iter: [24/391] loss_D: 1.3863 loss_G: 0.6927 +2018-11-14 04:51:18,037 | epoch: [4/30] iter: [25/391] loss_D: 1.3871 loss_G: 0.6916 +2018-11-14 04:51:25,110 | epoch: [4/30] iter: [26/391] loss_D: 1.3877 loss_G: 0.6930 +2018-11-14 04:51:32,284 | epoch: [4/30] iter: [27/391] loss_D: 1.3892 loss_G: 0.6922 +2018-11-14 04:51:39,169 | epoch: [4/30] iter: [28/391] loss_D: 1.3865 loss_G: 0.6946 +2018-11-14 04:51:45,474 | epoch: [4/30] iter: [29/391] loss_D: 1.3858 loss_G: 0.6944 +2018-11-14 04:51:49,743 | epoch: [4/30] iter: [30/391] loss_D: 1.3859 loss_G: 0.6967 +2018-11-14 04:51:53,969 | epoch: [4/30] iter: [31/391] loss_D: 1.3883 loss_G: 0.6947 +2018-11-14 04:51:58,110 | epoch: [4/30] iter: [32/391] loss_D: 1.3886 loss_G: 0.6963 +2018-11-14 04:52:01,965 | epoch: [4/30] iter: [33/391] loss_D: 1.3882 loss_G: 0.6966 +2018-11-14 04:52:06,112 | epoch: [4/30] iter: [34/391] loss_D: 1.3869 loss_G: 0.6979 +2018-11-14 04:52:11,007 | epoch: [4/30] iter: [35/391] loss_D: 1.3866 loss_G: 0.6987 +2018-11-14 04:52:18,147 | epoch: [4/30] iter: [36/391] loss_D: 1.3874 loss_G: 0.6987 +2018-11-14 04:55:11,006 | epoch: [4/30] iter: [37/391] loss_D: 1.3892 loss_G: 0.6959 +2018-11-14 04:55:15,039 | epoch: [4/30] iter: [38/391] loss_D: 1.3874 loss_G: 0.6972 +2018-11-14 04:55:19,336 | epoch: [4/30] iter: [39/391] loss_D: 1.3856 loss_G: 0.6966 +2018-11-14 04:55:23,761 | epoch: [4/30] iter: [40/391] loss_D: 1.3879 loss_G: 0.6935 +2018-11-14 04:55:29,887 | epoch: [4/30] iter: [41/391] loss_D: 1.3857 loss_G: 0.6956 +2018-11-14 04:55:37,356 | epoch: [4/30] iter: [42/391] loss_D: 1.3854 loss_G: 0.6938 +2018-11-14 04:55:44,831 | epoch: [4/30] iter: [43/391] loss_D: 1.3867 loss_G: 0.6932 +2018-11-14 04:55:51,998 | epoch: [4/30] iter: [44/391] loss_D: 1.3853 loss_G: 0.6935 +2018-11-14 04:55:58,741 | epoch: [4/30] iter: [45/391] loss_D: 1.3859 loss_G: 0.6923 +2018-11-14 04:56:06,027 | epoch: [4/30] iter: [46/391] loss_D: 1.3859 loss_G: 0.6930 +2018-11-14 04:56:13,084 | epoch: [4/30] iter: [47/391] loss_D: 1.3860 loss_G: 0.6930 +2018-11-14 04:56:19,879 | epoch: [4/30] iter: [48/391] loss_D: 1.3854 loss_G: 0.6939 +2018-11-14 04:56:26,678 | epoch: [4/30] iter: [49/391] loss_D: 1.3856 loss_G: 0.6903 +2018-11-14 04:56:33,871 | epoch: [4/30] iter: [50/391] loss_D: 1.3851 loss_G: 0.6923 +2018-11-14 04:56:40,483 | epoch: [4/30] iter: [51/391] loss_D: 1.3889 loss_G: 0.6903 +2018-11-14 04:56:47,192 | epoch: [4/30] iter: [52/391] loss_D: 1.3879 loss_G: 0.6945 +2018-11-14 04:56:54,263 | epoch: [4/30] iter: [53/391] loss_D: 1.3859 loss_G: 0.6938 +2018-11-14 04:57:01,169 | epoch: [4/30] iter: [54/391] loss_D: 1.3903 loss_G: 0.6941 +2018-11-14 04:57:08,264 | epoch: [4/30] iter: [55/391] loss_D: 1.3858 loss_G: 0.6954 +2018-11-14 04:57:14,840 | epoch: [4/30] iter: [56/391] loss_D: 1.3865 loss_G: 0.6962 +2018-11-14 04:57:21,787 | epoch: [4/30] iter: [57/391] loss_D: 1.3868 loss_G: 0.6962 +2018-11-14 04:57:28,927 | epoch: [4/30] iter: [58/391] loss_D: 1.3881 loss_G: 0.6948 +2018-11-14 04:57:36,106 | epoch: [4/30] iter: [59/391] loss_D: 1.3859 loss_G: 0.6971 +2018-11-14 04:57:40,441 | epoch: [4/30] iter: [60/391] loss_D: 1.3874 loss_G: 0.6958 +2018-11-14 04:57:44,494 | epoch: [4/30] iter: [61/391] loss_D: 1.3864 loss_G: 0.6970 +2018-11-14 04:57:48,560 | epoch: [4/30] iter: [62/391] loss_D: 1.3863 loss_G: 0.6968 +2018-11-14 04:57:52,753 | epoch: [4/30] iter: [63/391] loss_D: 1.3867 loss_G: 0.6970 +2018-11-14 04:57:56,722 | epoch: [4/30] iter: [64/391] loss_D: 1.3856 loss_G: 0.6972 +2018-11-14 04:58:00,784 | epoch: [4/30] iter: [65/391] loss_D: 1.3849 loss_G: 0.6977 +2018-11-14 04:58:04,966 | epoch: [4/30] iter: [66/391] loss_D: 1.3856 loss_G: 0.6986 +2018-11-14 04:58:09,026 | epoch: [4/30] iter: [67/391] loss_D: 1.3846 loss_G: 0.6985 +2018-11-14 04:58:13,351 | epoch: [4/30] iter: [68/391] loss_D: 1.3848 loss_G: 0.6985 +2018-11-14 04:58:18,046 | epoch: [4/30] iter: [69/391] loss_D: 1.3861 loss_G: 0.6974 +2018-11-14 04:58:23,881 | epoch: [4/30] iter: [70/391] loss_D: 1.3841 loss_G: 0.6967 +2018-11-14 04:58:28,427 | epoch: [4/30] iter: [71/391] loss_D: 1.3853 loss_G: 0.6983 +2018-11-14 04:58:33,063 | epoch: [4/30] iter: [72/391] loss_D: 1.3848 loss_G: 0.6977 +2018-11-14 04:58:40,615 | epoch: [4/30] iter: [73/391] loss_D: 1.3847 loss_G: 0.6956 +2018-11-14 04:58:45,541 | epoch: [4/30] iter: [74/391] loss_D: 1.3871 loss_G: 0.6953 +2018-11-14 04:58:49,797 | epoch: [4/30] iter: [75/391] loss_D: 1.3875 loss_G: 0.6958 +2018-11-14 04:58:53,999 | epoch: [4/30] iter: [76/391] loss_D: 1.3872 loss_G: 0.6940 +2018-11-14 04:58:58,951 | epoch: [4/30] iter: [77/391] loss_D: 1.3875 loss_G: 0.6931 +2018-11-14 04:59:04,648 | epoch: [4/30] iter: [78/391] loss_D: 1.3898 loss_G: 0.6911 +2018-11-14 04:59:10,949 | epoch: [4/30] iter: [79/391] loss_D: 1.3874 loss_G: 0.6920 +2018-11-14 04:59:16,493 | epoch: [4/30] iter: [80/391] loss_D: 1.3867 loss_G: 0.6936 +2018-11-14 04:59:21,559 | epoch: [4/30] iter: [81/391] loss_D: 1.3887 loss_G: 0.6920 +2018-11-14 04:59:27,492 | epoch: [4/30] iter: [82/391] loss_D: 1.3895 loss_G: 0.6904 +2018-11-14 04:59:31,851 | epoch: [4/30] iter: [83/391] loss_D: 1.3872 loss_G: 0.6933 +2018-11-14 04:59:36,429 | epoch: [4/30] iter: [84/391] loss_D: 1.3884 loss_G: 0.6923 +2018-11-14 04:59:40,839 | epoch: [4/30] iter: [85/391] loss_D: 1.3888 loss_G: 0.6915 +2018-11-14 04:59:45,650 | epoch: [4/30] iter: [86/391] loss_D: 1.3871 loss_G: 0.6930 +2018-11-14 04:59:53,154 | epoch: [4/30] iter: [87/391] loss_D: 1.3872 loss_G: 0.6925 +2018-11-14 04:59:58,040 | epoch: [4/30] iter: [88/391] loss_D: 1.3875 loss_G: 0.6923 +2018-11-14 05:00:03,719 | epoch: [4/30] iter: [89/391] loss_D: 1.3878 loss_G: 0.6937 +2018-11-14 05:00:07,846 | epoch: [4/30] iter: [90/391] loss_D: 1.3873 loss_G: 0.6934 +2018-11-14 05:00:12,432 | epoch: [4/30] iter: [91/391] loss_D: 1.3883 loss_G: 0.6931 +2018-11-14 05:00:16,631 | epoch: [4/30] iter: [92/391] loss_D: 1.3860 loss_G: 0.6937 +2018-11-14 05:00:20,666 | epoch: [4/30] iter: [93/391] loss_D: 1.3872 loss_G: 0.6934 +2018-11-14 05:00:25,026 | epoch: [4/30] iter: [94/391] loss_D: 1.3866 loss_G: 0.6937 +2018-11-14 05:00:31,110 | epoch: [4/30] iter: [95/391] loss_D: 1.3870 loss_G: 0.6932 +2018-11-14 05:00:37,071 | epoch: [4/30] iter: [96/391] loss_D: 1.3876 loss_G: 0.6932 +2018-11-14 05:00:41,959 | epoch: [4/30] iter: [97/391] loss_D: 1.3867 loss_G: 0.6935 +2018-11-14 05:00:47,933 | epoch: [4/30] iter: [98/391] loss_D: 1.3865 loss_G: 0.6935 +2018-11-14 05:00:53,876 | epoch: [4/30] iter: [99/391] loss_D: 1.3865 loss_G: 0.6940 +2018-11-14 05:00:59,007 | epoch: [4/30] iter: [100/391] loss_D: 1.3872 loss_G: 0.6939 +2018-11-14 05:01:04,425 | epoch: [4/30] iter: [101/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-14 05:01:08,862 | epoch: [4/30] iter: [102/391] loss_D: 1.3861 loss_G: 0.6945 +2018-11-14 05:01:13,944 | epoch: [4/30] iter: [103/391] loss_D: 1.3863 loss_G: 0.6942 +2018-11-14 05:01:21,642 | epoch: [4/30] iter: [104/391] loss_D: 1.3860 loss_G: 0.6941 +2018-11-14 05:01:26,130 | epoch: [4/30] iter: [105/391] loss_D: 1.3853 loss_G: 0.6946 +2018-11-14 05:01:30,712 | epoch: [4/30] iter: [106/391] loss_D: 1.3854 loss_G: 0.6940 +2018-11-14 05:01:36,472 | epoch: [4/30] iter: [107/391] loss_D: 1.3856 loss_G: 0.6945 +2018-11-14 05:01:42,937 | epoch: [4/30] iter: [108/391] loss_D: 1.3851 loss_G: 0.6948 +2018-11-14 05:01:48,692 | epoch: [4/30] iter: [109/391] loss_D: 1.3860 loss_G: 0.6947 +2018-11-14 05:01:53,952 | epoch: [4/30] iter: [110/391] loss_D: 1.3844 loss_G: 0.6946 +2018-11-14 05:01:59,788 | epoch: [4/30] iter: [111/391] loss_D: 1.3866 loss_G: 0.6935 +2018-11-14 05:02:04,316 | epoch: [4/30] iter: [112/391] loss_D: 1.3846 loss_G: 0.6950 +2018-11-14 05:02:08,842 | epoch: [4/30] iter: [113/391] loss_D: 1.3849 loss_G: 0.6947 +2018-11-14 05:02:13,263 | epoch: [4/30] iter: [114/391] loss_D: 1.3858 loss_G: 0.6947 +2018-11-14 05:02:18,051 | epoch: [4/30] iter: [115/391] loss_D: 1.3841 loss_G: 0.6952 +2018-11-14 05:02:22,350 | epoch: [4/30] iter: [116/391] loss_D: 1.3838 loss_G: 0.6947 +2018-11-14 05:02:28,281 | epoch: [4/30] iter: [117/391] loss_D: 1.3872 loss_G: 0.6934 +2018-11-14 05:02:34,630 | epoch: [4/30] iter: [118/391] loss_D: 1.3862 loss_G: 0.6946 +2018-11-14 05:02:39,078 | epoch: [4/30] iter: [119/391] loss_D: 1.3853 loss_G: 0.6951 +2018-11-14 05:02:43,327 | epoch: [4/30] iter: [120/391] loss_D: 1.3862 loss_G: 0.6937 +2018-11-14 05:02:49,592 | epoch: [4/30] iter: [121/391] loss_D: 1.3860 loss_G: 0.6949 +2018-11-14 05:02:55,808 | epoch: [4/30] iter: [122/391] loss_D: 1.3866 loss_G: 0.6947 +2018-11-14 05:03:01,918 | epoch: [4/30] iter: [123/391] loss_D: 1.3861 loss_G: 0.6948 +2018-11-14 05:03:07,418 | epoch: [4/30] iter: [124/391] loss_D: 1.3858 loss_G: 0.6939 +2018-11-14 05:03:12,823 | epoch: [4/30] iter: [125/391] loss_D: 1.3856 loss_G: 0.6953 +2018-11-14 05:03:17,137 | epoch: [4/30] iter: [126/391] loss_D: 1.3853 loss_G: 0.6958 +2018-11-14 05:03:21,649 | epoch: [4/30] iter: [127/391] loss_D: 1.3856 loss_G: 0.6944 +2018-11-14 05:03:29,382 | epoch: [4/30] iter: [128/391] loss_D: 1.3852 loss_G: 0.6961 +2018-11-14 05:03:34,216 | epoch: [4/30] iter: [129/391] loss_D: 1.3852 loss_G: 0.6957 +2018-11-14 05:03:38,521 | epoch: [4/30] iter: [130/391] loss_D: 1.3855 loss_G: 0.6950 +2018-11-14 05:03:44,377 | epoch: [4/30] iter: [131/391] loss_D: 1.3847 loss_G: 0.6952 +2018-11-14 05:03:50,969 | epoch: [4/30] iter: [132/391] loss_D: 1.3853 loss_G: 0.6947 +2018-11-14 05:03:55,658 | epoch: [4/30] iter: [133/391] loss_D: 1.3851 loss_G: 0.6949 +2018-11-14 05:04:00,134 | epoch: [4/30] iter: [134/391] loss_D: 1.3854 loss_G: 0.6944 +2018-11-14 05:04:04,566 | epoch: [4/30] iter: [135/391] loss_D: 1.3833 loss_G: 0.6943 +2018-11-14 05:04:08,952 | epoch: [4/30] iter: [136/391] loss_D: 1.3855 loss_G: 0.6936 +2018-11-14 05:06:46,197 | epoch: [4/30] iter: [137/391] loss_D: 1.3863 loss_G: 0.6927 +2018-11-14 05:06:50,407 | epoch: [4/30] iter: [138/391] loss_D: 1.3869 loss_G: 0.6924 +2018-11-14 05:06:54,465 | epoch: [4/30] iter: [139/391] loss_D: 1.3879 loss_G: 0.6917 +2018-11-14 05:06:58,546 | epoch: [4/30] iter: [140/391] loss_D: 1.3890 loss_G: 0.6903 +2018-11-14 05:07:03,496 | epoch: [4/30] iter: [141/391] loss_D: 1.3911 loss_G: 0.6889 +2018-11-14 05:07:09,179 | epoch: [4/30] iter: [142/391] loss_D: 1.3932 loss_G: 0.6881 +2018-11-14 05:07:15,193 | epoch: [4/30] iter: [143/391] loss_D: 1.3929 loss_G: 0.6903 +2018-11-14 05:07:20,671 | epoch: [4/30] iter: [144/391] loss_D: 1.3904 loss_G: 0.6914 +2018-11-14 05:07:25,973 | epoch: [4/30] iter: [145/391] loss_D: 1.3902 loss_G: 0.6926 +2018-11-14 05:07:31,817 | epoch: [4/30] iter: [146/391] loss_D: 1.3874 loss_G: 0.6946 +2018-11-14 05:07:37,825 | epoch: [4/30] iter: [147/391] loss_D: 1.3849 loss_G: 0.6961 +2018-11-14 05:07:42,345 | epoch: [4/30] iter: [148/391] loss_D: 1.3839 loss_G: 0.6970 +2018-11-14 05:07:46,688 | epoch: [4/30] iter: [149/391] loss_D: 1.3845 loss_G: 0.6973 +2018-11-14 05:07:52,560 | epoch: [4/30] iter: [150/391] loss_D: 1.3821 loss_G: 0.6982 +2018-11-14 05:07:59,224 | epoch: [4/30] iter: [151/391] loss_D: 1.3814 loss_G: 0.6999 +2018-11-14 05:08:03,565 | epoch: [4/30] iter: [152/391] loss_D: 1.3812 loss_G: 0.6994 +2018-11-14 05:08:07,779 | epoch: [4/30] iter: [153/391] loss_D: 1.3819 loss_G: 0.6993 +2018-11-14 05:08:12,097 | epoch: [4/30] iter: [154/391] loss_D: 1.3818 loss_G: 0.6980 +2018-11-14 05:08:16,421 | epoch: [4/30] iter: [155/391] loss_D: 1.3811 loss_G: 0.6969 +2018-11-14 05:08:23,256 | epoch: [4/30] iter: [156/391] loss_D: 1.3823 loss_G: 0.6953 +2018-11-14 05:08:28,649 | epoch: [4/30] iter: [157/391] loss_D: 1.3848 loss_G: 0.6942 +2018-11-14 05:08:32,978 | epoch: [4/30] iter: [158/391] loss_D: 1.3841 loss_G: 0.6917 +2018-11-14 05:08:37,021 | epoch: [4/30] iter: [159/391] loss_D: 1.3854 loss_G: 0.6920 +2018-11-14 05:08:41,411 | epoch: [4/30] iter: [160/391] loss_D: 1.3873 loss_G: 0.6922 +2018-11-14 05:08:47,680 | epoch: [4/30] iter: [161/391] loss_D: 1.3857 loss_G: 0.6913 +2018-11-14 05:08:53,332 | epoch: [4/30] iter: [162/391] loss_D: 1.3871 loss_G: 0.6914 +2018-11-14 05:08:58,596 | epoch: [4/30] iter: [163/391] loss_D: 1.3826 loss_G: 0.6939 +2018-11-14 05:09:04,588 | epoch: [4/30] iter: [164/391] loss_D: 1.3837 loss_G: 0.6929 +2018-11-14 05:09:10,813 | epoch: [4/30] iter: [165/391] loss_D: 1.3829 loss_G: 0.6918 +2018-11-14 05:09:16,303 | epoch: [4/30] iter: [166/391] loss_D: 1.3833 loss_G: 0.6926 +2018-11-14 05:09:21,533 | epoch: [4/30] iter: [167/391] loss_D: 1.3879 loss_G: 0.6885 +2018-11-14 05:09:25,920 | epoch: [4/30] iter: [168/391] loss_D: 1.3862 loss_G: 0.6897 +2018-11-14 05:09:30,773 | epoch: [4/30] iter: [169/391] loss_D: 1.3857 loss_G: 0.6889 +2018-11-14 05:09:38,116 | epoch: [4/30] iter: [170/391] loss_D: 1.3884 loss_G: 0.6887 +2018-11-14 05:09:43,258 | epoch: [4/30] iter: [171/391] loss_D: 1.3876 loss_G: 0.6903 +2018-11-14 05:09:49,089 | epoch: [4/30] iter: [172/391] loss_D: 1.3922 loss_G: 0.6898 +2018-11-14 05:09:53,517 | epoch: [4/30] iter: [173/391] loss_D: 1.3871 loss_G: 0.6920 +2018-11-14 05:09:58,449 | epoch: [4/30] iter: [174/391] loss_D: 1.3916 loss_G: 0.6914 +2018-11-14 05:10:06,164 | epoch: [4/30] iter: [175/391] loss_D: 1.3905 loss_G: 0.6944 +2018-11-14 05:10:10,505 | epoch: [4/30] iter: [176/391] loss_D: 1.3874 loss_G: 0.6943 +2018-11-14 05:10:14,851 | epoch: [4/30] iter: [177/391] loss_D: 1.3878 loss_G: 0.6951 +2018-11-14 05:10:20,353 | epoch: [4/30] iter: [178/391] loss_D: 1.3892 loss_G: 0.6965 +2018-11-14 05:10:27,160 | epoch: [4/30] iter: [179/391] loss_D: 1.3896 loss_G: 0.6973 +2018-11-14 05:10:31,720 | epoch: [4/30] iter: [180/391] loss_D: 1.3889 loss_G: 0.6949 +2018-11-14 05:10:35,965 | epoch: [4/30] iter: [181/391] loss_D: 1.3887 loss_G: 0.6957 +2018-11-14 05:10:42,576 | epoch: [4/30] iter: [182/391] loss_D: 1.3883 loss_G: 0.6976 +2018-11-14 05:10:48,403 | epoch: [4/30] iter: [183/391] loss_D: 1.3858 loss_G: 0.6970 +2018-11-14 05:10:52,603 | epoch: [4/30] iter: [184/391] loss_D: 1.3855 loss_G: 0.6974 +2018-11-14 05:10:57,337 | epoch: [4/30] iter: [185/391] loss_D: 1.3856 loss_G: 0.6978 +2018-11-14 05:11:01,816 | epoch: [4/30] iter: [186/391] loss_D: 1.3854 loss_G: 0.6986 +2018-11-14 05:11:06,941 | epoch: [4/30] iter: [187/391] loss_D: 1.3846 loss_G: 0.6966 +2018-11-14 05:11:14,399 | epoch: [4/30] iter: [188/391] loss_D: 1.3854 loss_G: 0.6980 +2018-11-14 05:11:19,451 | epoch: [4/30] iter: [189/391] loss_D: 1.3804 loss_G: 0.7031 +2018-11-14 05:11:24,711 | epoch: [4/30] iter: [190/391] loss_D: 1.3842 loss_G: 0.6989 +2018-11-14 05:11:29,251 | epoch: [4/30] iter: [191/391] loss_D: 1.3828 loss_G: 0.6997 +2018-11-14 05:11:33,672 | epoch: [4/30] iter: [192/391] loss_D: 1.3781 loss_G: 0.7016 +2018-11-14 05:11:41,264 | epoch: [4/30] iter: [193/391] loss_D: 1.3824 loss_G: 0.7047 +2018-11-14 05:11:46,471 | epoch: [4/30] iter: [194/391] loss_D: 1.3819 loss_G: 0.7006 +2018-11-14 05:11:52,129 | epoch: [4/30] iter: [195/391] loss_D: 1.3798 loss_G: 0.7020 +2018-11-14 05:11:58,163 | epoch: [4/30] iter: [196/391] loss_D: 1.3843 loss_G: 0.6982 +2018-11-14 05:12:02,869 | epoch: [4/30] iter: [197/391] loss_D: 1.3845 loss_G: 0.6984 +2018-11-14 05:12:07,232 | epoch: [4/30] iter: [198/391] loss_D: 1.3876 loss_G: 0.6922 +2018-11-14 05:12:13,422 | epoch: [4/30] iter: [199/391] loss_D: 1.3874 loss_G: 0.6924 +2018-11-14 05:12:19,792 | epoch: [4/30] iter: [200/391] loss_D: 1.3867 loss_G: 0.6900 +2018-11-14 05:12:25,559 | epoch: [4/30] iter: [201/391] loss_D: 1.3870 loss_G: 0.6905 +2018-11-14 05:12:30,358 | epoch: [4/30] iter: [202/391] loss_D: 1.3880 loss_G: 0.6910 +2018-11-14 05:12:36,154 | epoch: [4/30] iter: [203/391] loss_D: 1.3850 loss_G: 0.6913 +2018-11-14 05:12:41,979 | epoch: [4/30] iter: [204/391] loss_D: 1.3832 loss_G: 0.6927 +2018-11-14 05:12:46,665 | epoch: [4/30] iter: [205/391] loss_D: 1.3832 loss_G: 0.6899 +2018-11-14 05:12:51,210 | epoch: [4/30] iter: [206/391] loss_D: 1.3795 loss_G: 0.6933 +2018-11-14 05:12:55,785 | epoch: [4/30] iter: [207/391] loss_D: 1.3776 loss_G: 0.6929 +2018-11-14 05:13:00,290 | epoch: [4/30] iter: [208/391] loss_D: 1.3818 loss_G: 0.6909 +2018-11-14 05:13:04,800 | epoch: [4/30] iter: [209/391] loss_D: 1.3761 loss_G: 0.6889 +2018-11-14 05:13:09,218 | epoch: [4/30] iter: [210/391] loss_D: 1.3815 loss_G: 0.6826 +2018-11-14 05:13:13,649 | epoch: [4/30] iter: [211/391] loss_D: 1.3854 loss_G: 0.6801 +2018-11-14 05:13:18,621 | epoch: [4/30] iter: [212/391] loss_D: 1.3921 loss_G: 0.6820 +2018-11-14 05:13:26,160 | epoch: [4/30] iter: [213/391] loss_D: 1.3956 loss_G: 0.6838 +2018-11-14 05:13:30,737 | epoch: [4/30] iter: [214/391] loss_D: 1.3842 loss_G: 0.6908 +2018-11-14 05:13:35,073 | epoch: [4/30] iter: [215/391] loss_D: 1.3936 loss_G: 0.6923 +2018-11-14 05:13:40,665 | epoch: [4/30] iter: [216/391] loss_D: 1.3925 loss_G: 0.6913 +2018-11-14 05:13:47,372 | epoch: [4/30] iter: [217/391] loss_D: 1.3934 loss_G: 0.6957 +2018-11-14 05:13:51,830 | epoch: [4/30] iter: [218/391] loss_D: 1.3939 loss_G: 0.6981 +2018-11-14 05:13:56,346 | epoch: [4/30] iter: [219/391] loss_D: 1.3934 loss_G: 0.7015 +2018-11-14 05:14:03,222 | epoch: [4/30] iter: [220/391] loss_D: 1.3893 loss_G: 0.7021 +2018-11-14 05:14:08,691 | epoch: [4/30] iter: [221/391] loss_D: 1.3890 loss_G: 0.7016 +2018-11-14 05:14:14,907 | epoch: [4/30] iter: [222/391] loss_D: 1.3885 loss_G: 0.7020 +2018-11-14 05:14:19,405 | epoch: [4/30] iter: [223/391] loss_D: 1.3892 loss_G: 0.7009 +2018-11-14 05:14:23,742 | epoch: [4/30] iter: [224/391] loss_D: 1.3890 loss_G: 0.7011 +2018-11-14 05:14:27,953 | epoch: [4/30] iter: [225/391] loss_D: 1.3892 loss_G: 0.6990 +2018-11-14 05:14:32,487 | epoch: [4/30] iter: [226/391] loss_D: 1.3855 loss_G: 0.7006 +2018-11-14 05:14:39,354 | epoch: [4/30] iter: [227/391] loss_D: 1.3862 loss_G: 0.6999 +2018-11-14 05:14:44,917 | epoch: [4/30] iter: [228/391] loss_D: 1.3873 loss_G: 0.7005 +2018-11-14 05:14:49,064 | epoch: [4/30] iter: [229/391] loss_D: 1.3862 loss_G: 0.6998 +2018-11-14 05:14:53,622 | epoch: [4/30] iter: [230/391] loss_D: 1.3848 loss_G: 0.6997 +2018-11-14 05:14:58,180 | epoch: [4/30] iter: [231/391] loss_D: 1.3852 loss_G: 0.7002 +2018-11-14 05:15:02,840 | epoch: [4/30] iter: [232/391] loss_D: 1.3836 loss_G: 0.7010 +2018-11-14 05:15:09,930 | epoch: [4/30] iter: [233/391] loss_D: 1.3833 loss_G: 0.6997 +2018-11-14 05:15:14,682 | epoch: [4/30] iter: [234/391] loss_D: 1.3836 loss_G: 0.7005 +2018-11-14 05:15:19,046 | epoch: [4/30] iter: [235/391] loss_D: 1.3839 loss_G: 0.6987 +2018-11-14 05:15:25,077 | epoch: [4/30] iter: [236/391] loss_D: 1.3815 loss_G: 0.7007 +2018-11-14 05:18:08,541 | epoch: [4/30] iter: [237/391] loss_D: 1.3855 loss_G: 0.6982 +2018-11-14 05:18:12,777 | epoch: [4/30] iter: [238/391] loss_D: 1.3867 loss_G: 0.6967 +2018-11-14 05:18:19,144 | epoch: [4/30] iter: [239/391] loss_D: 1.3859 loss_G: 0.6987 +2018-11-14 05:18:26,432 | epoch: [4/30] iter: [240/391] loss_D: 1.3848 loss_G: 0.6980 +2018-11-14 05:18:33,102 | epoch: [4/30] iter: [241/391] loss_D: 1.3823 loss_G: 0.6971 +2018-11-14 05:18:40,208 | epoch: [4/30] iter: [242/391] loss_D: 1.3816 loss_G: 0.6955 +2018-11-14 05:18:47,047 | epoch: [4/30] iter: [243/391] loss_D: 1.3837 loss_G: 0.6970 +2018-11-14 05:18:54,055 | epoch: [4/30] iter: [244/391] loss_D: 1.3812 loss_G: 0.6957 +2018-11-14 05:19:00,533 | epoch: [4/30] iter: [245/391] loss_D: 1.3810 loss_G: 0.6966 +2018-11-14 05:19:07,988 | epoch: [4/30] iter: [246/391] loss_D: 1.3808 loss_G: 0.6974 +2018-11-14 05:19:15,266 | epoch: [4/30] iter: [247/391] loss_D: 1.3783 loss_G: 0.6964 +2018-11-14 05:19:22,121 | epoch: [4/30] iter: [248/391] loss_D: 1.3797 loss_G: 0.6963 +2018-11-14 05:19:29,078 | epoch: [4/30] iter: [249/391] loss_D: 1.3772 loss_G: 0.6959 +2018-11-14 05:19:36,558 | epoch: [4/30] iter: [250/391] loss_D: 1.3788 loss_G: 0.6935 +2018-11-14 05:19:43,633 | epoch: [4/30] iter: [251/391] loss_D: 1.3832 loss_G: 0.6914 +2018-11-14 05:19:50,840 | epoch: [4/30] iter: [252/391] loss_D: 1.3817 loss_G: 0.6900 +2018-11-14 05:19:58,118 | epoch: [4/30] iter: [253/391] loss_D: 1.3862 loss_G: 0.6841 +2018-11-14 05:20:05,461 | epoch: [4/30] iter: [254/391] loss_D: 1.3893 loss_G: 0.6852 +2018-11-14 05:20:12,632 | epoch: [4/30] iter: [255/391] loss_D: 1.4002 loss_G: 0.6840 +2018-11-14 05:20:19,508 | epoch: [4/30] iter: [256/391] loss_D: 1.3904 loss_G: 0.6871 +2018-11-14 05:20:26,265 | epoch: [4/30] iter: [257/391] loss_D: 1.3954 loss_G: 0.6912 +2018-11-14 05:20:33,329 | epoch: [4/30] iter: [258/391] loss_D: 1.3951 loss_G: 0.6898 +2018-11-14 05:20:39,986 | epoch: [4/30] iter: [259/391] loss_D: 1.3926 loss_G: 0.6950 +2018-11-14 05:20:47,026 | epoch: [4/30] iter: [260/391] loss_D: 1.3904 loss_G: 0.6963 +2018-11-14 05:20:54,130 | epoch: [4/30] iter: [261/391] loss_D: 1.3911 loss_G: 0.6969 +2018-11-14 05:21:00,732 | epoch: [4/30] iter: [262/391] loss_D: 1.3878 loss_G: 0.7056 +2018-11-14 05:21:05,510 | epoch: [4/30] iter: [263/391] loss_D: 1.3850 loss_G: 0.7027 +2018-11-14 05:21:09,547 | epoch: [4/30] iter: [264/391] loss_D: 1.3852 loss_G: 0.7066 +2018-11-14 05:21:13,552 | epoch: [4/30] iter: [265/391] loss_D: 1.3842 loss_G: 0.7063 +2018-11-14 05:21:17,751 | epoch: [4/30] iter: [266/391] loss_D: 1.3876 loss_G: 0.7031 +2018-11-14 05:21:22,051 | epoch: [4/30] iter: [267/391] loss_D: 1.3879 loss_G: 0.7042 +2018-11-14 05:21:26,169 | epoch: [4/30] iter: [268/391] loss_D: 1.3923 loss_G: 0.6974 +2018-11-14 05:21:30,306 | epoch: [4/30] iter: [269/391] loss_D: 1.3953 loss_G: 0.6948 +2018-11-14 05:21:34,395 | epoch: [4/30] iter: [270/391] loss_D: 1.3976 loss_G: 0.6892 +2018-11-14 05:21:38,605 | epoch: [4/30] iter: [271/391] loss_D: 1.3942 loss_G: 0.6909 +2018-11-14 05:21:43,424 | epoch: [4/30] iter: [272/391] loss_D: 1.3913 loss_G: 0.6917 +2018-11-14 05:21:50,655 | epoch: [4/30] iter: [273/391] loss_D: 1.3913 loss_G: 0.6893 +2018-11-14 05:21:57,493 | epoch: [4/30] iter: [274/391] loss_D: 1.3903 loss_G: 0.6906 +2018-11-14 05:22:04,152 | epoch: [4/30] iter: [275/391] loss_D: 1.3895 loss_G: 0.6905 +2018-11-14 05:22:11,042 | epoch: [4/30] iter: [276/391] loss_D: 1.3878 loss_G: 0.6935 +2018-11-14 05:22:18,102 | epoch: [4/30] iter: [277/391] loss_D: 1.3870 loss_G: 0.6944 +2018-11-14 05:22:25,175 | epoch: [4/30] iter: [278/391] loss_D: 1.3841 loss_G: 0.6960 +2018-11-14 05:22:31,992 | epoch: [4/30] iter: [279/391] loss_D: 1.3851 loss_G: 0.6958 +2018-11-14 05:22:39,269 | epoch: [4/30] iter: [280/391] loss_D: 1.3823 loss_G: 0.6961 +2018-11-14 05:22:46,023 | epoch: [4/30] iter: [281/391] loss_D: 1.3818 loss_G: 0.6959 +2018-11-14 05:22:53,299 | epoch: [4/30] iter: [282/391] loss_D: 1.3786 loss_G: 0.6989 +2018-11-14 05:23:00,271 | epoch: [4/30] iter: [283/391] loss_D: 1.3823 loss_G: 0.6974 +2018-11-14 05:23:07,430 | epoch: [4/30] iter: [284/391] loss_D: 1.3826 loss_G: 0.6971 +2018-11-14 05:23:14,120 | epoch: [4/30] iter: [285/391] loss_D: 1.3824 loss_G: 0.6960 +2018-11-14 05:23:21,260 | epoch: [4/30] iter: [286/391] loss_D: 1.3800 loss_G: 0.6965 +2018-11-14 05:23:28,243 | epoch: [4/30] iter: [287/391] loss_D: 1.3822 loss_G: 0.6935 +2018-11-14 05:23:34,964 | epoch: [4/30] iter: [288/391] loss_D: 1.3876 loss_G: 0.6914 +2018-11-14 05:23:41,979 | epoch: [4/30] iter: [289/391] loss_D: 1.3860 loss_G: 0.6907 +2018-11-14 05:23:49,164 | epoch: [4/30] iter: [290/391] loss_D: 1.3866 loss_G: 0.6911 +2018-11-14 05:23:56,086 | epoch: [4/30] iter: [291/391] loss_D: 1.3900 loss_G: 0.6895 +2018-11-14 05:24:03,086 | epoch: [4/30] iter: [292/391] loss_D: 1.3886 loss_G: 0.6900 +2018-11-14 05:24:09,719 | epoch: [4/30] iter: [293/391] loss_D: 1.3887 loss_G: 0.6904 +2018-11-14 05:24:16,745 | epoch: [4/30] iter: [294/391] loss_D: 1.3894 loss_G: 0.6906 +2018-11-14 05:24:23,466 | epoch: [4/30] iter: [295/391] loss_D: 1.3906 loss_G: 0.6913 +2018-11-14 05:24:30,995 | epoch: [4/30] iter: [296/391] loss_D: 1.3897 loss_G: 0.6925 +2018-11-14 05:24:38,081 | epoch: [4/30] iter: [297/391] loss_D: 1.3869 loss_G: 0.6944 +2018-11-14 05:24:44,924 | epoch: [4/30] iter: [298/391] loss_D: 1.3856 loss_G: 0.6966 +2018-11-14 05:24:51,778 | epoch: [4/30] iter: [299/391] loss_D: 1.3874 loss_G: 0.6949 +2018-11-14 05:24:59,130 | epoch: [4/30] iter: [300/391] loss_D: 1.3862 loss_G: 0.6968 +2018-11-14 05:25:05,965 | epoch: [4/30] iter: [301/391] loss_D: 1.3858 loss_G: 0.6955 +2018-11-14 05:25:10,501 | epoch: [4/30] iter: [302/391] loss_D: 1.3853 loss_G: 0.6965 +2018-11-14 05:25:14,577 | epoch: [4/30] iter: [303/391] loss_D: 1.3856 loss_G: 0.6959 +2018-11-14 05:25:18,575 | epoch: [4/30] iter: [304/391] loss_D: 1.3834 loss_G: 0.6985 +2018-11-14 05:25:22,818 | epoch: [4/30] iter: [305/391] loss_D: 1.3857 loss_G: 0.6975 +2018-11-14 05:25:26,857 | epoch: [4/30] iter: [306/391] loss_D: 1.3809 loss_G: 0.7027 +2018-11-14 05:25:31,383 | epoch: [4/30] iter: [307/391] loss_D: 1.3837 loss_G: 0.6968 +2018-11-14 05:25:38,282 | epoch: [4/30] iter: [308/391] loss_D: 1.3847 loss_G: 0.6974 +2018-11-14 05:25:44,946 | epoch: [4/30] iter: [309/391] loss_D: 1.3836 loss_G: 0.6992 +2018-11-14 05:25:51,766 | epoch: [4/30] iter: [310/391] loss_D: 1.3816 loss_G: 0.6995 +2018-11-14 05:25:59,182 | epoch: [4/30] iter: [311/391] loss_D: 1.3823 loss_G: 0.6994 +2018-11-14 05:26:06,172 | epoch: [4/30] iter: [312/391] loss_D: 1.3854 loss_G: 0.6986 +2018-11-14 05:26:12,899 | epoch: [4/30] iter: [313/391] loss_D: 1.3851 loss_G: 0.6990 +2018-11-14 05:26:19,790 | epoch: [4/30] iter: [314/391] loss_D: 1.3879 loss_G: 0.6953 +2018-11-14 05:26:27,075 | epoch: [4/30] iter: [315/391] loss_D: 1.3869 loss_G: 0.6943 +2018-11-14 05:26:34,371 | epoch: [4/30] iter: [316/391] loss_D: 1.3869 loss_G: 0.6939 +2018-11-14 05:26:41,180 | epoch: [4/30] iter: [317/391] loss_D: 1.3867 loss_G: 0.6922 +2018-11-14 05:26:45,984 | epoch: [4/30] iter: [318/391] loss_D: 1.3901 loss_G: 0.6877 +2018-11-14 05:26:49,882 | epoch: [4/30] iter: [319/391] loss_D: 1.3898 loss_G: 0.6896 +2018-11-14 05:26:53,885 | epoch: [4/30] iter: [320/391] loss_D: 1.3897 loss_G: 0.6892 +2018-11-14 05:26:58,056 | epoch: [4/30] iter: [321/391] loss_D: 1.3924 loss_G: 0.6897 +2018-11-14 05:27:02,003 | epoch: [4/30] iter: [322/391] loss_D: 1.3908 loss_G: 0.6892 +2018-11-14 05:27:06,059 | epoch: [4/30] iter: [323/391] loss_D: 1.3882 loss_G: 0.6913 +2018-11-14 05:27:10,261 | epoch: [4/30] iter: [324/391] loss_D: 1.3910 loss_G: 0.6920 +2018-11-14 05:27:17,054 | epoch: [4/30] iter: [325/391] loss_D: 1.3887 loss_G: 0.6932 +2018-11-14 05:27:24,481 | epoch: [4/30] iter: [326/391] loss_D: 1.3877 loss_G: 0.6936 +2018-11-14 05:27:31,511 | epoch: [4/30] iter: [327/391] loss_D: 1.3867 loss_G: 0.6940 +2018-11-14 05:27:38,674 | epoch: [4/30] iter: [328/391] loss_D: 1.3836 loss_G: 0.6956 +2018-11-14 05:27:45,947 | epoch: [4/30] iter: [329/391] loss_D: 1.3830 loss_G: 0.6975 +2018-11-14 05:27:52,930 | epoch: [4/30] iter: [330/391] loss_D: 1.3833 loss_G: 0.6972 +2018-11-14 05:27:59,994 | epoch: [4/30] iter: [331/391] loss_D: 1.3828 loss_G: 0.6971 +2018-11-14 05:28:07,255 | epoch: [4/30] iter: [332/391] loss_D: 1.3804 loss_G: 0.6988 +2018-11-14 05:28:14,239 | epoch: [4/30] iter: [333/391] loss_D: 1.3818 loss_G: 0.6976 +2018-11-14 05:28:21,230 | epoch: [4/30] iter: [334/391] loss_D: 1.3802 loss_G: 0.6983 +2018-11-14 05:28:28,029 | epoch: [4/30] iter: [335/391] loss_D: 1.3823 loss_G: 0.6962 +2018-11-14 05:28:35,431 | epoch: [4/30] iter: [336/391] loss_D: 1.3831 loss_G: 0.6951 +2018-11-14 05:31:08,153 | epoch: [4/30] iter: [337/391] loss_D: 1.3832 loss_G: 0.6945 +2018-11-14 05:31:12,009 | epoch: [4/30] iter: [338/391] loss_D: 1.3831 loss_G: 0.6958 +2018-11-14 05:31:16,058 | epoch: [4/30] iter: [339/391] loss_D: 1.3836 loss_G: 0.6945 +2018-11-14 05:31:21,119 | epoch: [4/30] iter: [340/391] loss_D: 1.3828 loss_G: 0.6939 +2018-11-14 05:31:28,179 | epoch: [4/30] iter: [341/391] loss_D: 1.3848 loss_G: 0.6930 +2018-11-14 05:31:34,893 | epoch: [4/30] iter: [342/391] loss_D: 1.3826 loss_G: 0.6933 +2018-11-14 05:31:42,230 | epoch: [4/30] iter: [343/391] loss_D: 1.3865 loss_G: 0.6905 +2018-11-14 05:31:49,390 | epoch: [4/30] iter: [344/391] loss_D: 1.3867 loss_G: 0.6904 +2018-11-14 05:31:56,039 | epoch: [4/30] iter: [345/391] loss_D: 1.3903 loss_G: 0.6880 +2018-11-14 05:32:02,966 | epoch: [4/30] iter: [346/391] loss_D: 1.3899 loss_G: 0.6871 +2018-11-14 05:32:09,845 | epoch: [4/30] iter: [347/391] loss_D: 1.3922 loss_G: 0.6880 +2018-11-14 05:32:17,135 | epoch: [4/30] iter: [348/391] loss_D: 1.3944 loss_G: 0.6877 +2018-11-14 05:32:23,782 | epoch: [4/30] iter: [349/391] loss_D: 1.3945 loss_G: 0.6892 +2018-11-14 05:32:28,023 | epoch: [4/30] iter: [350/391] loss_D: 1.3911 loss_G: 0.6917 +2018-11-14 05:32:32,162 | epoch: [4/30] iter: [351/391] loss_D: 1.3884 loss_G: 0.6935 +2018-11-14 05:32:36,334 | epoch: [4/30] iter: [352/391] loss_D: 1.3871 loss_G: 0.6939 +2018-11-14 05:32:40,513 | epoch: [4/30] iter: [353/391] loss_D: 1.3905 loss_G: 0.6939 +2018-11-14 05:32:44,702 | epoch: [4/30] iter: [354/391] loss_D: 1.3918 loss_G: 0.6932 +2018-11-14 05:32:50,169 | epoch: [4/30] iter: [355/391] loss_D: 1.3867 loss_G: 0.6961 +2018-11-14 05:32:57,399 | epoch: [4/30] iter: [356/391] loss_D: 1.3858 loss_G: 0.6965 +2018-11-14 05:33:04,689 | epoch: [4/30] iter: [357/391] loss_D: 1.3866 loss_G: 0.6971 +2018-11-14 05:33:11,793 | epoch: [4/30] iter: [358/391] loss_D: 1.3830 loss_G: 0.6978 +2018-11-14 05:33:18,695 | epoch: [4/30] iter: [359/391] loss_D: 1.3844 loss_G: 0.6977 +2018-11-14 05:33:25,504 | epoch: [4/30] iter: [360/391] loss_D: 1.3839 loss_G: 0.6975 +2018-11-14 05:33:32,486 | epoch: [4/30] iter: [361/391] loss_D: 1.3849 loss_G: 0.6980 +2018-11-14 05:33:39,633 | epoch: [4/30] iter: [362/391] loss_D: 1.3827 loss_G: 0.7003 +2018-11-14 05:33:46,509 | epoch: [4/30] iter: [363/391] loss_D: 1.3849 loss_G: 0.6991 +2018-11-14 05:33:53,672 | epoch: [4/30] iter: [364/391] loss_D: 1.3825 loss_G: 0.6981 +2018-11-14 05:34:00,200 | epoch: [4/30] iter: [365/391] loss_D: 1.3839 loss_G: 0.6991 +2018-11-14 05:34:07,487 | epoch: [4/30] iter: [366/391] loss_D: 1.3840 loss_G: 0.6992 +2018-11-14 05:34:14,335 | epoch: [4/30] iter: [367/391] loss_D: 1.3846 loss_G: 0.6962 +2018-11-14 05:34:21,203 | epoch: [4/30] iter: [368/391] loss_D: 1.3848 loss_G: 0.6961 +2018-11-14 05:34:28,043 | epoch: [4/30] iter: [369/391] loss_D: 1.3837 loss_G: 0.6969 +2018-11-14 05:34:35,084 | epoch: [4/30] iter: [370/391] loss_D: 1.3840 loss_G: 0.6942 +2018-11-14 05:34:42,368 | epoch: [4/30] iter: [371/391] loss_D: 1.3878 loss_G: 0.6930 +2018-11-14 05:34:46,918 | epoch: [4/30] iter: [372/391] loss_D: 1.3858 loss_G: 0.6931 +2018-11-14 05:34:51,101 | epoch: [4/30] iter: [373/391] loss_D: 1.3879 loss_G: 0.6922 +2018-11-14 05:34:55,107 | epoch: [4/30] iter: [374/391] loss_D: 1.3885 loss_G: 0.6919 +2018-11-14 05:34:59,402 | epoch: [4/30] iter: [375/391] loss_D: 1.3879 loss_G: 0.6916 +2018-11-14 05:35:03,624 | epoch: [4/30] iter: [376/391] loss_D: 1.3858 loss_G: 0.6917 +2018-11-14 05:35:07,757 | epoch: [4/30] iter: [377/391] loss_D: 1.3875 loss_G: 0.6911 +2018-11-14 05:35:11,935 | epoch: [4/30] iter: [378/391] loss_D: 1.3853 loss_G: 0.6926 +2018-11-14 05:35:16,804 | epoch: [4/30] iter: [379/391] loss_D: 1.3850 loss_G: 0.6923 +2018-11-14 05:35:24,219 | epoch: [4/30] iter: [380/391] loss_D: 1.3841 loss_G: 0.6937 +2018-11-14 05:35:31,594 | epoch: [4/30] iter: [381/391] loss_D: 1.3885 loss_G: 0.6913 +2018-11-14 05:35:38,593 | epoch: [4/30] iter: [382/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-14 05:35:45,305 | epoch: [4/30] iter: [383/391] loss_D: 1.3858 loss_G: 0.6945 +2018-11-14 05:35:52,390 | epoch: [4/30] iter: [384/391] loss_D: 1.3857 loss_G: 0.6942 +2018-11-14 05:35:59,330 | epoch: [4/30] iter: [385/391] loss_D: 1.3858 loss_G: 0.6942 +2018-11-14 05:36:06,163 | epoch: [4/30] iter: [386/391] loss_D: 1.3842 loss_G: 0.6948 +2018-11-14 05:36:12,831 | epoch: [4/30] iter: [387/391] loss_D: 1.3857 loss_G: 0.6949 +2018-11-14 05:36:20,018 | epoch: [4/30] iter: [388/391] loss_D: 1.3860 loss_G: 0.6955 +2018-11-14 05:36:26,942 | epoch: [4/30] iter: [389/391] loss_D: 1.3846 loss_G: 0.6952 +2018-11-14 05:36:31,432 | epoch: [4/30] iter: [390/391] loss_D: 1.3850 loss_G: 0.6958 +2018-11-14 05:36:39,177 | epoch: [5/30] iter: [0/391] loss_D: 1.3844 loss_G: 0.6956 +2018-11-14 05:36:46,264 | epoch: [5/30] iter: [1/391] loss_D: 1.3850 loss_G: 0.6965 +2018-11-14 05:36:53,595 | epoch: [5/30] iter: [2/391] loss_D: 1.3841 loss_G: 0.6949 +2018-11-14 05:37:00,908 | epoch: [5/30] iter: [3/391] loss_D: 1.3871 loss_G: 0.6924 +2018-11-14 05:37:06,218 | epoch: [5/30] iter: [4/391] loss_D: 1.3888 loss_G: 0.6927 +2018-11-14 05:37:10,322 | epoch: [5/30] iter: [5/391] loss_D: 1.3884 loss_G: 0.6940 +2018-11-14 05:37:14,579 | epoch: [5/30] iter: [6/391] loss_D: 1.3871 loss_G: 0.6919 +2018-11-14 05:37:18,474 | epoch: [5/30] iter: [7/391] loss_D: 1.3883 loss_G: 0.6923 +2018-11-14 05:37:22,553 | epoch: [5/30] iter: [8/391] loss_D: 1.3898 loss_G: 0.6941 +2018-11-14 05:37:26,579 | epoch: [5/30] iter: [9/391] loss_D: 1.3859 loss_G: 0.6934 +2018-11-14 05:37:30,718 | epoch: [5/30] iter: [10/391] loss_D: 1.3883 loss_G: 0.6951 +2018-11-14 05:37:34,838 | epoch: [5/30] iter: [11/391] loss_D: 1.3861 loss_G: 0.6942 +2018-11-14 05:37:39,250 | epoch: [5/30] iter: [12/391] loss_D: 1.3892 loss_G: 0.6953 +2018-11-14 05:37:45,320 | epoch: [5/30] iter: [13/391] loss_D: 1.3873 loss_G: 0.6965 +2018-11-14 05:37:51,564 | epoch: [5/30] iter: [14/391] loss_D: 1.3870 loss_G: 0.6965 +2018-11-14 05:37:56,238 | epoch: [5/30] iter: [15/391] loss_D: 1.3862 loss_G: 0.6971 +2018-11-14 05:38:00,678 | epoch: [5/30] iter: [16/391] loss_D: 1.3850 loss_G: 0.6984 +2018-11-14 05:38:05,225 | epoch: [5/30] iter: [17/391] loss_D: 1.3845 loss_G: 0.6961 +2018-11-14 05:38:09,729 | epoch: [5/30] iter: [18/391] loss_D: 1.3855 loss_G: 0.6974 +2018-11-14 05:38:16,427 | epoch: [5/30] iter: [19/391] loss_D: 1.3846 loss_G: 0.6981 +2018-11-14 05:38:22,152 | epoch: [5/30] iter: [20/391] loss_D: 1.3824 loss_G: 0.7000 +2018-11-14 05:38:28,594 | epoch: [5/30] iter: [21/391] loss_D: 1.3810 loss_G: 0.7001 +2018-11-14 05:38:34,018 | epoch: [5/30] iter: [22/391] loss_D: 1.3816 loss_G: 0.7009 +2018-11-14 05:38:39,263 | epoch: [5/30] iter: [23/391] loss_D: 1.3839 loss_G: 0.6972 +2018-11-14 05:38:45,241 | epoch: [5/30] iter: [24/391] loss_D: 1.3818 loss_G: 0.6965 +2018-11-14 05:38:51,018 | epoch: [5/30] iter: [25/391] loss_D: 1.3846 loss_G: 0.6946 +2018-11-14 05:38:55,955 | epoch: [5/30] iter: [26/391] loss_D: 1.3872 loss_G: 0.6926 +2018-11-14 05:39:00,376 | epoch: [5/30] iter: [27/391] loss_D: 1.3873 loss_G: 0.6914 +2018-11-14 05:39:06,153 | epoch: [5/30] iter: [28/391] loss_D: 1.3902 loss_G: 0.6883 +2018-11-14 05:39:12,816 | epoch: [5/30] iter: [29/391] loss_D: 1.3900 loss_G: 0.6893 +2018-11-14 05:39:17,402 | epoch: [5/30] iter: [30/391] loss_D: 1.3900 loss_G: 0.6892 +2018-11-14 05:39:21,703 | epoch: [5/30] iter: [31/391] loss_D: 1.3901 loss_G: 0.6889 +2018-11-14 05:39:28,376 | epoch: [5/30] iter: [32/391] loss_D: 1.3884 loss_G: 0.6911 +2018-11-14 05:39:34,389 | epoch: [5/30] iter: [33/391] loss_D: 1.3898 loss_G: 0.6915 +2018-11-14 05:39:38,568 | epoch: [5/30] iter: [34/391] loss_D: 1.3868 loss_G: 0.6916 +2018-11-14 05:39:43,216 | epoch: [5/30] iter: [35/391] loss_D: 1.3888 loss_G: 0.6905 +2018-11-14 05:39:50,396 | epoch: [5/30] iter: [36/391] loss_D: 1.3852 loss_G: 0.6928 +2018-11-14 05:39:55,245 | epoch: [5/30] iter: [37/391] loss_D: 1.3857 loss_G: 0.6938 +2018-11-14 05:39:59,696 | epoch: [5/30] iter: [38/391] loss_D: 1.3874 loss_G: 0.6946 +2018-11-14 05:40:04,101 | epoch: [5/30] iter: [39/391] loss_D: 1.3865 loss_G: 0.6934 +2018-11-14 05:40:08,462 | epoch: [5/30] iter: [40/391] loss_D: 1.3884 loss_G: 0.6932 +2018-11-14 05:40:12,792 | epoch: [5/30] iter: [41/391] loss_D: 1.3859 loss_G: 0.6938 +2018-11-14 05:40:17,208 | epoch: [5/30] iter: [42/391] loss_D: 1.3876 loss_G: 0.6940 +2018-11-14 05:40:23,124 | epoch: [5/30] iter: [43/391] loss_D: 1.3871 loss_G: 0.6945 +2018-11-14 05:40:29,173 | epoch: [5/30] iter: [44/391] loss_D: 1.3865 loss_G: 0.6934 +2018-11-14 05:40:35,027 | epoch: [5/30] iter: [45/391] loss_D: 1.3869 loss_G: 0.6946 +2018-11-14 05:43:17,354 | epoch: [5/30] iter: [46/391] loss_D: 1.3851 loss_G: 0.6957 +2018-11-14 05:43:21,506 | epoch: [5/30] iter: [47/391] loss_D: 1.3846 loss_G: 0.6942 +2018-11-14 05:43:25,675 | epoch: [5/30] iter: [48/391] loss_D: 1.3856 loss_G: 0.6954 +2018-11-14 05:43:31,056 | epoch: [5/30] iter: [49/391] loss_D: 1.3844 loss_G: 0.6949 +2018-11-14 05:43:38,051 | epoch: [5/30] iter: [50/391] loss_D: 1.3837 loss_G: 0.6954 +2018-11-14 05:43:44,980 | epoch: [5/30] iter: [51/391] loss_D: 1.3849 loss_G: 0.6950 +2018-11-14 05:43:51,963 | epoch: [5/30] iter: [52/391] loss_D: 1.3852 loss_G: 0.6943 +2018-11-14 05:43:59,394 | epoch: [5/30] iter: [53/391] loss_D: 1.3864 loss_G: 0.6944 +2018-11-14 05:44:06,779 | epoch: [5/30] iter: [54/391] loss_D: 1.3854 loss_G: 0.6961 +2018-11-14 05:44:13,813 | epoch: [5/30] iter: [55/391] loss_D: 1.3842 loss_G: 0.6950 +2018-11-14 05:44:21,287 | epoch: [5/30] iter: [56/391] loss_D: 1.3861 loss_G: 0.6950 +2018-11-14 05:44:28,523 | epoch: [5/30] iter: [57/391] loss_D: 1.3873 loss_G: 0.6943 +2018-11-14 05:44:35,515 | epoch: [5/30] iter: [58/391] loss_D: 1.3856 loss_G: 0.6951 +2018-11-14 05:44:41,930 | epoch: [5/30] iter: [59/391] loss_D: 1.3837 loss_G: 0.6967 +2018-11-14 05:44:49,123 | epoch: [5/30] iter: [60/391] loss_D: 1.3850 loss_G: 0.6951 +2018-11-14 05:44:56,432 | epoch: [5/30] iter: [61/391] loss_D: 1.3840 loss_G: 0.6959 +2018-11-14 05:45:03,226 | epoch: [5/30] iter: [62/391] loss_D: 1.3835 loss_G: 0.6962 +2018-11-14 05:45:10,162 | epoch: [5/30] iter: [63/391] loss_D: 1.3837 loss_G: 0.6952 +2018-11-14 05:45:15,126 | epoch: [5/30] iter: [64/391] loss_D: 1.3848 loss_G: 0.6946 +2018-11-14 05:45:19,122 | epoch: [5/30] iter: [65/391] loss_D: 1.3855 loss_G: 0.6956 +2018-11-14 05:45:23,114 | epoch: [5/30] iter: [66/391] loss_D: 1.3883 loss_G: 0.6941 +2018-11-14 05:45:27,439 | epoch: [5/30] iter: [67/391] loss_D: 1.3845 loss_G: 0.6956 +2018-11-14 05:45:31,526 | epoch: [5/30] iter: [68/391] loss_D: 1.3878 loss_G: 0.6941 +2018-11-14 05:45:35,608 | epoch: [5/30] iter: [69/391] loss_D: 1.3881 loss_G: 0.6937 +2018-11-14 05:45:39,828 | epoch: [5/30] iter: [70/391] loss_D: 1.3882 loss_G: 0.6949 +2018-11-14 05:45:44,091 | epoch: [5/30] iter: [71/391] loss_D: 1.3883 loss_G: 0.6952 +2018-11-14 05:45:48,723 | epoch: [5/30] iter: [72/391] loss_D: 1.3859 loss_G: 0.6955 +2018-11-14 05:45:55,471 | epoch: [5/30] iter: [73/391] loss_D: 1.3857 loss_G: 0.6954 +2018-11-14 05:46:02,576 | epoch: [5/30] iter: [74/391] loss_D: 1.3836 loss_G: 0.6962 +2018-11-14 05:46:10,076 | epoch: [5/30] iter: [75/391] loss_D: 1.3829 loss_G: 0.6973 +2018-11-14 05:46:17,212 | epoch: [5/30] iter: [76/391] loss_D: 1.3820 loss_G: 0.6985 +2018-11-14 05:46:24,295 | epoch: [5/30] iter: [77/391] loss_D: 1.3813 loss_G: 0.6984 +2018-11-14 05:46:31,326 | epoch: [5/30] iter: [78/391] loss_D: 1.3812 loss_G: 0.6965 +2018-11-14 05:46:38,818 | epoch: [5/30] iter: [79/391] loss_D: 1.3839 loss_G: 0.6961 +2018-11-14 05:46:45,293 | epoch: [5/30] iter: [80/391] loss_D: 1.3850 loss_G: 0.6932 +2018-11-14 05:46:52,585 | epoch: [5/30] iter: [81/391] loss_D: 1.3846 loss_G: 0.6924 +2018-11-14 05:46:59,464 | epoch: [5/30] iter: [82/391] loss_D: 1.3838 loss_G: 0.6914 +2018-11-14 05:47:06,815 | epoch: [5/30] iter: [83/391] loss_D: 1.3798 loss_G: 0.6909 +2018-11-14 05:47:13,897 | epoch: [5/30] iter: [84/391] loss_D: 1.3851 loss_G: 0.6892 +2018-11-14 05:47:18,722 | epoch: [5/30] iter: [85/391] loss_D: 1.3814 loss_G: 0.6887 +2018-11-14 05:47:22,983 | epoch: [5/30] iter: [86/391] loss_D: 1.3864 loss_G: 0.6867 +2018-11-14 05:47:27,213 | epoch: [5/30] iter: [87/391] loss_D: 1.3880 loss_G: 0.6865 +2018-11-14 05:47:31,219 | epoch: [5/30] iter: [88/391] loss_D: 1.3904 loss_G: 0.6856 +2018-11-14 05:47:35,318 | epoch: [5/30] iter: [89/391] loss_D: 1.3933 loss_G: 0.6842 +2018-11-14 05:47:39,421 | epoch: [5/30] iter: [90/391] loss_D: 1.3893 loss_G: 0.6842 +2018-11-14 05:47:43,525 | epoch: [5/30] iter: [91/391] loss_D: 1.3944 loss_G: 0.6880 +2018-11-14 05:47:48,046 | epoch: [5/30] iter: [92/391] loss_D: 1.3926 loss_G: 0.6896 +2018-11-14 05:47:52,213 | epoch: [5/30] iter: [93/391] loss_D: 1.3904 loss_G: 0.6935 +2018-11-14 05:47:56,255 | epoch: [5/30] iter: [94/391] loss_D: 1.3889 loss_G: 0.6954 +2018-11-14 05:48:00,441 | epoch: [5/30] iter: [95/391] loss_D: 1.3897 loss_G: 0.6972 +2018-11-14 05:48:04,897 | epoch: [5/30] iter: [96/391] loss_D: 1.3881 loss_G: 0.6989 +2018-11-14 05:48:12,162 | epoch: [5/30] iter: [97/391] loss_D: 1.3863 loss_G: 0.6995 +2018-11-14 05:48:19,424 | epoch: [5/30] iter: [98/391] loss_D: 1.3853 loss_G: 0.7014 +2018-11-14 05:48:26,555 | epoch: [5/30] iter: [99/391] loss_D: 1.3832 loss_G: 0.7025 +2018-11-14 05:48:33,518 | epoch: [5/30] iter: [100/391] loss_D: 1.3808 loss_G: 0.7042 +2018-11-14 05:48:40,441 | epoch: [5/30] iter: [101/391] loss_D: 1.3812 loss_G: 0.7046 +2018-11-14 05:48:47,213 | epoch: [5/30] iter: [102/391] loss_D: 1.3817 loss_G: 0.7056 +2018-11-14 05:48:54,790 | epoch: [5/30] iter: [103/391] loss_D: 1.3835 loss_G: 0.7005 +2018-11-14 05:49:01,667 | epoch: [5/30] iter: [104/391] loss_D: 1.3856 loss_G: 0.6994 +2018-11-14 05:49:08,718 | epoch: [5/30] iter: [105/391] loss_D: 1.3816 loss_G: 0.7004 +2018-11-14 05:49:15,759 | epoch: [5/30] iter: [106/391] loss_D: 1.3824 loss_G: 0.6972 +2018-11-14 05:49:22,548 | epoch: [5/30] iter: [107/391] loss_D: 1.3895 loss_G: 0.6943 +2018-11-14 05:49:29,787 | epoch: [5/30] iter: [108/391] loss_D: 1.3862 loss_G: 0.6921 +2018-11-14 05:49:36,471 | epoch: [5/30] iter: [109/391] loss_D: 1.3941 loss_G: 0.6903 +2018-11-14 05:49:43,334 | epoch: [5/30] iter: [110/391] loss_D: 1.3934 loss_G: 0.6868 +2018-11-14 05:49:50,379 | epoch: [5/30] iter: [111/391] loss_D: 1.3928 loss_G: 0.6885 +2018-11-14 05:49:57,068 | epoch: [5/30] iter: [112/391] loss_D: 1.3924 loss_G: 0.6886 +2018-11-14 05:50:03,863 | epoch: [5/30] iter: [113/391] loss_D: 1.3909 loss_G: 0.6903 +2018-11-14 05:50:11,094 | epoch: [5/30] iter: [114/391] loss_D: 1.3896 loss_G: 0.6923 +2018-11-14 05:50:17,963 | epoch: [5/30] iter: [115/391] loss_D: 1.3902 loss_G: 0.6931 +2018-11-14 05:50:24,823 | epoch: [5/30] iter: [116/391] loss_D: 1.3891 loss_G: 0.6931 +2018-11-14 05:50:31,940 | epoch: [5/30] iter: [117/391] loss_D: 1.3885 loss_G: 0.6947 +2018-11-14 05:50:38,504 | epoch: [5/30] iter: [118/391] loss_D: 1.3884 loss_G: 0.6956 +2018-11-14 05:50:45,589 | epoch: [5/30] iter: [119/391] loss_D: 1.3842 loss_G: 0.6971 +2018-11-14 05:50:50,740 | epoch: [5/30] iter: [120/391] loss_D: 1.3875 loss_G: 0.6954 +2018-11-14 05:50:54,858 | epoch: [5/30] iter: [121/391] loss_D: 1.3843 loss_G: 0.6978 +2018-11-14 05:50:58,903 | epoch: [5/30] iter: [122/391] loss_D: 1.3815 loss_G: 0.6990 +2018-11-14 05:51:03,096 | epoch: [5/30] iter: [123/391] loss_D: 1.3812 loss_G: 0.7018 +2018-11-14 05:51:07,345 | epoch: [5/30] iter: [124/391] loss_D: 1.3839 loss_G: 0.6990 +2018-11-14 05:51:11,338 | epoch: [5/30] iter: [125/391] loss_D: 1.3805 loss_G: 0.7023 +2018-11-14 05:51:15,705 | epoch: [5/30] iter: [126/391] loss_D: 1.3779 loss_G: 0.7039 +2018-11-14 05:51:19,889 | epoch: [5/30] iter: [127/391] loss_D: 1.3824 loss_G: 0.7013 +2018-11-14 05:51:26,095 | epoch: [5/30] iter: [128/391] loss_D: 1.3818 loss_G: 0.6991 +2018-11-14 05:51:32,039 | epoch: [5/30] iter: [129/391] loss_D: 1.3910 loss_G: 0.6943 +2018-11-14 05:51:36,812 | epoch: [5/30] iter: [130/391] loss_D: 1.3919 loss_G: 0.6896 +2018-11-14 05:51:41,019 | epoch: [5/30] iter: [131/391] loss_D: 1.3935 loss_G: 0.6886 +2018-11-14 05:51:45,501 | epoch: [5/30] iter: [132/391] loss_D: 1.3901 loss_G: 0.6921 +2018-11-14 05:51:49,870 | epoch: [5/30] iter: [133/391] loss_D: 1.3925 loss_G: 0.6893 +2018-11-14 05:51:56,129 | epoch: [5/30] iter: [134/391] loss_D: 1.3900 loss_G: 0.6910 +2018-11-14 05:52:02,470 | epoch: [5/30] iter: [135/391] loss_D: 1.3883 loss_G: 0.6919 +2018-11-14 05:52:06,906 | epoch: [5/30] iter: [136/391] loss_D: 1.3869 loss_G: 0.6925 +2018-11-14 05:52:11,505 | epoch: [5/30] iter: [137/391] loss_D: 1.3862 loss_G: 0.6923 +2018-11-14 05:52:15,833 | epoch: [5/30] iter: [138/391] loss_D: 1.3872 loss_G: 0.6941 +2018-11-14 05:52:20,693 | epoch: [5/30] iter: [139/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-14 05:52:28,214 | epoch: [5/30] iter: [140/391] loss_D: 1.3877 loss_G: 0.6928 +2018-11-14 05:52:33,000 | epoch: [5/30] iter: [141/391] loss_D: 1.3864 loss_G: 0.6940 +2018-11-14 05:52:37,467 | epoch: [5/30] iter: [142/391] loss_D: 1.3842 loss_G: 0.6934 +2018-11-14 05:52:42,071 | epoch: [5/30] iter: [143/391] loss_D: 1.3847 loss_G: 0.6933 +2018-11-14 05:52:46,479 | epoch: [5/30] iter: [144/391] loss_D: 1.3861 loss_G: 0.6937 +2018-11-14 05:52:53,064 | epoch: [5/30] iter: [145/391] loss_D: 1.3865 loss_G: 0.6941 +2018-11-14 05:55:26,271 | epoch: [5/30] iter: [146/391] loss_D: 1.3847 loss_G: 0.6931 +2018-11-14 05:55:30,485 | epoch: [5/30] iter: [147/391] loss_D: 1.3857 loss_G: 0.6937 +2018-11-14 05:55:35,151 | epoch: [5/30] iter: [148/391] loss_D: 1.3837 loss_G: 0.6947 +2018-11-14 05:55:39,324 | epoch: [5/30] iter: [149/391] loss_D: 1.3851 loss_G: 0.6955 +2018-11-14 05:55:45,685 | epoch: [5/30] iter: [150/391] loss_D: 1.3827 loss_G: 0.6971 +2018-11-14 05:55:52,717 | epoch: [5/30] iter: [151/391] loss_D: 1.3848 loss_G: 0.6956 +2018-11-14 05:56:00,091 | epoch: [5/30] iter: [152/391] loss_D: 1.3828 loss_G: 0.6972 +2018-11-14 05:56:07,383 | epoch: [5/30] iter: [153/391] loss_D: 1.3818 loss_G: 0.6958 +2018-11-14 05:56:14,747 | epoch: [5/30] iter: [154/391] loss_D: 1.3848 loss_G: 0.6965 +2018-11-14 05:56:21,544 | epoch: [5/30] iter: [155/391] loss_D: 1.3830 loss_G: 0.6947 +2018-11-14 05:56:28,470 | epoch: [5/30] iter: [156/391] loss_D: 1.3863 loss_G: 0.6946 +2018-11-14 05:56:35,479 | epoch: [5/30] iter: [157/391] loss_D: 1.3838 loss_G: 0.6923 +2018-11-14 05:56:42,875 | epoch: [5/30] iter: [158/391] loss_D: 1.3831 loss_G: 0.6930 +2018-11-14 05:56:50,144 | epoch: [5/30] iter: [159/391] loss_D: 1.3853 loss_G: 0.6946 +2018-11-14 05:56:57,074 | epoch: [5/30] iter: [160/391] loss_D: 1.3866 loss_G: 0.6937 +2018-11-14 05:57:04,025 | epoch: [5/30] iter: [161/391] loss_D: 1.3821 loss_G: 0.6942 +2018-11-14 05:57:11,156 | epoch: [5/30] iter: [162/391] loss_D: 1.3865 loss_G: 0.6947 +2018-11-14 05:57:18,046 | epoch: [5/30] iter: [163/391] loss_D: 1.3818 loss_G: 0.6967 +2018-11-14 05:57:25,459 | epoch: [5/30] iter: [164/391] loss_D: 1.3828 loss_G: 0.6933 +2018-11-14 05:57:32,206 | epoch: [5/30] iter: [165/391] loss_D: 1.3844 loss_G: 0.6950 +2018-11-14 05:57:39,228 | epoch: [5/30] iter: [166/391] loss_D: 1.3813 loss_G: 0.6954 +2018-11-14 05:57:46,428 | epoch: [5/30] iter: [167/391] loss_D: 1.3841 loss_G: 0.6942 +2018-11-14 05:57:53,167 | epoch: [5/30] iter: [168/391] loss_D: 1.3817 loss_G: 0.6957 +2018-11-14 05:58:00,196 | epoch: [5/30] iter: [169/391] loss_D: 1.3827 loss_G: 0.6916 +2018-11-14 05:58:06,563 | epoch: [5/30] iter: [170/391] loss_D: 1.3892 loss_G: 0.6989 +2018-11-14 05:58:10,613 | epoch: [5/30] iter: [171/391] loss_D: 1.3836 loss_G: 0.6974 +2018-11-14 05:58:14,556 | epoch: [5/30] iter: [172/391] loss_D: 1.3820 loss_G: 0.7003 +2018-11-14 05:58:18,707 | epoch: [5/30] iter: [173/391] loss_D: 1.3852 loss_G: 0.6962 +2018-11-14 05:58:22,697 | epoch: [5/30] iter: [174/391] loss_D: 1.3856 loss_G: 0.6987 +2018-11-14 05:58:26,847 | epoch: [5/30] iter: [175/391] loss_D: 1.3871 loss_G: 0.7012 +2018-11-14 05:58:32,836 | epoch: [5/30] iter: [176/391] loss_D: 1.3863 loss_G: 0.7009 +2018-11-14 05:58:39,847 | epoch: [5/30] iter: [177/391] loss_D: 1.3858 loss_G: 0.6986 +2018-11-14 05:58:46,831 | epoch: [5/30] iter: [178/391] loss_D: 1.3900 loss_G: 0.6943 +2018-11-14 05:58:53,664 | epoch: [5/30] iter: [179/391] loss_D: 1.3937 loss_G: 0.6924 +2018-11-14 05:59:00,775 | epoch: [5/30] iter: [180/391] loss_D: 1.3919 loss_G: 0.6896 +2018-11-14 05:59:07,737 | epoch: [5/30] iter: [181/391] loss_D: 1.3931 loss_G: 0.6891 +2018-11-14 05:59:14,746 | epoch: [5/30] iter: [182/391] loss_D: 1.3916 loss_G: 0.6899 +2018-11-14 05:59:21,445 | epoch: [5/30] iter: [183/391] loss_D: 1.3900 loss_G: 0.6889 +2018-11-14 05:59:28,383 | epoch: [5/30] iter: [184/391] loss_D: 1.3895 loss_G: 0.6905 +2018-11-14 05:59:35,459 | epoch: [5/30] iter: [185/391] loss_D: 1.3906 loss_G: 0.6906 +2018-11-14 05:59:42,481 | epoch: [5/30] iter: [186/391] loss_D: 1.3886 loss_G: 0.6896 +2018-11-14 05:59:49,272 | epoch: [5/30] iter: [187/391] loss_D: 1.3885 loss_G: 0.6927 +2018-11-14 05:59:56,402 | epoch: [5/30] iter: [188/391] loss_D: 1.3870 loss_G: 0.6936 +2018-11-14 06:00:03,652 | epoch: [5/30] iter: [189/391] loss_D: 1.3826 loss_G: 0.6948 +2018-11-14 06:00:08,266 | epoch: [5/30] iter: [190/391] loss_D: 1.3780 loss_G: 0.6975 +2018-11-14 06:00:12,379 | epoch: [5/30] iter: [191/391] loss_D: 1.3790 loss_G: 0.6986 +2018-11-14 06:00:16,771 | epoch: [5/30] iter: [192/391] loss_D: 1.3710 loss_G: 0.7018 +2018-11-14 06:00:20,763 | epoch: [5/30] iter: [193/391] loss_D: 1.3674 loss_G: 0.7023 +2018-11-14 06:00:24,970 | epoch: [5/30] iter: [194/391] loss_D: 1.3643 loss_G: 0.7020 +2018-11-14 06:00:29,268 | epoch: [5/30] iter: [195/391] loss_D: 1.3631 loss_G: 0.6944 +2018-11-14 06:00:33,219 | epoch: [5/30] iter: [196/391] loss_D: 1.3683 loss_G: 0.6801 +2018-11-14 06:00:38,213 | epoch: [5/30] iter: [197/391] loss_D: 1.3964 loss_G: 0.6677 +2018-11-14 06:00:43,653 | epoch: [5/30] iter: [198/391] loss_D: 1.4025 loss_G: 0.6784 +2018-11-14 06:00:49,929 | epoch: [5/30] iter: [199/391] loss_D: 1.3924 loss_G: 0.6974 +2018-11-14 06:00:54,402 | epoch: [5/30] iter: [200/391] loss_D: 1.3856 loss_G: 0.7111 +2018-11-14 06:00:59,112 | epoch: [5/30] iter: [201/391] loss_D: 1.3818 loss_G: 0.7213 +2018-11-14 06:01:03,505 | epoch: [5/30] iter: [202/391] loss_D: 1.3831 loss_G: 0.7226 +2018-11-14 06:01:08,212 | epoch: [5/30] iter: [203/391] loss_D: 1.3924 loss_G: 0.7093 +2018-11-14 06:01:15,325 | epoch: [5/30] iter: [204/391] loss_D: 1.4104 loss_G: 0.6998 +2018-11-14 06:01:20,372 | epoch: [5/30] iter: [205/391] loss_D: 1.4035 loss_G: 0.7017 +2018-11-14 06:01:24,609 | epoch: [5/30] iter: [206/391] loss_D: 1.3976 loss_G: 0.7044 +2018-11-14 06:01:29,526 | epoch: [5/30] iter: [207/391] loss_D: 1.3975 loss_G: 0.7061 +2018-11-14 06:01:33,943 | epoch: [5/30] iter: [208/391] loss_D: 1.3936 loss_G: 0.7055 +2018-11-14 06:01:38,344 | epoch: [5/30] iter: [209/391] loss_D: 1.3925 loss_G: 0.7022 +2018-11-14 06:01:42,847 | epoch: [5/30] iter: [210/391] loss_D: 1.3922 loss_G: 0.7036 +2018-11-14 06:01:49,306 | epoch: [5/30] iter: [211/391] loss_D: 1.3902 loss_G: 0.7020 +2018-11-14 06:01:55,083 | epoch: [5/30] iter: [212/391] loss_D: 1.3924 loss_G: 0.6971 +2018-11-14 06:01:59,481 | epoch: [5/30] iter: [213/391] loss_D: 1.3913 loss_G: 0.6959 +2018-11-14 06:02:04,156 | epoch: [5/30] iter: [214/391] loss_D: 1.3916 loss_G: 0.6959 +2018-11-14 06:02:08,727 | epoch: [5/30] iter: [215/391] loss_D: 1.3896 loss_G: 0.6962 +2018-11-14 06:02:13,440 | epoch: [5/30] iter: [216/391] loss_D: 1.3900 loss_G: 0.6944 +2018-11-14 06:02:17,629 | epoch: [5/30] iter: [217/391] loss_D: 1.3898 loss_G: 0.6958 +2018-11-14 06:02:23,327 | epoch: [5/30] iter: [218/391] loss_D: 1.3853 loss_G: 0.6962 +2018-11-14 06:02:29,915 | epoch: [5/30] iter: [219/391] loss_D: 1.3859 loss_G: 0.6965 +2018-11-14 06:02:35,552 | epoch: [5/30] iter: [220/391] loss_D: 1.3866 loss_G: 0.6966 +2018-11-14 06:02:40,545 | epoch: [5/30] iter: [221/391] loss_D: 1.3883 loss_G: 0.6947 +2018-11-14 06:02:44,819 | epoch: [5/30] iter: [222/391] loss_D: 1.3848 loss_G: 0.6950 +2018-11-14 06:02:49,797 | epoch: [5/30] iter: [223/391] loss_D: 1.3850 loss_G: 0.6954 +2018-11-14 06:02:57,243 | epoch: [5/30] iter: [224/391] loss_D: 1.3843 loss_G: 0.6952 +2018-11-14 06:03:02,368 | epoch: [5/30] iter: [225/391] loss_D: 1.3823 loss_G: 0.6947 +2018-11-14 06:03:08,022 | epoch: [5/30] iter: [226/391] loss_D: 1.3802 loss_G: 0.6947 +2018-11-14 06:03:12,342 | epoch: [5/30] iter: [227/391] loss_D: 1.3788 loss_G: 0.6971 +2018-11-14 06:03:17,080 | epoch: [5/30] iter: [228/391] loss_D: 1.3802 loss_G: 0.6963 +2018-11-14 06:03:24,856 | epoch: [5/30] iter: [229/391] loss_D: 1.3786 loss_G: 0.6951 +2018-11-14 06:03:29,602 | epoch: [5/30] iter: [230/391] loss_D: 1.3793 loss_G: 0.6919 +2018-11-14 06:03:34,058 | epoch: [5/30] iter: [231/391] loss_D: 1.3788 loss_G: 0.6921 +2018-11-14 06:03:39,892 | epoch: [5/30] iter: [232/391] loss_D: 1.3840 loss_G: 0.6912 +2018-11-14 06:03:46,436 | epoch: [5/30] iter: [233/391] loss_D: 1.3804 loss_G: 0.6912 +2018-11-14 06:03:52,642 | epoch: [5/30] iter: [234/391] loss_D: 1.3868 loss_G: 0.6871 +2018-11-14 06:03:57,410 | epoch: [5/30] iter: [235/391] loss_D: 1.3905 loss_G: 0.6883 +2018-11-14 06:04:03,206 | epoch: [5/30] iter: [236/391] loss_D: 1.3945 loss_G: 0.6909 +2018-11-14 06:04:07,670 | epoch: [5/30] iter: [237/391] loss_D: 1.3934 loss_G: 0.6925 +2018-11-14 06:04:12,116 | epoch: [5/30] iter: [238/391] loss_D: 1.3953 loss_G: 0.6929 +2018-11-14 06:04:16,465 | epoch: [5/30] iter: [239/391] loss_D: 1.3911 loss_G: 0.6960 +2018-11-14 06:04:21,087 | epoch: [5/30] iter: [240/391] loss_D: 1.3862 loss_G: 0.7003 +2018-11-14 06:04:28,842 | epoch: [5/30] iter: [241/391] loss_D: 1.3907 loss_G: 0.6958 +2018-11-14 06:04:33,536 | epoch: [5/30] iter: [242/391] loss_D: 1.3885 loss_G: 0.6967 +2018-11-14 06:04:39,189 | epoch: [5/30] iter: [243/391] loss_D: 1.3885 loss_G: 0.6998 +2018-11-14 06:04:44,880 | epoch: [5/30] iter: [244/391] loss_D: 1.3908 loss_G: 0.6974 +2018-11-14 06:04:49,602 | epoch: [5/30] iter: [245/391] loss_D: 1.3897 loss_G: 0.6965 +2018-11-14 06:07:27,898 | epoch: [5/30] iter: [246/391] loss_D: 1.3869 loss_G: 0.6970 +2018-11-14 06:07:32,215 | epoch: [5/30] iter: [247/391] loss_D: 1.3866 loss_G: 0.6967 +2018-11-14 06:07:36,220 | epoch: [5/30] iter: [248/391] loss_D: 1.3860 loss_G: 0.6969 +2018-11-14 06:07:40,385 | epoch: [5/30] iter: [249/391] loss_D: 1.3864 loss_G: 0.6952 +2018-11-14 06:07:44,599 | epoch: [5/30] iter: [250/391] loss_D: 1.3836 loss_G: 0.6962 +2018-11-14 06:07:49,439 | epoch: [5/30] iter: [251/391] loss_D: 1.3831 loss_G: 0.6968 +2018-11-14 06:07:56,505 | epoch: [5/30] iter: [252/391] loss_D: 1.3829 loss_G: 0.6963 +2018-11-14 06:08:03,482 | epoch: [5/30] iter: [253/391] loss_D: 1.3863 loss_G: 0.6940 +2018-11-14 06:08:10,810 | epoch: [5/30] iter: [254/391] loss_D: 1.3873 loss_G: 0.6923 +2018-11-14 06:08:18,115 | epoch: [5/30] iter: [255/391] loss_D: 1.3874 loss_G: 0.6930 +2018-11-14 06:08:25,100 | epoch: [5/30] iter: [256/391] loss_D: 1.3872 loss_G: 0.6918 +2018-11-14 06:08:32,085 | epoch: [5/30] iter: [257/391] loss_D: 1.3898 loss_G: 0.6903 +2018-11-14 06:08:39,571 | epoch: [5/30] iter: [258/391] loss_D: 1.3872 loss_G: 0.6900 +2018-11-14 06:08:46,449 | epoch: [5/30] iter: [259/391] loss_D: 1.3908 loss_G: 0.6914 +2018-11-14 06:08:53,591 | epoch: [5/30] iter: [260/391] loss_D: 1.3927 loss_G: 0.6900 +2018-11-14 06:09:00,435 | epoch: [5/30] iter: [261/391] loss_D: 1.3922 loss_G: 0.6917 +2018-11-14 06:09:07,462 | epoch: [5/30] iter: [262/391] loss_D: 1.3914 loss_G: 0.6943 +2018-11-14 06:09:14,574 | epoch: [5/30] iter: [263/391] loss_D: 1.3894 loss_G: 0.6939 +2018-11-14 06:09:21,447 | epoch: [5/30] iter: [264/391] loss_D: 1.3897 loss_G: 0.6958 +2018-11-14 06:09:28,949 | epoch: [5/30] iter: [265/391] loss_D: 1.3892 loss_G: 0.6958 +2018-11-14 06:09:36,202 | epoch: [5/30] iter: [266/391] loss_D: 1.3874 loss_G: 0.6955 +2018-11-14 06:09:40,997 | epoch: [5/30] iter: [267/391] loss_D: 1.3857 loss_G: 0.6964 +2018-11-14 06:09:45,128 | epoch: [5/30] iter: [268/391] loss_D: 1.3865 loss_G: 0.6967 +2018-11-14 06:09:49,191 | epoch: [5/30] iter: [269/391] loss_D: 1.3860 loss_G: 0.6968 +2018-11-14 06:09:53,113 | epoch: [5/30] iter: [270/391] loss_D: 1.3845 loss_G: 0.6966 +2018-11-14 06:09:57,200 | epoch: [5/30] iter: [271/391] loss_D: 1.3843 loss_G: 0.6964 +2018-11-14 06:10:01,447 | epoch: [5/30] iter: [272/391] loss_D: 1.3843 loss_G: 0.6953 +2018-11-14 06:10:08,231 | epoch: [5/30] iter: [273/391] loss_D: 1.3843 loss_G: 0.6957 +2018-11-14 06:10:14,787 | epoch: [5/30] iter: [274/391] loss_D: 1.3839 loss_G: 0.6967 +2018-11-14 06:10:21,874 | epoch: [5/30] iter: [275/391] loss_D: 1.3842 loss_G: 0.6960 +2018-11-14 06:10:28,653 | epoch: [5/30] iter: [276/391] loss_D: 1.3838 loss_G: 0.6952 +2018-11-14 06:10:35,505 | epoch: [5/30] iter: [277/391] loss_D: 1.3834 loss_G: 0.6954 +2018-11-14 06:10:42,521 | epoch: [5/30] iter: [278/391] loss_D: 1.3823 loss_G: 0.6956 +2018-11-14 06:10:49,570 | epoch: [5/30] iter: [279/391] loss_D: 1.3815 loss_G: 0.6937 +2018-11-14 06:10:56,051 | epoch: [5/30] iter: [280/391] loss_D: 1.3837 loss_G: 0.6944 +2018-11-14 06:11:02,800 | epoch: [5/30] iter: [281/391] loss_D: 1.3824 loss_G: 0.6955 +2018-11-14 06:11:09,824 | epoch: [5/30] iter: [282/391] loss_D: 1.3839 loss_G: 0.6951 +2018-11-14 06:11:16,652 | epoch: [5/30] iter: [283/391] loss_D: 1.3845 loss_G: 0.6945 +2018-11-14 06:11:23,739 | epoch: [5/30] iter: [284/391] loss_D: 1.3820 loss_G: 0.6919 +2018-11-14 06:11:30,684 | epoch: [5/30] iter: [285/391] loss_D: 1.3793 loss_G: 0.6942 +2018-11-14 06:11:37,932 | epoch: [5/30] iter: [286/391] loss_D: 1.3821 loss_G: 0.6938 +2018-11-14 06:11:44,953 | epoch: [5/30] iter: [287/391] loss_D: 1.3834 loss_G: 0.6930 +2018-11-14 06:11:51,809 | epoch: [5/30] iter: [288/391] loss_D: 1.3854 loss_G: 0.6917 +2018-11-14 06:11:58,840 | epoch: [5/30] iter: [289/391] loss_D: 1.3855 loss_G: 0.6915 +2018-11-14 06:12:06,272 | epoch: [5/30] iter: [290/391] loss_D: 1.3850 loss_G: 0.6925 +2018-11-14 06:12:12,812 | epoch: [5/30] iter: [291/391] loss_D: 1.3836 loss_G: 0.6928 +2018-11-14 06:12:18,898 | epoch: [5/30] iter: [292/391] loss_D: 1.3827 loss_G: 0.6986 +2018-11-14 06:12:22,890 | epoch: [5/30] iter: [293/391] loss_D: 1.3822 loss_G: 0.6957 +2018-11-14 06:12:26,958 | epoch: [5/30] iter: [294/391] loss_D: 1.3829 loss_G: 0.6966 +2018-11-14 06:12:31,134 | epoch: [5/30] iter: [295/391] loss_D: 1.3834 loss_G: 0.6953 +2018-11-14 06:12:35,237 | epoch: [5/30] iter: [296/391] loss_D: 1.3850 loss_G: 0.6993 +2018-11-14 06:12:39,445 | epoch: [5/30] iter: [297/391] loss_D: 1.3837 loss_G: 0.6977 +2018-11-14 06:12:45,234 | epoch: [5/30] iter: [298/391] loss_D: 1.3819 loss_G: 0.6988 +2018-11-14 06:12:51,926 | epoch: [5/30] iter: [299/391] loss_D: 1.3846 loss_G: 0.6984 +2018-11-14 06:12:59,142 | epoch: [5/30] iter: [300/391] loss_D: 1.3848 loss_G: 0.6975 +2018-11-14 06:13:06,095 | epoch: [5/30] iter: [301/391] loss_D: 1.3852 loss_G: 0.6959 +2018-11-14 06:13:12,995 | epoch: [5/30] iter: [302/391] loss_D: 1.3827 loss_G: 0.6964 +2018-11-14 06:13:19,899 | epoch: [5/30] iter: [303/391] loss_D: 1.3868 loss_G: 0.6944 +2018-11-14 06:13:26,916 | epoch: [5/30] iter: [304/391] loss_D: 1.3880 loss_G: 0.6924 +2018-11-14 06:13:34,054 | epoch: [5/30] iter: [305/391] loss_D: 1.3935 loss_G: 0.6908 +2018-11-14 06:13:41,251 | epoch: [5/30] iter: [306/391] loss_D: 1.3891 loss_G: 0.6900 +2018-11-14 06:13:48,335 | epoch: [5/30] iter: [307/391] loss_D: 1.3882 loss_G: 0.6905 +2018-11-14 06:13:55,328 | epoch: [5/30] iter: [308/391] loss_D: 1.3892 loss_G: 0.6898 +2018-11-14 06:14:02,163 | epoch: [5/30] iter: [309/391] loss_D: 1.3890 loss_G: 0.6906 +2018-11-14 06:14:06,251 | epoch: [5/30] iter: [310/391] loss_D: 1.3871 loss_G: 0.6912 +2018-11-14 06:14:10,242 | epoch: [5/30] iter: [311/391] loss_D: 1.3884 loss_G: 0.6923 +2018-11-14 06:14:14,318 | epoch: [5/30] iter: [312/391] loss_D: 1.3875 loss_G: 0.6921 +2018-11-14 06:14:18,419 | epoch: [5/30] iter: [313/391] loss_D: 1.3868 loss_G: 0.6936 +2018-11-14 06:14:22,276 | epoch: [5/30] iter: [314/391] loss_D: 1.3863 loss_G: 0.6922 +2018-11-14 06:14:26,543 | epoch: [5/30] iter: [315/391] loss_D: 1.3868 loss_G: 0.6918 +2018-11-14 06:14:30,764 | epoch: [5/30] iter: [316/391] loss_D: 1.3886 loss_G: 0.6922 +2018-11-14 06:14:34,953 | epoch: [5/30] iter: [317/391] loss_D: 1.3854 loss_G: 0.6943 +2018-11-14 06:14:39,248 | epoch: [5/30] iter: [318/391] loss_D: 1.3869 loss_G: 0.6962 +2018-11-14 06:14:43,551 | epoch: [5/30] iter: [319/391] loss_D: 1.3880 loss_G: 0.6943 +2018-11-14 06:14:49,102 | epoch: [5/30] iter: [320/391] loss_D: 1.3851 loss_G: 0.6944 +2018-11-14 06:14:56,191 | epoch: [5/30] iter: [321/391] loss_D: 1.3843 loss_G: 0.6956 +2018-11-14 06:15:02,991 | epoch: [5/30] iter: [322/391] loss_D: 1.3844 loss_G: 0.6956 +2018-11-14 06:15:10,170 | epoch: [5/30] iter: [323/391] loss_D: 1.3848 loss_G: 0.6940 +2018-11-14 06:15:16,904 | epoch: [5/30] iter: [324/391] loss_D: 1.3848 loss_G: 0.6961 +2018-11-14 06:15:23,668 | epoch: [5/30] iter: [325/391] loss_D: 1.3823 loss_G: 0.6993 +2018-11-14 06:15:30,799 | epoch: [5/30] iter: [326/391] loss_D: 1.3816 loss_G: 0.6982 +2018-11-14 06:15:38,064 | epoch: [5/30] iter: [327/391] loss_D: 1.3831 loss_G: 0.6959 +2018-11-14 06:15:45,094 | epoch: [5/30] iter: [328/391] loss_D: 1.3840 loss_G: 0.6953 +2018-11-14 06:15:52,445 | epoch: [5/30] iter: [329/391] loss_D: 1.3845 loss_G: 0.6967 +2018-11-14 06:15:59,713 | epoch: [5/30] iter: [330/391] loss_D: 1.3871 loss_G: 0.6988 +2018-11-14 06:16:06,416 | epoch: [5/30] iter: [331/391] loss_D: 1.3857 loss_G: 0.6998 +2018-11-14 06:16:13,456 | epoch: [5/30] iter: [332/391] loss_D: 1.3861 loss_G: 0.6966 +2018-11-14 06:16:20,821 | epoch: [5/30] iter: [333/391] loss_D: 1.3881 loss_G: 0.6983 +2018-11-14 06:16:27,516 | epoch: [5/30] iter: [334/391] loss_D: 1.3855 loss_G: 0.7030 +2018-11-14 06:16:34,535 | epoch: [5/30] iter: [335/391] loss_D: 1.3869 loss_G: 0.7029 +2018-11-14 06:16:41,629 | epoch: [5/30] iter: [336/391] loss_D: 1.3871 loss_G: 0.7006 +2018-11-14 06:16:45,800 | epoch: [5/30] iter: [337/391] loss_D: 1.3884 loss_G: 0.7009 +2018-11-14 06:16:49,791 | epoch: [5/30] iter: [338/391] loss_D: 1.3900 loss_G: 0.6980 +2018-11-14 06:16:53,808 | epoch: [5/30] iter: [339/391] loss_D: 1.3903 loss_G: 0.6975 +2018-11-14 06:16:57,827 | epoch: [5/30] iter: [340/391] loss_D: 1.3891 loss_G: 0.6979 +2018-11-14 06:17:02,020 | epoch: [5/30] iter: [341/391] loss_D: 1.3891 loss_G: 0.6966 +2018-11-14 06:17:06,976 | epoch: [5/30] iter: [342/391] loss_D: 1.3912 loss_G: 0.6923 +2018-11-14 06:17:13,915 | epoch: [5/30] iter: [343/391] loss_D: 1.3894 loss_G: 0.6944 +2018-11-14 06:17:20,748 | epoch: [5/30] iter: [344/391] loss_D: 1.3936 loss_G: 0.6920 +2018-11-14 06:17:27,878 | epoch: [5/30] iter: [345/391] loss_D: 1.3889 loss_G: 0.6931 +2018-11-14 06:20:16,458 | epoch: [5/30] iter: [346/391] loss_D: 1.3878 loss_G: 0.6922 +2018-11-14 06:20:20,625 | epoch: [5/30] iter: [347/391] loss_D: 1.3900 loss_G: 0.6917 +2018-11-14 06:20:24,655 | epoch: [5/30] iter: [348/391] loss_D: 1.3901 loss_G: 0.6915 +2018-11-14 06:20:28,945 | epoch: [5/30] iter: [349/391] loss_D: 1.3863 loss_G: 0.6925 +2018-11-14 06:20:33,182 | epoch: [5/30] iter: [350/391] loss_D: 1.3879 loss_G: 0.6932 +2018-11-14 06:20:37,457 | epoch: [5/30] iter: [351/391] loss_D: 1.3869 loss_G: 0.6947 +2018-11-14 06:20:43,432 | epoch: [5/30] iter: [352/391] loss_D: 1.3854 loss_G: 0.6947 +2018-11-14 06:20:49,267 | epoch: [5/30] iter: [353/391] loss_D: 1.3839 loss_G: 0.6956 +2018-11-14 06:20:54,440 | epoch: [5/30] iter: [354/391] loss_D: 1.3823 loss_G: 0.6963 +2018-11-14 06:21:00,407 | epoch: [5/30] iter: [355/391] loss_D: 1.3846 loss_G: 0.6948 +2018-11-14 06:21:06,408 | epoch: [5/30] iter: [356/391] loss_D: 1.3840 loss_G: 0.6929 +2018-11-14 06:21:11,717 | epoch: [5/30] iter: [357/391] loss_D: 1.3848 loss_G: 0.6926 +2018-11-14 06:21:17,004 | epoch: [5/30] iter: [358/391] loss_D: 1.3860 loss_G: 0.6919 +2018-11-14 06:21:21,462 | epoch: [5/30] iter: [359/391] loss_D: 1.3858 loss_G: 0.6920 +2018-11-14 06:21:26,390 | epoch: [5/30] iter: [360/391] loss_D: 1.3862 loss_G: 0.6915 +2018-11-14 06:21:34,006 | epoch: [5/30] iter: [361/391] loss_D: 1.3865 loss_G: 0.6915 +2018-11-14 06:21:38,689 | epoch: [5/30] iter: [362/391] loss_D: 1.3839 loss_G: 0.6915 +2018-11-14 06:21:43,029 | epoch: [5/30] iter: [363/391] loss_D: 1.3875 loss_G: 0.6912 +2018-11-14 06:21:48,725 | epoch: [5/30] iter: [364/391] loss_D: 1.3869 loss_G: 0.6914 +2018-11-14 06:21:55,299 | epoch: [5/30] iter: [365/391] loss_D: 1.3849 loss_G: 0.6922 +2018-11-14 06:21:59,795 | epoch: [5/30] iter: [366/391] loss_D: 1.3894 loss_G: 0.6907 +2018-11-14 06:22:04,222 | epoch: [5/30] iter: [367/391] loss_D: 1.3894 loss_G: 0.6922 +2018-11-14 06:22:08,789 | epoch: [5/30] iter: [368/391] loss_D: 1.3848 loss_G: 0.6913 +2018-11-14 06:22:13,097 | epoch: [5/30] iter: [369/391] loss_D: 1.3891 loss_G: 0.6909 +2018-11-14 06:22:17,375 | epoch: [5/30] iter: [370/391] loss_D: 1.3876 loss_G: 0.6921 +2018-11-14 06:22:22,123 | epoch: [5/30] iter: [371/391] loss_D: 1.3864 loss_G: 0.6953 +2018-11-14 06:22:29,787 | epoch: [5/30] iter: [372/391] loss_D: 1.3842 loss_G: 0.6949 +2018-11-14 06:22:34,561 | epoch: [5/30] iter: [373/391] loss_D: 1.3873 loss_G: 0.6943 +2018-11-14 06:22:38,969 | epoch: [5/30] iter: [374/391] loss_D: 1.3876 loss_G: 0.6940 +2018-11-14 06:22:43,426 | epoch: [5/30] iter: [375/391] loss_D: 1.3876 loss_G: 0.6951 +2018-11-14 06:22:48,050 | epoch: [5/30] iter: [376/391] loss_D: 1.3856 loss_G: 0.6972 +2018-11-14 06:22:54,643 | epoch: [5/30] iter: [377/391] loss_D: 1.3868 loss_G: 0.6947 +2018-11-14 06:23:00,525 | epoch: [5/30] iter: [378/391] loss_D: 1.3853 loss_G: 0.6981 +2018-11-14 06:23:05,047 | epoch: [5/30] iter: [379/391] loss_D: 1.3866 loss_G: 0.6963 +2018-11-14 06:23:09,180 | epoch: [5/30] iter: [380/391] loss_D: 1.3850 loss_G: 0.6987 +2018-11-14 06:23:13,692 | epoch: [5/30] iter: [381/391] loss_D: 1.3863 loss_G: 0.6978 +2018-11-14 06:23:19,816 | epoch: [5/30] iter: [382/391] loss_D: 1.3848 loss_G: 0.6973 +2018-11-14 06:23:25,862 | epoch: [5/30] iter: [383/391] loss_D: 1.3859 loss_G: 0.6986 +2018-11-14 06:23:30,809 | epoch: [5/30] iter: [384/391] loss_D: 1.3843 loss_G: 0.6975 +2018-11-14 06:23:36,464 | epoch: [5/30] iter: [385/391] loss_D: 1.3838 loss_G: 0.6986 +2018-11-14 06:23:40,799 | epoch: [5/30] iter: [386/391] loss_D: 1.3830 loss_G: 0.6965 +2018-11-14 06:23:45,198 | epoch: [5/30] iter: [387/391] loss_D: 1.3827 loss_G: 0.6984 +2018-11-14 06:23:49,811 | epoch: [5/30] iter: [388/391] loss_D: 1.3849 loss_G: 0.6979 +2018-11-14 06:23:54,561 | epoch: [5/30] iter: [389/391] loss_D: 1.3830 loss_G: 0.6991 +2018-11-14 06:23:59,183 | epoch: [5/30] iter: [390/391] loss_D: 1.3872 loss_G: 0.6963 +2018-11-14 06:24:05,174 | epoch: [6/30] iter: [0/391] loss_D: 1.3871 loss_G: 0.6949 +2018-11-14 06:24:09,373 | epoch: [6/30] iter: [1/391] loss_D: 1.3836 loss_G: 0.6949 +2018-11-14 06:24:13,949 | epoch: [6/30] iter: [2/391] loss_D: 1.3860 loss_G: 0.6917 +2018-11-14 06:24:21,437 | epoch: [6/30] iter: [3/391] loss_D: 1.3831 loss_G: 0.6942 +2018-11-14 06:24:26,784 | epoch: [6/30] iter: [4/391] loss_D: 1.3828 loss_G: 0.6936 +2018-11-14 06:24:32,448 | epoch: [6/30] iter: [5/391] loss_D: 1.3863 loss_G: 0.6904 +2018-11-14 06:24:38,608 | epoch: [6/30] iter: [6/391] loss_D: 1.3827 loss_G: 0.6915 +2018-11-14 06:24:44,005 | epoch: [6/30] iter: [7/391] loss_D: 1.3802 loss_G: 0.6901 +2018-11-14 06:24:49,623 | epoch: [6/30] iter: [8/391] loss_D: 1.3824 loss_G: 0.6887 +2018-11-14 06:24:55,904 | epoch: [6/30] iter: [9/391] loss_D: 1.3813 loss_G: 0.6864 +2018-11-14 06:25:00,363 | epoch: [6/30] iter: [10/391] loss_D: 1.3876 loss_G: 0.6859 +2018-11-14 06:25:04,998 | epoch: [6/30] iter: [11/391] loss_D: 1.3859 loss_G: 0.6864 +2018-11-14 06:25:09,417 | epoch: [6/30] iter: [12/391] loss_D: 1.3914 loss_G: 0.6852 +2018-11-14 06:25:13,616 | epoch: [6/30] iter: [13/391] loss_D: 1.3861 loss_G: 0.6872 +2018-11-14 06:25:17,977 | epoch: [6/30] iter: [14/391] loss_D: 1.3895 loss_G: 0.6846 +2018-11-14 06:25:24,205 | epoch: [6/30] iter: [15/391] loss_D: 1.3912 loss_G: 0.6819 +2018-11-14 06:25:30,335 | epoch: [6/30] iter: [16/391] loss_D: 1.3918 loss_G: 0.6858 +2018-11-14 06:25:34,629 | epoch: [6/30] iter: [17/391] loss_D: 1.3928 loss_G: 0.6897 +2018-11-14 06:25:39,082 | epoch: [6/30] iter: [18/391] loss_D: 1.3943 loss_G: 0.6917 +2018-11-14 06:25:44,980 | epoch: [6/30] iter: [19/391] loss_D: 1.3881 loss_G: 0.6953 +2018-11-14 06:25:51,544 | epoch: [6/30] iter: [20/391] loss_D: 1.3916 loss_G: 0.6973 +2018-11-14 06:25:57,340 | epoch: [6/30] iter: [21/391] loss_D: 1.3872 loss_G: 0.6983 +2018-11-14 06:26:02,676 | epoch: [6/30] iter: [22/391] loss_D: 1.3876 loss_G: 0.6993 +2018-11-14 06:26:08,659 | epoch: [6/30] iter: [23/391] loss_D: 1.3853 loss_G: 0.7011 +2018-11-14 06:26:12,983 | epoch: [6/30] iter: [24/391] loss_D: 1.3861 loss_G: 0.7012 +2018-11-14 06:26:17,361 | epoch: [6/30] iter: [25/391] loss_D: 1.3876 loss_G: 0.7046 +2018-11-14 06:26:21,512 | epoch: [6/30] iter: [26/391] loss_D: 1.3867 loss_G: 0.7013 +2018-11-14 06:26:25,509 | epoch: [6/30] iter: [27/391] loss_D: 1.3866 loss_G: 0.6999 +2018-11-14 06:26:29,944 | epoch: [6/30] iter: [28/391] loss_D: 1.3870 loss_G: 0.6990 +2018-11-14 06:26:36,165 | epoch: [6/30] iter: [29/391] loss_D: 1.3832 loss_G: 0.6983 +2018-11-14 06:26:42,168 | epoch: [6/30] iter: [30/391] loss_D: 1.3885 loss_G: 0.6951 +2018-11-14 06:26:46,971 | epoch: [6/30] iter: [31/391] loss_D: 1.3864 loss_G: 0.6948 +2018-11-14 06:26:52,763 | epoch: [6/30] iter: [32/391] loss_D: 1.3897 loss_G: 0.6929 +2018-11-14 06:26:57,070 | epoch: [6/30] iter: [33/391] loss_D: 1.3874 loss_G: 0.6936 +2018-11-14 06:27:01,599 | epoch: [6/30] iter: [34/391] loss_D: 1.3905 loss_G: 0.6926 +2018-11-14 06:27:09,099 | epoch: [6/30] iter: [35/391] loss_D: 1.3909 loss_G: 0.6928 +2018-11-14 06:27:14,320 | epoch: [6/30] iter: [36/391] loss_D: 1.3895 loss_G: 0.6931 +2018-11-14 06:27:20,461 | epoch: [6/30] iter: [37/391] loss_D: 1.3889 loss_G: 0.6924 +2018-11-14 06:27:24,957 | epoch: [6/30] iter: [38/391] loss_D: 1.3878 loss_G: 0.6946 +2018-11-14 06:27:29,568 | epoch: [6/30] iter: [39/391] loss_D: 1.3866 loss_G: 0.6957 +2018-11-14 06:27:37,050 | epoch: [6/30] iter: [40/391] loss_D: 1.3859 loss_G: 0.6956 +2018-11-14 06:27:41,970 | epoch: [6/30] iter: [41/391] loss_D: 1.3869 loss_G: 0.6973 +2018-11-14 06:27:48,382 | epoch: [6/30] iter: [42/391] loss_D: 1.3829 loss_G: 0.6977 +2018-11-14 06:27:54,379 | epoch: [6/30] iter: [43/391] loss_D: 1.3848 loss_G: 0.6960 +2018-11-14 06:27:59,083 | epoch: [6/30] iter: [44/391] loss_D: 1.3834 loss_G: 0.6972 +2018-11-14 06:28:03,371 | epoch: [6/30] iter: [45/391] loss_D: 1.3807 loss_G: 0.6967 +2018-11-14 06:28:09,176 | epoch: [6/30] iter: [46/391] loss_D: 1.3843 loss_G: 0.6965 +2018-11-14 06:28:15,613 | epoch: [6/30] iter: [47/391] loss_D: 1.3820 loss_G: 0.6979 +2018-11-14 06:28:21,716 | epoch: [6/30] iter: [48/391] loss_D: 1.3821 loss_G: 0.6954 +2018-11-14 06:28:26,726 | epoch: [6/30] iter: [49/391] loss_D: 1.3852 loss_G: 0.6943 +2018-11-14 06:28:31,080 | epoch: [6/30] iter: [50/391] loss_D: 1.3857 loss_G: 0.6945 +2018-11-14 06:28:35,147 | epoch: [6/30] iter: [51/391] loss_D: 1.3872 loss_G: 0.6931 +2018-11-14 06:28:40,235 | epoch: [6/30] iter: [52/391] loss_D: 1.3880 loss_G: 0.6917 +2018-11-14 06:28:45,717 | epoch: [6/30] iter: [53/391] loss_D: 1.3900 loss_G: 0.6921 +2018-11-14 06:28:50,027 | epoch: [6/30] iter: [54/391] loss_D: 1.3861 loss_G: 0.6940 +2018-11-14 06:31:32,866 | epoch: [6/30] iter: [55/391] loss_D: 1.3885 loss_G: 0.6941 +2018-11-14 06:31:36,828 | epoch: [6/30] iter: [56/391] loss_D: 1.3849 loss_G: 0.6927 +2018-11-14 06:31:40,888 | epoch: [6/30] iter: [57/391] loss_D: 1.3853 loss_G: 0.6943 +2018-11-14 06:31:45,124 | epoch: [6/30] iter: [58/391] loss_D: 1.3840 loss_G: 0.6947 +2018-11-14 06:31:51,273 | epoch: [6/30] iter: [59/391] loss_D: 1.3839 loss_G: 0.6963 +2018-11-14 06:31:58,695 | epoch: [6/30] iter: [60/391] loss_D: 1.3827 loss_G: 0.6951 +2018-11-14 06:32:06,018 | epoch: [6/30] iter: [61/391] loss_D: 1.3846 loss_G: 0.6956 +2018-11-14 06:32:12,761 | epoch: [6/30] iter: [62/391] loss_D: 1.3843 loss_G: 0.6946 +2018-11-14 06:32:19,841 | epoch: [6/30] iter: [63/391] loss_D: 1.3837 loss_G: 0.6935 +2018-11-14 06:32:27,177 | epoch: [6/30] iter: [64/391] loss_D: 1.3870 loss_G: 0.6934 +2018-11-14 06:32:34,209 | epoch: [6/30] iter: [65/391] loss_D: 1.3861 loss_G: 0.6942 +2018-11-14 06:32:41,156 | epoch: [6/30] iter: [66/391] loss_D: 1.3871 loss_G: 0.6935 +2018-11-14 06:32:47,777 | epoch: [6/30] iter: [67/391] loss_D: 1.3863 loss_G: 0.6958 +2018-11-14 06:32:54,699 | epoch: [6/30] iter: [68/391] loss_D: 1.3866 loss_G: 0.6947 +2018-11-14 06:33:01,561 | epoch: [6/30] iter: [69/391] loss_D: 1.3870 loss_G: 0.6976 +2018-11-14 06:33:08,531 | epoch: [6/30] iter: [70/391] loss_D: 1.3853 loss_G: 0.6970 +2018-11-14 06:33:15,491 | epoch: [6/30] iter: [71/391] loss_D: 1.3875 loss_G: 0.6972 +2018-11-14 06:33:22,995 | epoch: [6/30] iter: [72/391] loss_D: 1.3874 loss_G: 0.6955 +2018-11-14 06:33:30,330 | epoch: [6/30] iter: [73/391] loss_D: 1.3860 loss_G: 0.6972 +2018-11-14 06:33:37,520 | epoch: [6/30] iter: [74/391] loss_D: 1.3884 loss_G: 0.6988 +2018-11-14 06:33:44,426 | epoch: [6/30] iter: [75/391] loss_D: 1.3864 loss_G: 0.6968 +2018-11-14 06:33:51,251 | epoch: [6/30] iter: [76/391] loss_D: 1.3858 loss_G: 0.6984 +2018-11-14 06:33:58,344 | epoch: [6/30] iter: [77/391] loss_D: 1.3873 loss_G: 0.6957 +2018-11-14 06:34:05,145 | epoch: [6/30] iter: [78/391] loss_D: 1.3885 loss_G: 0.6980 +2018-11-14 06:34:12,279 | epoch: [6/30] iter: [79/391] loss_D: 1.3871 loss_G: 0.6949 +2018-11-14 06:34:17,609 | epoch: [6/30] iter: [80/391] loss_D: 1.3879 loss_G: 0.6951 +2018-11-14 06:34:21,763 | epoch: [6/30] iter: [81/391] loss_D: 1.3890 loss_G: 0.6943 +2018-11-14 06:34:25,927 | epoch: [6/30] iter: [82/391] loss_D: 1.3896 loss_G: 0.6940 +2018-11-14 06:34:30,212 | epoch: [6/30] iter: [83/391] loss_D: 1.3880 loss_G: 0.6934 +2018-11-14 06:34:34,187 | epoch: [6/30] iter: [84/391] loss_D: 1.3892 loss_G: 0.6945 +2018-11-14 06:34:38,402 | epoch: [6/30] iter: [85/391] loss_D: 1.3887 loss_G: 0.6931 +2018-11-14 06:34:42,568 | epoch: [6/30] iter: [86/391] loss_D: 1.3856 loss_G: 0.6945 +2018-11-14 06:34:46,758 | epoch: [6/30] iter: [87/391] loss_D: 1.3866 loss_G: 0.6947 +2018-11-14 06:34:51,247 | epoch: [6/30] iter: [88/391] loss_D: 1.3863 loss_G: 0.6940 +2018-11-14 06:34:58,261 | epoch: [6/30] iter: [89/391] loss_D: 1.3856 loss_G: 0.6934 +2018-11-14 06:35:05,484 | epoch: [6/30] iter: [90/391] loss_D: 1.3874 loss_G: 0.6932 +2018-11-14 06:35:12,198 | epoch: [6/30] iter: [91/391] loss_D: 1.3843 loss_G: 0.6932 +2018-11-14 06:35:18,921 | epoch: [6/30] iter: [92/391] loss_D: 1.3875 loss_G: 0.6932 +2018-11-14 06:35:26,417 | epoch: [6/30] iter: [93/391] loss_D: 1.3868 loss_G: 0.6924 +2018-11-14 06:35:33,515 | epoch: [6/30] iter: [94/391] loss_D: 1.3872 loss_G: 0.6928 +2018-11-14 06:35:40,687 | epoch: [6/30] iter: [95/391] loss_D: 1.3869 loss_G: 0.6928 +2018-11-14 06:35:47,370 | epoch: [6/30] iter: [96/391] loss_D: 1.3852 loss_G: 0.6939 +2018-11-14 06:35:54,173 | epoch: [6/30] iter: [97/391] loss_D: 1.3873 loss_G: 0.6935 +2018-11-14 06:36:01,006 | epoch: [6/30] iter: [98/391] loss_D: 1.3854 loss_G: 0.6940 +2018-11-14 06:36:08,088 | epoch: [6/30] iter: [99/391] loss_D: 1.3866 loss_G: 0.6939 +2018-11-14 06:36:15,481 | epoch: [6/30] iter: [100/391] loss_D: 1.3851 loss_G: 0.6936 +2018-11-14 06:36:22,303 | epoch: [6/30] iter: [101/391] loss_D: 1.3851 loss_G: 0.6943 +2018-11-14 06:36:29,148 | epoch: [6/30] iter: [102/391] loss_D: 1.3826 loss_G: 0.6945 +2018-11-14 06:36:33,910 | epoch: [6/30] iter: [103/391] loss_D: 1.3879 loss_G: 0.6928 +2018-11-14 06:36:38,042 | epoch: [6/30] iter: [104/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-14 06:36:42,305 | epoch: [6/30] iter: [105/391] loss_D: 1.3856 loss_G: 0.6942 +2018-11-14 06:36:46,339 | epoch: [6/30] iter: [106/391] loss_D: 1.3868 loss_G: 0.6930 +2018-11-14 06:36:50,427 | epoch: [6/30] iter: [107/391] loss_D: 1.3870 loss_G: 0.6934 +2018-11-14 06:36:54,627 | epoch: [6/30] iter: [108/391] loss_D: 1.3860 loss_G: 0.6928 +2018-11-14 06:36:58,954 | epoch: [6/30] iter: [109/391] loss_D: 1.3859 loss_G: 0.6925 +2018-11-14 06:37:03,531 | epoch: [6/30] iter: [110/391] loss_D: 1.3847 loss_G: 0.6938 +2018-11-14 06:37:10,647 | epoch: [6/30] iter: [111/391] loss_D: 1.3872 loss_G: 0.6927 +2018-11-14 06:37:17,951 | epoch: [6/30] iter: [112/391] loss_D: 1.3868 loss_G: 0.6938 +2018-11-14 06:37:25,198 | epoch: [6/30] iter: [113/391] loss_D: 1.3794 loss_G: 0.6925 +2018-11-14 06:37:31,782 | epoch: [6/30] iter: [114/391] loss_D: 1.3877 loss_G: 0.6924 +2018-11-14 06:37:38,785 | epoch: [6/30] iter: [115/391] loss_D: 1.3911 loss_G: 0.6916 +2018-11-14 06:37:45,608 | epoch: [6/30] iter: [116/391] loss_D: 1.3850 loss_G: 0.6919 +2018-11-14 06:37:52,905 | epoch: [6/30] iter: [117/391] loss_D: 1.3860 loss_G: 0.6934 +2018-11-14 06:38:00,055 | epoch: [6/30] iter: [118/391] loss_D: 1.3873 loss_G: 0.6924 +2018-11-14 06:38:07,014 | epoch: [6/30] iter: [119/391] loss_D: 1.3873 loss_G: 0.6958 +2018-11-14 06:38:14,099 | epoch: [6/30] iter: [120/391] loss_D: 1.3891 loss_G: 0.6928 +2018-11-14 06:38:21,138 | epoch: [6/30] iter: [121/391] loss_D: 1.3899 loss_G: 0.6951 +2018-11-14 06:38:28,352 | epoch: [6/30] iter: [122/391] loss_D: 1.3880 loss_G: 0.6955 +2018-11-14 06:38:35,620 | epoch: [6/30] iter: [123/391] loss_D: 1.3862 loss_G: 0.6998 +2018-11-14 06:38:42,938 | epoch: [6/30] iter: [124/391] loss_D: 1.3858 loss_G: 0.7023 +2018-11-14 06:38:49,851 | epoch: [6/30] iter: [125/391] loss_D: 1.3796 loss_G: 0.7032 +2018-11-14 06:38:54,337 | epoch: [6/30] iter: [126/391] loss_D: 1.3806 loss_G: 0.7036 +2018-11-14 06:38:58,248 | epoch: [6/30] iter: [127/391] loss_D: 1.3807 loss_G: 0.7030 +2018-11-14 06:39:02,344 | epoch: [6/30] iter: [128/391] loss_D: 1.3782 loss_G: 0.7049 +2018-11-14 06:39:06,319 | epoch: [6/30] iter: [129/391] loss_D: 1.3770 loss_G: 0.7046 +2018-11-14 06:39:10,407 | epoch: [6/30] iter: [130/391] loss_D: 1.3818 loss_G: 0.7002 +2018-11-14 06:39:14,658 | epoch: [6/30] iter: [131/391] loss_D: 1.3801 loss_G: 0.7028 +2018-11-14 06:39:18,773 | epoch: [6/30] iter: [132/391] loss_D: 1.3824 loss_G: 0.6971 +2018-11-14 06:39:23,407 | epoch: [6/30] iter: [133/391] loss_D: 1.3854 loss_G: 0.6972 +2018-11-14 06:39:30,753 | epoch: [6/30] iter: [134/391] loss_D: 1.3892 loss_G: 0.6953 +2018-11-14 06:39:38,003 | epoch: [6/30] iter: [135/391] loss_D: 1.3876 loss_G: 0.6933 +2018-11-14 06:39:45,264 | epoch: [6/30] iter: [136/391] loss_D: 1.3920 loss_G: 0.6913 +2018-11-14 06:39:52,354 | epoch: [6/30] iter: [137/391] loss_D: 1.3903 loss_G: 0.6914 +2018-11-14 06:39:59,219 | epoch: [6/30] iter: [138/391] loss_D: 1.3910 loss_G: 0.6888 +2018-11-14 06:40:06,340 | epoch: [6/30] iter: [139/391] loss_D: 1.3896 loss_G: 0.6902 +2018-11-14 06:40:13,398 | epoch: [6/30] iter: [140/391] loss_D: 1.3862 loss_G: 0.6892 +2018-11-14 06:40:20,102 | epoch: [6/30] iter: [141/391] loss_D: 1.3914 loss_G: 0.6883 +2018-11-14 06:40:27,114 | epoch: [6/30] iter: [142/391] loss_D: 1.3883 loss_G: 0.6907 +2018-11-14 06:40:34,425 | epoch: [6/30] iter: [143/391] loss_D: 1.3876 loss_G: 0.6919 +2018-11-14 06:40:41,496 | epoch: [6/30] iter: [144/391] loss_D: 1.3856 loss_G: 0.6931 +2018-11-14 06:40:48,409 | epoch: [6/30] iter: [145/391] loss_D: 1.3852 loss_G: 0.6936 +2018-11-14 06:40:55,415 | epoch: [6/30] iter: [146/391] loss_D: 1.3852 loss_G: 0.6940 +2018-11-14 06:41:02,638 | epoch: [6/30] iter: [147/391] loss_D: 1.3870 loss_G: 0.6941 +2018-11-14 06:41:09,986 | epoch: [6/30] iter: [148/391] loss_D: 1.3880 loss_G: 0.6926 +2018-11-14 06:41:16,956 | epoch: [6/30] iter: [149/391] loss_D: 1.3880 loss_G: 0.6918 +2018-11-14 06:41:23,611 | epoch: [6/30] iter: [150/391] loss_D: 1.3869 loss_G: 0.6932 +2018-11-14 06:41:27,752 | epoch: [6/30] iter: [151/391] loss_D: 1.3863 loss_G: 0.6937 +2018-11-14 06:41:31,846 | epoch: [6/30] iter: [152/391] loss_D: 1.3832 loss_G: 0.6949 +2018-11-14 06:41:36,070 | epoch: [6/30] iter: [153/391] loss_D: 1.3860 loss_G: 0.6944 +2018-11-14 06:41:40,247 | epoch: [6/30] iter: [154/391] loss_D: 1.3851 loss_G: 0.6951 +2018-11-14 06:44:16,167 | epoch: [6/30] iter: [155/391] loss_D: 1.3858 loss_G: 0.6936 +2018-11-14 06:44:20,262 | epoch: [6/30] iter: [156/391] loss_D: 1.3860 loss_G: 0.6919 +2018-11-14 06:44:24,635 | epoch: [6/30] iter: [157/391] loss_D: 1.3862 loss_G: 0.6928 +2018-11-14 06:44:30,112 | epoch: [6/30] iter: [158/391] loss_D: 1.3828 loss_G: 0.6938 +2018-11-14 06:44:37,571 | epoch: [6/30] iter: [159/391] loss_D: 1.3861 loss_G: 0.6929 +2018-11-14 06:44:44,535 | epoch: [6/30] iter: [160/391] loss_D: 1.3857 loss_G: 0.6920 +2018-11-14 06:44:51,199 | epoch: [6/30] iter: [161/391] loss_D: 1.3852 loss_G: 0.6922 +2018-11-14 06:44:58,018 | epoch: [6/30] iter: [162/391] loss_D: 1.3877 loss_G: 0.6923 +2018-11-14 06:45:04,958 | epoch: [6/30] iter: [163/391] loss_D: 1.3851 loss_G: 0.6924 +2018-11-14 06:45:12,368 | epoch: [6/30] iter: [164/391] loss_D: 1.3844 loss_G: 0.6925 +2018-11-14 06:45:19,625 | epoch: [6/30] iter: [165/391] loss_D: 1.3848 loss_G: 0.6930 +2018-11-14 06:45:26,548 | epoch: [6/30] iter: [166/391] loss_D: 1.3843 loss_G: 0.6923 +2018-11-14 06:45:33,387 | epoch: [6/30] iter: [167/391] loss_D: 1.3838 loss_G: 0.6922 +2018-11-14 06:45:40,178 | epoch: [6/30] iter: [168/391] loss_D: 1.3835 loss_G: 0.6915 +2018-11-14 06:45:47,243 | epoch: [6/30] iter: [169/391] loss_D: 1.3816 loss_G: 0.6930 +2018-11-14 06:45:51,349 | epoch: [6/30] iter: [170/391] loss_D: 1.3831 loss_G: 0.6909 +2018-11-14 06:45:55,461 | epoch: [6/30] iter: [171/391] loss_D: 1.3859 loss_G: 0.6903 +2018-11-14 06:45:59,624 | epoch: [6/30] iter: [172/391] loss_D: 1.3836 loss_G: 0.6936 +2018-11-14 06:46:03,628 | epoch: [6/30] iter: [173/391] loss_D: 1.3889 loss_G: 0.6886 +2018-11-14 06:46:07,843 | epoch: [6/30] iter: [174/391] loss_D: 1.3920 loss_G: 0.6895 +2018-11-14 06:46:12,049 | epoch: [6/30] iter: [175/391] loss_D: 1.3921 loss_G: 0.6877 +2018-11-14 06:46:16,944 | epoch: [6/30] iter: [176/391] loss_D: 1.3940 loss_G: 0.6922 +2018-11-14 06:46:23,840 | epoch: [6/30] iter: [177/391] loss_D: 1.3908 loss_G: 0.6906 +2018-11-14 06:46:30,806 | epoch: [6/30] iter: [178/391] loss_D: 1.3874 loss_G: 0.6966 +2018-11-14 06:46:37,692 | epoch: [6/30] iter: [179/391] loss_D: 1.3873 loss_G: 0.6972 +2018-11-14 06:46:44,398 | epoch: [6/30] iter: [180/391] loss_D: 1.3869 loss_G: 0.6967 +2018-11-14 06:46:51,552 | epoch: [6/30] iter: [181/391] loss_D: 1.3849 loss_G: 0.6978 +2018-11-14 06:46:58,675 | epoch: [6/30] iter: [182/391] loss_D: 1.3858 loss_G: 0.6981 +2018-11-14 06:47:05,689 | epoch: [6/30] iter: [183/391] loss_D: 1.3842 loss_G: 0.7004 +2018-11-14 06:47:12,490 | epoch: [6/30] iter: [184/391] loss_D: 1.3814 loss_G: 0.7007 +2018-11-14 06:47:18,045 | epoch: [6/30] iter: [185/391] loss_D: 1.3810 loss_G: 0.6995 +2018-11-14 06:47:22,197 | epoch: [6/30] iter: [186/391] loss_D: 1.3801 loss_G: 0.7003 +2018-11-14 06:47:26,379 | epoch: [6/30] iter: [187/391] loss_D: 1.3804 loss_G: 0.6996 +2018-11-14 06:47:30,553 | epoch: [6/30] iter: [188/391] loss_D: 1.3780 loss_G: 0.7000 +2018-11-14 06:47:34,688 | epoch: [6/30] iter: [189/391] loss_D: 1.3827 loss_G: 0.6950 +2018-11-14 06:47:38,851 | epoch: [6/30] iter: [190/391] loss_D: 1.3821 loss_G: 0.6925 +2018-11-14 06:47:45,749 | epoch: [6/30] iter: [191/391] loss_D: 1.3838 loss_G: 0.6916 +2018-11-14 06:47:53,293 | epoch: [6/30] iter: [192/391] loss_D: 1.3869 loss_G: 0.6918 +2018-11-14 06:48:00,443 | epoch: [6/30] iter: [193/391] loss_D: 1.3871 loss_G: 0.6932 +2018-11-14 06:48:07,358 | epoch: [6/30] iter: [194/391] loss_D: 1.3869 loss_G: 0.6928 +2018-11-14 06:48:14,427 | epoch: [6/30] iter: [195/391] loss_D: 1.3874 loss_G: 0.6953 +2018-11-14 06:48:21,405 | epoch: [6/30] iter: [196/391] loss_D: 1.3884 loss_G: 0.6968 +2018-11-14 06:48:28,702 | epoch: [6/30] iter: [197/391] loss_D: 1.3854 loss_G: 0.7003 +2018-11-14 06:48:35,850 | epoch: [6/30] iter: [198/391] loss_D: 1.3848 loss_G: 0.6996 +2018-11-14 06:48:43,044 | epoch: [6/30] iter: [199/391] loss_D: 1.3852 loss_G: 0.7014 +2018-11-14 06:48:49,940 | epoch: [6/30] iter: [200/391] loss_D: 1.3926 loss_G: 0.6994 +2018-11-14 06:48:54,997 | epoch: [6/30] iter: [201/391] loss_D: 1.3889 loss_G: 0.6983 +2018-11-14 06:48:59,297 | epoch: [6/30] iter: [202/391] loss_D: 1.3894 loss_G: 0.6970 +2018-11-14 06:49:03,385 | epoch: [6/30] iter: [203/391] loss_D: 1.3946 loss_G: 0.6923 +2018-11-14 06:49:07,581 | epoch: [6/30] iter: [204/391] loss_D: 1.3938 loss_G: 0.6907 +2018-11-14 06:49:11,544 | epoch: [6/30] iter: [205/391] loss_D: 1.3964 loss_G: 0.6905 +2018-11-14 06:49:16,408 | epoch: [6/30] iter: [206/391] loss_D: 1.3949 loss_G: 0.6901 +2018-11-14 06:49:23,594 | epoch: [6/30] iter: [207/391] loss_D: 1.3925 loss_G: 0.6907 +2018-11-14 06:49:30,559 | epoch: [6/30] iter: [208/391] loss_D: 1.3919 loss_G: 0.6924 +2018-11-14 06:49:37,468 | epoch: [6/30] iter: [209/391] loss_D: 1.3901 loss_G: 0.6928 +2018-11-14 06:49:44,323 | epoch: [6/30] iter: [210/391] loss_D: 1.3890 loss_G: 0.6932 +2018-11-14 06:49:51,029 | epoch: [6/30] iter: [211/391] loss_D: 1.3884 loss_G: 0.6927 +2018-11-14 06:49:57,612 | epoch: [6/30] iter: [212/391] loss_D: 1.3873 loss_G: 0.6942 +2018-11-14 06:50:04,751 | epoch: [6/30] iter: [213/391] loss_D: 1.3884 loss_G: 0.6949 +2018-11-14 06:50:11,514 | epoch: [6/30] iter: [214/391] loss_D: 1.3869 loss_G: 0.6950 +2018-11-14 06:50:17,996 | epoch: [6/30] iter: [215/391] loss_D: 1.3859 loss_G: 0.6947 +2018-11-14 06:50:24,684 | epoch: [6/30] iter: [216/391] loss_D: 1.3855 loss_G: 0.6951 +2018-11-14 06:50:31,920 | epoch: [6/30] iter: [217/391] loss_D: 1.3853 loss_G: 0.6956 +2018-11-14 06:50:38,779 | epoch: [6/30] iter: [218/391] loss_D: 1.3853 loss_G: 0.6957 +2018-11-14 06:50:45,688 | epoch: [6/30] iter: [219/391] loss_D: 1.3840 loss_G: 0.6950 +2018-11-14 06:50:52,597 | epoch: [6/30] iter: [220/391] loss_D: 1.3867 loss_G: 0.6954 +2018-11-14 06:50:59,610 | epoch: [6/30] iter: [221/391] loss_D: 1.3840 loss_G: 0.6952 +2018-11-14 06:51:06,663 | epoch: [6/30] iter: [222/391] loss_D: 1.3831 loss_G: 0.6951 +2018-11-14 06:51:13,595 | epoch: [6/30] iter: [223/391] loss_D: 1.3842 loss_G: 0.6952 +2018-11-14 06:51:20,972 | epoch: [6/30] iter: [224/391] loss_D: 1.3835 loss_G: 0.6947 +2018-11-14 06:51:27,950 | epoch: [6/30] iter: [225/391] loss_D: 1.3830 loss_G: 0.6958 +2018-11-14 06:51:35,011 | epoch: [6/30] iter: [226/391] loss_D: 1.3814 loss_G: 0.6950 +2018-11-14 06:51:41,875 | epoch: [6/30] iter: [227/391] loss_D: 1.3809 loss_G: 0.6945 +2018-11-14 06:51:48,911 | epoch: [6/30] iter: [228/391] loss_D: 1.3829 loss_G: 0.6936 +2018-11-14 06:51:55,923 | epoch: [6/30] iter: [229/391] loss_D: 1.3816 loss_G: 0.6936 +2018-11-14 06:52:03,238 | epoch: [6/30] iter: [230/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-14 06:52:10,443 | epoch: [6/30] iter: [231/391] loss_D: 1.3847 loss_G: 0.6909 +2018-11-14 06:52:17,443 | epoch: [6/30] iter: [232/391] loss_D: 1.3862 loss_G: 0.6933 +2018-11-14 06:52:24,734 | epoch: [6/30] iter: [233/391] loss_D: 1.3825 loss_G: 0.6934 +2018-11-14 06:52:31,632 | epoch: [6/30] iter: [234/391] loss_D: 1.3864 loss_G: 0.6925 +2018-11-14 06:52:38,969 | epoch: [6/30] iter: [235/391] loss_D: 1.3863 loss_G: 0.6928 +2018-11-14 06:52:45,908 | epoch: [6/30] iter: [236/391] loss_D: 1.3874 loss_G: 0.6922 +2018-11-14 06:52:53,347 | epoch: [6/30] iter: [237/391] loss_D: 1.3877 loss_G: 0.6950 +2018-11-14 06:53:00,411 | epoch: [6/30] iter: [238/391] loss_D: 1.3876 loss_G: 0.6928 +2018-11-14 06:53:07,251 | epoch: [6/30] iter: [239/391] loss_D: 1.3873 loss_G: 0.6935 +2018-11-14 06:53:14,126 | epoch: [6/30] iter: [240/391] loss_D: 1.3869 loss_G: 0.6955 +2018-11-14 06:53:20,890 | epoch: [6/30] iter: [241/391] loss_D: 1.3865 loss_G: 0.6962 +2018-11-14 06:53:28,125 | epoch: [6/30] iter: [242/391] loss_D: 1.3865 loss_G: 0.6963 +2018-11-14 06:53:34,884 | epoch: [6/30] iter: [243/391] loss_D: 1.3886 loss_G: 0.6981 +2018-11-14 06:53:41,862 | epoch: [6/30] iter: [244/391] loss_D: 1.3840 loss_G: 0.6988 +2018-11-14 06:53:49,084 | epoch: [6/30] iter: [245/391] loss_D: 1.3832 loss_G: 0.7002 +2018-11-14 06:53:55,756 | epoch: [6/30] iter: [246/391] loss_D: 1.3844 loss_G: 0.7007 +2018-11-14 06:54:02,767 | epoch: [6/30] iter: [247/391] loss_D: 1.3854 loss_G: 0.7012 +2018-11-14 06:54:10,068 | epoch: [6/30] iter: [248/391] loss_D: 1.3803 loss_G: 0.7034 +2018-11-14 06:54:17,231 | epoch: [6/30] iter: [249/391] loss_D: 1.3821 loss_G: 0.7057 +2018-11-14 06:54:24,444 | epoch: [6/30] iter: [250/391] loss_D: 1.3854 loss_G: 0.7005 +2018-11-14 06:54:31,840 | epoch: [6/30] iter: [251/391] loss_D: 1.3829 loss_G: 0.7017 +2018-11-14 06:54:38,760 | epoch: [6/30] iter: [252/391] loss_D: 1.3824 loss_G: 0.7022 +2018-11-14 06:54:45,599 | epoch: [6/30] iter: [253/391] loss_D: 1.3841 loss_G: 0.6997 +2018-11-14 06:54:52,238 | epoch: [6/30] iter: [254/391] loss_D: 1.3833 loss_G: 0.6986 +2018-11-14 23:06:38,733 | epoch: [0/30] iter: [0/391] loss_D: 1.3867 loss_G: 0.7130 +2018-11-14 23:10:05,532 | epoch: [0/30] iter: [1/391] loss_D: 1.3867 loss_G: 0.7122 +2018-11-14 23:10:09,691 | epoch: [0/30] iter: [2/391] loss_D: 1.3867 loss_G: 0.7116 +2018-11-14 23:10:13,977 | epoch: [0/30] iter: [3/391] loss_D: 1.3866 loss_G: 0.7109 +2018-11-14 23:10:19,546 | epoch: [0/30] iter: [4/391] loss_D: 1.3866 loss_G: 0.7102 +2018-11-14 23:10:29,973 | epoch: [0/30] iter: [5/391] loss_D: 1.3866 loss_G: 0.7096 +2018-11-14 23:10:42,136 | epoch: [0/30] iter: [6/391] loss_D: 1.3866 loss_G: 0.7089 +2018-11-14 23:10:54,494 | epoch: [0/30] iter: [7/391] loss_D: 1.3865 loss_G: 0.7083 +2018-11-14 23:11:02,940 | epoch: [0/30] iter: [8/391] loss_D: 1.3865 loss_G: 0.7077 +2018-11-14 23:11:07,966 | epoch: [0/30] iter: [9/391] loss_D: 1.3864 loss_G: 0.7069 +2018-11-14 23:54:11,744 | epoch: [0/30] iter: [0/391] loss_D: 1.3865 loss_G: 0.6808 +2018-11-14 23:56:04,312 | epoch: [0/30] iter: [1/391] loss_D: 1.3864 loss_G: 0.6814 +2018-11-14 23:56:13,618 | epoch: [0/30] iter: [2/391] loss_D: 1.3864 loss_G: 0.6819 +2018-11-14 23:56:23,088 | epoch: [0/30] iter: [3/391] loss_D: 1.3863 loss_G: 0.6825 +2018-11-14 23:56:32,597 | epoch: [0/30] iter: [4/391] loss_D: 1.3863 loss_G: 0.6831 +2018-11-14 23:56:42,090 | epoch: [0/30] iter: [5/391] loss_D: 1.3864 loss_G: 0.6836 +2018-11-14 23:56:51,311 | epoch: [0/30] iter: [6/391] loss_D: 1.3864 loss_G: 0.6841 +2018-11-14 23:57:00,567 | epoch: [0/30] iter: [7/391] loss_D: 1.3864 loss_G: 0.6847 +2018-11-14 23:57:10,223 | epoch: [0/30] iter: [8/391] loss_D: 1.3862 loss_G: 0.6852 +2018-11-14 23:57:19,658 | epoch: [0/30] iter: [9/391] loss_D: 1.3862 loss_G: 0.6857 +2018-11-14 23:57:29,428 | epoch: [0/30] iter: [10/391] loss_D: 1.3863 loss_G: 0.6863 +2018-11-14 23:57:39,068 | epoch: [0/30] iter: [11/391] loss_D: 1.3862 loss_G: 0.6867 +2018-11-14 23:57:48,413 | epoch: [0/30] iter: [12/391] loss_D: 1.3861 loss_G: 0.6871 +2018-11-14 23:57:57,943 | epoch: [0/30] iter: [13/391] loss_D: 1.3861 loss_G: 0.6876 +2018-11-14 23:58:07,306 | epoch: [0/30] iter: [14/391] loss_D: 1.3862 loss_G: 0.6880 +2018-11-15 00:02:08,402 | epoch: [6/30] iter: [0/391] loss_D: 1.3864 loss_G: 0.6807 +2018-11-15 00:04:11,760 | epoch: [6/30] iter: [1/391] loss_D: 1.3865 loss_G: 0.6813 +2018-11-15 00:04:19,225 | epoch: [6/30] iter: [2/391] loss_D: 1.3865 loss_G: 0.6818 +2018-11-15 00:04:28,494 | epoch: [6/30] iter: [3/391] loss_D: 1.3865 loss_G: 0.6824 +2018-11-15 00:04:38,131 | epoch: [6/30] iter: [4/391] loss_D: 1.3864 loss_G: 0.6830 +2018-11-15 00:04:47,379 | epoch: [6/30] iter: [5/391] loss_D: 1.3864 loss_G: 0.6835 +2018-11-15 00:04:56,276 | epoch: [6/30] iter: [6/391] loss_D: 1.3865 loss_G: 0.6841 +2018-11-15 00:05:05,374 | epoch: [6/30] iter: [7/391] loss_D: 1.3863 loss_G: 0.6846 +2018-11-15 00:05:14,851 | epoch: [6/30] iter: [8/391] loss_D: 1.3864 loss_G: 0.6851 +2018-11-15 00:05:24,309 | epoch: [6/30] iter: [9/391] loss_D: 1.3863 loss_G: 0.6856 +2018-11-15 00:05:33,879 | epoch: [6/30] iter: [10/391] loss_D: 1.3862 loss_G: 0.6861 +2018-11-15 00:05:43,062 | epoch: [6/30] iter: [11/391] loss_D: 1.3863 loss_G: 0.6866 +2018-11-15 00:05:51,906 | epoch: [6/30] iter: [12/391] loss_D: 1.3863 loss_G: 0.6870 +2018-11-15 00:06:01,556 | epoch: [6/30] iter: [13/391] loss_D: 1.3862 loss_G: 0.6875 +2018-11-15 00:06:11,327 | epoch: [6/30] iter: [14/391] loss_D: 1.3863 loss_G: 0.6880 +2018-11-15 00:06:21,287 | epoch: [6/30] iter: [15/391] loss_D: 1.3863 loss_G: 0.6883 +2018-11-15 00:06:30,947 | epoch: [6/30] iter: [16/391] loss_D: 1.3862 loss_G: 0.6887 +2018-11-15 00:06:40,927 | epoch: [6/30] iter: [17/391] loss_D: 1.3863 loss_G: 0.6891 +2018-11-15 00:06:50,489 | epoch: [6/30] iter: [18/391] loss_D: 1.3864 loss_G: 0.6895 +2018-11-15 00:07:00,310 | epoch: [6/30] iter: [19/391] loss_D: 1.3865 loss_G: 0.6899 +2018-11-15 00:07:10,347 | epoch: [6/30] iter: [20/391] loss_D: 1.3865 loss_G: 0.6903 +2018-11-15 00:07:20,017 | epoch: [6/30] iter: [21/391] loss_D: 1.3864 loss_G: 0.6906 +2018-11-15 00:07:29,635 | epoch: [6/30] iter: [22/391] loss_D: 1.3864 loss_G: 0.6910 +2018-11-15 00:07:39,283 | epoch: [6/30] iter: [23/391] loss_D: 1.3863 loss_G: 0.6914 +2018-11-15 00:07:48,837 | epoch: [6/30] iter: [24/391] loss_D: 1.3862 loss_G: 0.6917 +2018-11-15 00:07:58,330 | epoch: [6/30] iter: [25/391] loss_D: 1.3862 loss_G: 0.6920 +2018-11-15 00:08:08,348 | epoch: [6/30] iter: [26/391] loss_D: 1.3861 loss_G: 0.6925 +2018-11-15 00:08:17,654 | epoch: [6/30] iter: [27/391] loss_D: 1.3861 loss_G: 0.6927 +2018-11-15 00:08:26,923 | epoch: [6/30] iter: [28/391] loss_D: 1.3860 loss_G: 0.6928 +2018-11-15 00:08:36,403 | epoch: [6/30] iter: [29/391] loss_D: 1.3860 loss_G: 0.6931 +2018-11-15 00:08:45,930 | epoch: [6/30] iter: [30/391] loss_D: 1.3862 loss_G: 0.6930 +2018-11-15 00:08:55,364 | epoch: [6/30] iter: [31/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 00:09:04,861 | epoch: [6/30] iter: [32/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-15 00:09:14,518 | epoch: [6/30] iter: [33/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 00:09:24,246 | epoch: [6/30] iter: [34/391] loss_D: 1.3866 loss_G: 0.6930 +2018-11-15 00:09:33,898 | epoch: [6/30] iter: [35/391] loss_D: 1.3871 loss_G: 0.6927 +2018-11-15 00:09:43,332 | epoch: [6/30] iter: [36/391] loss_D: 1.3864 loss_G: 0.6931 +2018-11-15 00:09:52,926 | epoch: [6/30] iter: [37/391] loss_D: 1.3862 loss_G: 0.6929 +2018-11-15 00:10:02,228 | epoch: [6/30] iter: [38/391] loss_D: 1.3871 loss_G: 0.6926 +2018-11-15 00:10:11,574 | epoch: [6/30] iter: [39/391] loss_D: 1.3865 loss_G: 0.6927 +2018-11-15 00:10:21,233 | epoch: [6/30] iter: [40/391] loss_D: 1.3867 loss_G: 0.6926 +2018-11-15 00:10:30,509 | epoch: [6/30] iter: [41/391] loss_D: 1.3865 loss_G: 0.6927 +2018-11-15 00:10:40,260 | epoch: [6/30] iter: [42/391] loss_D: 1.3864 loss_G: 0.6929 +2018-11-15 00:10:49,408 | epoch: [6/30] iter: [43/391] loss_D: 1.3863 loss_G: 0.6929 +2018-11-15 00:10:58,530 | epoch: [6/30] iter: [44/391] loss_D: 1.3861 loss_G: 0.6930 +2018-11-15 00:11:08,254 | epoch: [6/30] iter: [45/391] loss_D: 1.3860 loss_G: 0.6930 +2018-11-15 00:11:17,957 | epoch: [6/30] iter: [46/391] loss_D: 1.3858 loss_G: 0.6932 +2018-11-15 00:11:27,211 | epoch: [6/30] iter: [47/391] loss_D: 1.3858 loss_G: 0.6931 +2018-11-15 00:11:36,821 | epoch: [6/30] iter: [48/391] loss_D: 1.3855 loss_G: 0.6934 +2018-11-15 00:11:45,957 | epoch: [6/30] iter: [49/391] loss_D: 1.3860 loss_G: 0.6931 +2018-11-15 00:11:55,717 | epoch: [6/30] iter: [50/391] loss_D: 1.3852 loss_G: 0.6930 +2018-11-15 00:12:05,049 | epoch: [6/30] iter: [51/391] loss_D: 1.3866 loss_G: 0.6921 +2018-11-15 00:12:14,884 | epoch: [6/30] iter: [52/391] loss_D: 1.3863 loss_G: 0.6923 +2018-11-15 00:12:24,387 | epoch: [6/30] iter: [53/391] loss_D: 1.3868 loss_G: 0.6921 +2018-11-15 00:12:34,080 | epoch: [6/30] iter: [54/391] loss_D: 1.3866 loss_G: 0.6922 +2018-11-15 00:12:44,106 | epoch: [6/30] iter: [55/391] loss_D: 1.3867 loss_G: 0.6926 +2018-11-15 00:12:53,524 | epoch: [6/30] iter: [56/391] loss_D: 1.3866 loss_G: 0.6923 +2018-11-15 00:13:03,013 | epoch: [6/30] iter: [57/391] loss_D: 1.3872 loss_G: 0.6925 +2018-11-15 00:13:12,662 | epoch: [6/30] iter: [58/391] loss_D: 1.3875 loss_G: 0.6931 +2018-11-15 00:13:21,945 | epoch: [6/30] iter: [59/391] loss_D: 1.3876 loss_G: 0.6934 +2018-11-15 00:13:31,610 | epoch: [6/30] iter: [60/391] loss_D: 1.3866 loss_G: 0.6938 +2018-11-15 00:13:40,911 | epoch: [6/30] iter: [61/391] loss_D: 1.3868 loss_G: 0.6938 +2018-11-15 00:13:50,831 | epoch: [6/30] iter: [62/391] loss_D: 1.3867 loss_G: 0.6940 +2018-11-15 00:14:00,349 | epoch: [6/30] iter: [63/391] loss_D: 1.3863 loss_G: 0.6941 +2018-11-15 00:14:09,599 | epoch: [6/30] iter: [64/391] loss_D: 1.3862 loss_G: 0.6943 +2018-11-15 00:14:18,629 | epoch: [6/30] iter: [65/391] loss_D: 1.3862 loss_G: 0.6943 +2018-11-15 00:14:27,862 | epoch: [6/30] iter: [66/391] loss_D: 1.3860 loss_G: 0.6946 +2018-11-15 00:14:37,169 | epoch: [6/30] iter: [67/391] loss_D: 1.3854 loss_G: 0.6953 +2018-11-15 00:14:46,184 | epoch: [6/30] iter: [68/391] loss_D: 1.3853 loss_G: 0.6957 +2018-11-15 00:14:55,638 | epoch: [6/30] iter: [69/391] loss_D: 1.3854 loss_G: 0.6955 +2018-11-15 00:15:05,090 | epoch: [6/30] iter: [70/391] loss_D: 1.3854 loss_G: 0.6949 +2018-11-15 00:15:14,776 | epoch: [6/30] iter: [71/391] loss_D: 1.3863 loss_G: 0.6948 +2018-11-15 00:16:15,789 | epoch: [6/30] iter: [0/391] loss_D: 1.3864 loss_G: 0.6807 +2018-11-15 00:20:02,006 | epoch: [6/30] iter: [1/391] loss_D: 1.3865 loss_G: 0.6813 +2018-11-15 00:20:12,541 | epoch: [6/30] iter: [2/391] loss_D: 1.3865 loss_G: 0.6819 +2018-11-15 00:20:21,848 | epoch: [6/30] iter: [3/391] loss_D: 1.3864 loss_G: 0.6824 +2018-11-15 00:20:31,158 | epoch: [6/30] iter: [4/391] loss_D: 1.3864 loss_G: 0.6829 +2018-11-15 00:20:40,928 | epoch: [6/30] iter: [5/391] loss_D: 1.3863 loss_G: 0.6835 +2018-11-15 00:20:50,164 | epoch: [6/30] iter: [6/391] loss_D: 1.3863 loss_G: 0.6840 +2018-11-15 00:20:59,509 | epoch: [6/30] iter: [7/391] loss_D: 1.3863 loss_G: 0.6845 +2018-11-15 00:21:08,681 | epoch: [6/30] iter: [8/391] loss_D: 1.3863 loss_G: 0.6850 +2018-11-15 00:21:18,719 | epoch: [6/30] iter: [9/391] loss_D: 1.3863 loss_G: 0.6855 +2018-11-15 00:21:29,014 | epoch: [6/30] iter: [10/391] loss_D: 1.3862 loss_G: 0.6860 +2018-11-15 00:21:39,472 | epoch: [6/30] iter: [11/391] loss_D: 1.3862 loss_G: 0.6865 +2018-11-15 00:21:48,594 | epoch: [6/30] iter: [12/391] loss_D: 1.3863 loss_G: 0.6869 +2018-11-15 00:21:58,267 | epoch: [6/30] iter: [13/391] loss_D: 1.3862 loss_G: 0.6873 +2018-11-15 00:22:07,858 | epoch: [6/30] iter: [14/391] loss_D: 1.3863 loss_G: 0.6877 +2018-11-15 00:22:17,090 | epoch: [6/30] iter: [15/391] loss_D: 1.3865 loss_G: 0.6880 +2018-11-15 00:22:25,887 | epoch: [6/30] iter: [16/391] loss_D: 1.3865 loss_G: 0.6885 +2018-11-15 00:22:35,351 | epoch: [6/30] iter: [17/391] loss_D: 1.3865 loss_G: 0.6889 +2018-11-15 00:22:44,408 | epoch: [6/30] iter: [18/391] loss_D: 1.3867 loss_G: 0.6895 +2018-11-15 00:22:53,576 | epoch: [6/30] iter: [19/391] loss_D: 1.3866 loss_G: 0.6900 +2018-11-15 00:23:02,990 | epoch: [6/30] iter: [20/391] loss_D: 1.3863 loss_G: 0.6905 +2018-11-15 00:23:12,537 | epoch: [6/30] iter: [21/391] loss_D: 1.3864 loss_G: 0.6909 +2018-11-15 00:23:22,277 | epoch: [6/30] iter: [22/391] loss_D: 1.3863 loss_G: 0.6913 +2018-11-15 00:23:32,065 | epoch: [6/30] iter: [23/391] loss_D: 1.3862 loss_G: 0.6918 +2018-11-15 00:23:41,351 | epoch: [6/30] iter: [24/391] loss_D: 1.3860 loss_G: 0.6922 +2018-11-15 00:23:50,899 | epoch: [6/30] iter: [25/391] loss_D: 1.3861 loss_G: 0.6925 +2018-11-15 00:24:00,553 | epoch: [6/30] iter: [26/391] loss_D: 1.3859 loss_G: 0.6928 +2018-11-15 00:24:09,795 | epoch: [6/30] iter: [27/391] loss_D: 1.3858 loss_G: 0.6931 +2018-11-15 00:26:01,723 | epoch: [5/30] iter: [0/391] loss_D: 1.3864 loss_G: 0.6811 +2018-11-15 00:32:32,466 | epoch: [6/30] iter: [0/391] loss_D: 1.3836 loss_G: 0.6964 +2018-11-15 00:34:31,689 | epoch: [6/30] iter: [1/391] loss_D: 1.3852 loss_G: 0.6950 +2018-11-15 00:34:36,275 | epoch: [6/30] iter: [2/391] loss_D: 1.3858 loss_G: 0.6938 +2018-11-15 00:34:43,335 | epoch: [6/30] iter: [3/391] loss_D: 1.3853 loss_G: 0.6931 +2018-11-15 00:34:50,170 | epoch: [6/30] iter: [4/391] loss_D: 1.3861 loss_G: 0.6937 +2018-11-15 00:34:56,866 | epoch: [6/30] iter: [5/391] loss_D: 1.3867 loss_G: 0.6927 +2018-11-15 00:35:04,260 | epoch: [6/30] iter: [6/391] loss_D: 1.3837 loss_G: 0.6933 +2018-11-15 00:35:11,447 | epoch: [6/30] iter: [7/391] loss_D: 1.3853 loss_G: 0.6913 +2018-11-15 00:35:18,334 | epoch: [6/30] iter: [8/391] loss_D: 1.3851 loss_G: 0.6919 +2018-11-15 00:35:25,719 | epoch: [6/30] iter: [9/391] loss_D: 1.3840 loss_G: 0.6920 +2018-11-15 00:35:32,865 | epoch: [6/30] iter: [10/391] loss_D: 1.3848 loss_G: 0.6913 +2018-11-15 00:35:40,147 | epoch: [6/30] iter: [11/391] loss_D: 1.3811 loss_G: 0.6922 +2018-11-15 00:35:47,114 | epoch: [6/30] iter: [12/391] loss_D: 1.3853 loss_G: 0.6901 +2018-11-15 00:35:53,907 | epoch: [6/30] iter: [13/391] loss_D: 1.3853 loss_G: 0.6915 +2018-11-15 00:36:00,833 | epoch: [6/30] iter: [14/391] loss_D: 1.3871 loss_G: 0.6890 +2018-11-15 00:36:08,052 | epoch: [6/30] iter: [15/391] loss_D: 1.3875 loss_G: 0.6883 +2018-11-15 00:36:14,754 | epoch: [6/30] iter: [16/391] loss_D: 1.3898 loss_G: 0.6903 +2018-11-15 00:36:21,897 | epoch: [6/30] iter: [17/391] loss_D: 1.3891 loss_G: 0.6903 +2018-11-15 00:36:28,854 | epoch: [6/30] iter: [18/391] loss_D: 1.3844 loss_G: 0.6930 +2018-11-15 00:36:35,973 | epoch: [6/30] iter: [19/391] loss_D: 1.3911 loss_G: 0.6913 +2018-11-15 00:36:42,534 | epoch: [6/30] iter: [20/391] loss_D: 1.3868 loss_G: 0.6932 +2018-11-15 00:36:49,865 | epoch: [6/30] iter: [21/391] loss_D: 1.3881 loss_G: 0.6931 +2018-11-15 00:36:56,851 | epoch: [6/30] iter: [22/391] loss_D: 1.3858 loss_G: 0.6936 +2018-11-15 00:37:04,077 | epoch: [6/30] iter: [23/391] loss_D: 1.3840 loss_G: 0.6987 +2018-11-15 00:37:10,940 | epoch: [6/30] iter: [24/391] loss_D: 1.3854 loss_G: 0.6960 +2018-11-15 00:37:18,453 | epoch: [6/30] iter: [25/391] loss_D: 1.3857 loss_G: 0.6985 +2018-11-15 00:37:25,458 | epoch: [6/30] iter: [26/391] loss_D: 1.3876 loss_G: 0.6976 +2018-11-15 00:37:32,410 | epoch: [6/30] iter: [27/391] loss_D: 1.3859 loss_G: 0.6988 +2018-11-15 00:37:39,544 | epoch: [6/30] iter: [28/391] loss_D: 1.3861 loss_G: 0.6979 +2018-11-15 00:37:46,807 | epoch: [6/30] iter: [29/391] loss_D: 1.3862 loss_G: 0.6954 +2018-11-15 00:37:54,075 | epoch: [6/30] iter: [30/391] loss_D: 1.3907 loss_G: 0.6974 +2018-11-15 00:38:00,964 | epoch: [6/30] iter: [31/391] loss_D: 1.3882 loss_G: 0.6943 +2018-11-15 00:38:07,514 | epoch: [6/30] iter: [32/391] loss_D: 1.3869 loss_G: 0.6951 +2018-11-15 00:38:14,466 | epoch: [6/30] iter: [33/391] loss_D: 1.3859 loss_G: 0.6961 +2018-11-15 00:38:21,918 | epoch: [6/30] iter: [34/391] loss_D: 1.3850 loss_G: 0.6961 +2018-11-15 00:38:28,903 | epoch: [6/30] iter: [35/391] loss_D: 1.3850 loss_G: 0.6961 +2018-11-15 00:38:35,929 | epoch: [6/30] iter: [36/391] loss_D: 1.3862 loss_G: 0.6954 +2018-11-15 00:38:42,670 | epoch: [6/30] iter: [37/391] loss_D: 1.3907 loss_G: 0.6960 +2018-11-15 00:38:49,756 | epoch: [6/30] iter: [38/391] loss_D: 1.3846 loss_G: 0.6943 +2018-11-15 00:38:56,582 | epoch: [6/30] iter: [39/391] loss_D: 1.3870 loss_G: 0.6935 +2018-11-15 00:39:03,445 | epoch: [6/30] iter: [40/391] loss_D: 1.3892 loss_G: 0.6936 +2018-11-15 00:39:10,774 | epoch: [6/30] iter: [41/391] loss_D: 1.3877 loss_G: 0.6924 +2018-11-15 00:39:17,624 | epoch: [6/30] iter: [42/391] loss_D: 1.3852 loss_G: 0.6939 +2018-11-15 00:39:24,588 | epoch: [6/30] iter: [43/391] loss_D: 1.3865 loss_G: 0.6947 +2018-11-15 00:39:31,621 | epoch: [6/30] iter: [44/391] loss_D: 1.3855 loss_G: 0.6941 +2018-11-15 00:39:38,324 | epoch: [6/30] iter: [45/391] loss_D: 1.3855 loss_G: 0.6940 +2018-11-15 00:39:45,408 | epoch: [6/30] iter: [46/391] loss_D: 1.3874 loss_G: 0.6920 +2018-11-15 00:39:52,906 | epoch: [6/30] iter: [47/391] loss_D: 1.3872 loss_G: 0.6923 +2018-11-15 00:40:00,093 | epoch: [6/30] iter: [48/391] loss_D: 1.3878 loss_G: 0.6920 +2018-11-15 00:40:06,982 | epoch: [6/30] iter: [49/391] loss_D: 1.3904 loss_G: 0.6932 +2018-11-15 00:40:13,613 | epoch: [6/30] iter: [50/391] loss_D: 1.3909 loss_G: 0.6914 +2018-11-15 00:40:21,062 | epoch: [6/30] iter: [51/391] loss_D: 1.3880 loss_G: 0.6939 +2018-11-15 00:40:28,105 | epoch: [6/30] iter: [52/391] loss_D: 1.3882 loss_G: 0.6942 +2018-11-15 00:40:35,158 | epoch: [6/30] iter: [53/391] loss_D: 1.3859 loss_G: 0.6943 +2018-11-15 00:40:42,208 | epoch: [6/30] iter: [54/391] loss_D: 1.3897 loss_G: 0.6934 +2018-11-15 00:40:49,242 | epoch: [6/30] iter: [55/391] loss_D: 1.3858 loss_G: 0.6944 +2018-11-15 00:40:56,171 | epoch: [6/30] iter: [56/391] loss_D: 1.3848 loss_G: 0.6944 +2018-11-15 00:41:03,000 | epoch: [6/30] iter: [57/391] loss_D: 1.3843 loss_G: 0.6959 +2018-11-15 00:41:10,016 | epoch: [6/30] iter: [58/391] loss_D: 1.3873 loss_G: 0.6940 +2018-11-15 00:41:17,491 | epoch: [6/30] iter: [59/391] loss_D: 1.3882 loss_G: 0.6937 +2018-11-15 00:41:23,947 | epoch: [6/30] iter: [60/391] loss_D: 1.3871 loss_G: 0.6955 +2018-11-15 00:41:30,843 | epoch: [6/30] iter: [61/391] loss_D: 1.3879 loss_G: 0.6940 +2018-11-15 00:41:37,597 | epoch: [6/30] iter: [62/391] loss_D: 1.3843 loss_G: 0.6964 +2018-11-15 00:41:44,638 | epoch: [6/30] iter: [63/391] loss_D: 1.3863 loss_G: 0.6970 +2018-11-15 00:41:51,490 | epoch: [6/30] iter: [64/391] loss_D: 1.3851 loss_G: 0.6959 +2018-11-15 00:41:58,439 | epoch: [6/30] iter: [65/391] loss_D: 1.3859 loss_G: 0.6968 +2018-11-15 00:42:05,314 | epoch: [6/30] iter: [66/391] loss_D: 1.3861 loss_G: 0.6964 +2018-11-15 00:42:12,383 | epoch: [6/30] iter: [67/391] loss_D: 1.3843 loss_G: 0.6981 +2018-11-15 00:42:19,616 | epoch: [6/30] iter: [68/391] loss_D: 1.3869 loss_G: 0.6965 +2018-11-15 00:42:26,131 | epoch: [6/30] iter: [69/391] loss_D: 1.3833 loss_G: 0.6970 +2018-11-15 00:42:32,794 | epoch: [6/30] iter: [70/391] loss_D: 1.3833 loss_G: 0.6963 +2018-11-15 00:42:40,013 | epoch: [6/30] iter: [71/391] loss_D: 1.3841 loss_G: 0.6958 +2018-11-15 00:42:46,726 | epoch: [6/30] iter: [72/391] loss_D: 1.3849 loss_G: 0.6961 +2018-11-15 00:42:53,730 | epoch: [6/30] iter: [73/391] loss_D: 1.3858 loss_G: 0.6953 +2018-11-15 00:43:00,594 | epoch: [6/30] iter: [74/391] loss_D: 1.3850 loss_G: 0.6934 +2018-11-15 00:43:07,473 | epoch: [6/30] iter: [75/391] loss_D: 1.3871 loss_G: 0.6929 +2018-11-15 00:43:14,746 | epoch: [6/30] iter: [76/391] loss_D: 1.3885 loss_G: 0.6924 +2018-11-15 00:43:21,581 | epoch: [6/30] iter: [77/391] loss_D: 1.3878 loss_G: 0.6919 +2018-11-15 00:43:28,393 | epoch: [6/30] iter: [78/391] loss_D: 1.3884 loss_G: 0.6920 +2018-11-15 00:43:35,008 | epoch: [6/30] iter: [79/391] loss_D: 1.3865 loss_G: 0.6920 +2018-11-15 00:43:42,153 | epoch: [6/30] iter: [80/391] loss_D: 1.3887 loss_G: 0.6909 +2018-11-15 00:43:49,000 | epoch: [6/30] iter: [81/391] loss_D: 1.3868 loss_G: 0.6920 +2018-11-15 00:43:55,995 | epoch: [6/30] iter: [82/391] loss_D: 1.3886 loss_G: 0.6906 +2018-11-15 00:44:03,086 | epoch: [6/30] iter: [83/391] loss_D: 1.3869 loss_G: 0.6924 +2018-11-15 00:44:09,814 | epoch: [6/30] iter: [84/391] loss_D: 1.3864 loss_G: 0.6928 +2018-11-15 00:44:16,706 | epoch: [6/30] iter: [85/391] loss_D: 1.3898 loss_G: 0.6915 +2018-11-15 00:44:23,299 | epoch: [6/30] iter: [86/391] loss_D: 1.3879 loss_G: 0.6927 +2018-11-15 00:44:29,878 | epoch: [6/30] iter: [87/391] loss_D: 1.3872 loss_G: 0.6929 +2018-11-15 00:44:37,077 | epoch: [6/30] iter: [88/391] loss_D: 1.3869 loss_G: 0.6934 +2018-11-15 00:44:44,285 | epoch: [6/30] iter: [89/391] loss_D: 1.3879 loss_G: 0.6927 +2018-11-15 00:44:51,517 | epoch: [6/30] iter: [90/391] loss_D: 1.3854 loss_G: 0.6923 +2018-11-15 00:44:58,438 | epoch: [6/30] iter: [91/391] loss_D: 1.3870 loss_G: 0.6932 +2018-11-15 00:45:04,890 | epoch: [6/30] iter: [92/391] loss_D: 1.3870 loss_G: 0.6931 +2018-11-15 00:45:12,257 | epoch: [6/30] iter: [93/391] loss_D: 1.3844 loss_G: 0.6937 +2018-11-15 00:45:19,397 | epoch: [6/30] iter: [94/391] loss_D: 1.3876 loss_G: 0.6921 +2018-11-15 00:45:26,602 | epoch: [6/30] iter: [95/391] loss_D: 1.3868 loss_G: 0.6928 +2018-11-15 00:45:34,065 | epoch: [6/30] iter: [96/391] loss_D: 1.3863 loss_G: 0.6953 +2018-11-15 00:45:40,995 | epoch: [6/30] iter: [97/391] loss_D: 1.3871 loss_G: 0.6927 +2018-11-15 00:45:48,405 | epoch: [6/30] iter: [98/391] loss_D: 1.3865 loss_G: 0.6946 +2018-11-15 00:45:55,548 | epoch: [6/30] iter: [99/391] loss_D: 1.3861 loss_G: 0.6949 +2018-11-15 00:46:02,194 | epoch: [6/30] iter: [100/391] loss_D: 1.3846 loss_G: 0.6969 +2018-11-15 00:48:39,173 | epoch: [6/30] iter: [101/391] loss_D: 1.3864 loss_G: 0.6955 +2018-11-15 00:48:49,967 | epoch: [6/30] iter: [102/391] loss_D: 1.3848 loss_G: 0.6975 +2018-11-15 00:49:00,410 | epoch: [6/30] iter: [103/391] loss_D: 1.3844 loss_G: 0.6940 +2018-11-15 00:49:10,645 | epoch: [6/30] iter: [104/391] loss_D: 1.3838 loss_G: 0.6959 +2018-11-15 00:49:20,740 | epoch: [6/30] iter: [105/391] loss_D: 1.3852 loss_G: 0.6946 +2018-11-15 00:49:31,679 | epoch: [6/30] iter: [106/391] loss_D: 1.3840 loss_G: 0.6928 +2018-11-15 00:49:41,701 | epoch: [6/30] iter: [107/391] loss_D: 1.3862 loss_G: 0.6945 +2018-11-15 00:49:51,758 | epoch: [6/30] iter: [108/391] loss_D: 1.3834 loss_G: 0.6946 +2018-11-15 00:50:02,130 | epoch: [6/30] iter: [109/391] loss_D: 1.3853 loss_G: 0.6949 +2018-11-15 00:50:12,526 | epoch: [6/30] iter: [110/391] loss_D: 1.3869 loss_G: 0.6934 +2018-11-15 00:50:22,985 | epoch: [6/30] iter: [111/391] loss_D: 1.3854 loss_G: 0.6925 +2018-11-15 00:50:33,320 | epoch: [6/30] iter: [112/391] loss_D: 1.3875 loss_G: 0.6923 +2018-11-15 00:50:43,738 | epoch: [6/30] iter: [113/391] loss_D: 1.3870 loss_G: 0.6919 +2018-11-15 00:50:54,046 | epoch: [6/30] iter: [114/391] loss_D: 1.3882 loss_G: 0.6914 +2018-11-15 00:51:04,492 | epoch: [6/30] iter: [115/391] loss_D: 1.3880 loss_G: 0.6936 +2018-11-15 00:51:14,604 | epoch: [6/30] iter: [116/391] loss_D: 1.3868 loss_G: 0.6912 +2018-11-15 00:51:25,373 | epoch: [6/30] iter: [117/391] loss_D: 1.3879 loss_G: 0.6915 +2018-11-15 00:51:35,275 | epoch: [6/30] iter: [118/391] loss_D: 1.3876 loss_G: 0.6925 +2018-11-15 00:51:48,022 | epoch: [6/30] iter: [119/391] loss_D: 1.3881 loss_G: 0.6919 +2018-11-15 00:51:58,713 | epoch: [6/30] iter: [120/391] loss_D: 1.3882 loss_G: 0.6929 +2018-11-15 00:52:09,560 | epoch: [6/30] iter: [121/391] loss_D: 1.3866 loss_G: 0.6926 +2018-11-15 00:52:19,746 | epoch: [6/30] iter: [122/391] loss_D: 1.3879 loss_G: 0.6926 +2018-11-15 00:52:30,336 | epoch: [6/30] iter: [123/391] loss_D: 1.3845 loss_G: 0.6930 +2018-11-15 00:52:40,453 | epoch: [6/30] iter: [124/391] loss_D: 1.3867 loss_G: 0.6935 +2018-11-15 00:52:50,583 | epoch: [6/30] iter: [125/391] loss_D: 1.3847 loss_G: 0.6935 +2018-11-15 00:53:00,929 | epoch: [6/30] iter: [126/391] loss_D: 1.3843 loss_G: 0.6939 +2018-11-15 00:53:10,852 | epoch: [6/30] iter: [127/391] loss_D: 1.3843 loss_G: 0.6945 +2018-11-15 00:53:20,699 | epoch: [6/30] iter: [128/391] loss_D: 1.3837 loss_G: 0.6944 +2018-11-15 00:53:30,333 | epoch: [6/30] iter: [129/391] loss_D: 1.3841 loss_G: 0.6939 +2018-11-15 00:53:40,028 | epoch: [6/30] iter: [130/391] loss_D: 1.3842 loss_G: 0.6934 +2018-11-15 00:53:49,427 | epoch: [6/30] iter: [131/391] loss_D: 1.3857 loss_G: 0.6917 +2018-11-15 00:53:58,712 | epoch: [6/30] iter: [132/391] loss_D: 1.3886 loss_G: 0.6904 +2018-11-15 00:54:07,890 | epoch: [6/30] iter: [133/391] loss_D: 1.3958 loss_G: 0.6900 +2018-11-15 00:54:16,931 | epoch: [6/30] iter: [134/391] loss_D: 1.3913 loss_G: 0.6924 +2018-11-15 00:54:25,958 | epoch: [6/30] iter: [135/391] loss_D: 1.3889 loss_G: 0.6959 +2018-11-15 00:54:35,299 | epoch: [6/30] iter: [136/391] loss_D: 1.3903 loss_G: 0.6977 +2018-11-15 00:54:44,317 | epoch: [6/30] iter: [137/391] loss_D: 1.3877 loss_G: 0.6982 +2018-11-15 00:54:53,409 | epoch: [6/30] iter: [138/391] loss_D: 1.3820 loss_G: 0.7024 +2018-11-15 00:55:02,593 | epoch: [6/30] iter: [139/391] loss_D: 1.3830 loss_G: 0.7014 +2018-11-15 00:55:11,377 | epoch: [6/30] iter: [140/391] loss_D: 1.3814 loss_G: 0.7021 +2018-11-15 00:55:19,980 | epoch: [6/30] iter: [141/391] loss_D: 1.3803 loss_G: 0.7018 +2018-11-15 00:55:28,809 | epoch: [6/30] iter: [142/391] loss_D: 1.3826 loss_G: 0.6973 +2018-11-15 00:55:38,136 | epoch: [6/30] iter: [143/391] loss_D: 1.3807 loss_G: 0.6997 +2018-11-15 00:55:47,462 | epoch: [6/30] iter: [144/391] loss_D: 1.3807 loss_G: 0.6973 +2018-11-15 00:55:57,039 | epoch: [6/30] iter: [145/391] loss_D: 1.3848 loss_G: 0.6943 +2018-11-15 00:56:06,551 | epoch: [6/30] iter: [146/391] loss_D: 1.3865 loss_G: 0.6938 +2018-11-15 00:56:16,405 | epoch: [6/30] iter: [147/391] loss_D: 1.3865 loss_G: 0.6937 +2018-11-15 00:56:25,576 | epoch: [6/30] iter: [148/391] loss_D: 1.3861 loss_G: 0.6930 +2018-11-15 00:56:35,026 | epoch: [6/30] iter: [149/391] loss_D: 1.3858 loss_G: 0.6946 +2018-11-15 00:56:44,497 | epoch: [6/30] iter: [150/391] loss_D: 1.3876 loss_G: 0.6961 +2018-11-15 00:56:53,871 | epoch: [6/30] iter: [151/391] loss_D: 1.3870 loss_G: 0.6947 +2018-11-15 00:57:03,139 | epoch: [6/30] iter: [152/391] loss_D: 1.3882 loss_G: 0.6961 +2018-11-15 00:57:12,698 | epoch: [6/30] iter: [153/391] loss_D: 1.3868 loss_G: 0.6966 +2018-11-15 00:57:22,357 | epoch: [6/30] iter: [154/391] loss_D: 1.3814 loss_G: 0.7015 +2018-11-15 00:57:31,689 | epoch: [6/30] iter: [155/391] loss_D: 1.3857 loss_G: 0.6978 +2018-11-15 00:57:40,413 | epoch: [6/30] iter: [156/391] loss_D: 1.3835 loss_G: 0.6994 +2018-11-15 00:57:49,807 | epoch: [6/30] iter: [157/391] loss_D: 1.3850 loss_G: 0.6985 +2018-11-15 00:57:59,252 | epoch: [6/30] iter: [158/391] loss_D: 1.3833 loss_G: 0.6996 +2018-11-15 00:58:08,505 | epoch: [6/30] iter: [159/391] loss_D: 1.3888 loss_G: 0.6937 +2018-11-15 00:58:17,751 | epoch: [6/30] iter: [160/391] loss_D: 1.3895 loss_G: 0.6921 +2018-11-15 00:58:26,472 | epoch: [6/30] iter: [161/391] loss_D: 1.3925 loss_G: 0.6897 +2018-11-15 00:58:35,395 | epoch: [6/30] iter: [162/391] loss_D: 1.3923 loss_G: 0.6889 +2018-11-15 00:58:44,731 | epoch: [6/30] iter: [163/391] loss_D: 1.3902 loss_G: 0.6887 +2018-11-15 00:58:54,349 | epoch: [6/30] iter: [164/391] loss_D: 1.3880 loss_G: 0.6898 +2018-11-15 00:59:05,165 | epoch: [6/30] iter: [165/391] loss_D: 1.3891 loss_G: 0.6906 +2018-11-15 00:59:16,395 | epoch: [6/30] iter: [166/391] loss_D: 1.3844 loss_G: 0.6917 +2018-11-15 00:59:26,692 | epoch: [6/30] iter: [167/391] loss_D: 1.3836 loss_G: 0.6925 +2018-11-15 00:59:36,889 | epoch: [6/30] iter: [168/391] loss_D: 1.3845 loss_G: 0.6920 +2018-11-15 00:59:47,261 | epoch: [6/30] iter: [169/391] loss_D: 1.3818 loss_G: 0.6928 +2018-11-15 00:59:57,191 | epoch: [6/30] iter: [170/391] loss_D: 1.3821 loss_G: 0.6938 +2018-11-15 01:00:07,671 | epoch: [6/30] iter: [171/391] loss_D: 1.3811 loss_G: 0.6935 +2018-11-15 01:00:17,897 | epoch: [6/30] iter: [172/391] loss_D: 1.3813 loss_G: 0.6952 +2018-11-15 01:00:28,066 | epoch: [6/30] iter: [173/391] loss_D: 1.3805 loss_G: 0.6950 +2018-11-15 01:00:38,133 | epoch: [6/30] iter: [174/391] loss_D: 1.3790 loss_G: 0.6953 +2018-11-15 01:00:48,507 | epoch: [6/30] iter: [175/391] loss_D: 1.3790 loss_G: 0.6934 +2018-11-15 01:00:58,955 | epoch: [6/30] iter: [176/391] loss_D: 1.3776 loss_G: 0.6945 +2018-11-15 01:01:09,212 | epoch: [6/30] iter: [177/391] loss_D: 1.3817 loss_G: 0.6939 +2018-11-15 01:01:19,276 | epoch: [6/30] iter: [178/391] loss_D: 1.3840 loss_G: 0.6920 +2018-11-15 01:01:29,279 | epoch: [6/30] iter: [179/391] loss_D: 1.3822 loss_G: 0.6906 +2018-11-15 01:01:39,610 | epoch: [6/30] iter: [180/391] loss_D: 1.3885 loss_G: 0.6888 +2018-11-15 01:01:49,597 | epoch: [6/30] iter: [181/391] loss_D: 1.3768 loss_G: 0.6879 +2018-11-15 01:01:59,475 | epoch: [6/30] iter: [182/391] loss_D: 1.3910 loss_G: 0.6920 +2018-11-15 01:02:09,623 | epoch: [6/30] iter: [183/391] loss_D: 1.3915 loss_G: 0.6912 +2018-11-15 01:02:20,117 | epoch: [6/30] iter: [184/391] loss_D: 1.3963 loss_G: 0.6954 +2018-11-15 01:02:30,276 | epoch: [6/30] iter: [185/391] loss_D: 1.3903 loss_G: 0.6949 +2018-11-15 01:02:40,534 | epoch: [6/30] iter: [186/391] loss_D: 1.3916 loss_G: 0.7024 +2018-11-15 01:02:51,309 | epoch: [6/30] iter: [187/391] loss_D: 1.3943 loss_G: 0.7036 +2018-11-15 01:03:01,648 | epoch: [6/30] iter: [188/391] loss_D: 1.3828 loss_G: 0.7112 +2018-11-15 01:03:12,182 | epoch: [6/30] iter: [189/391] loss_D: 1.3884 loss_G: 0.7086 +2018-11-15 01:03:22,794 | epoch: [6/30] iter: [190/391] loss_D: 1.3835 loss_G: 0.7091 +2018-11-15 01:03:33,535 | epoch: [6/30] iter: [191/391] loss_D: 1.3830 loss_G: 0.7077 +2018-11-15 01:03:44,338 | epoch: [6/30] iter: [192/391] loss_D: 1.3860 loss_G: 0.7091 +2018-11-15 01:03:55,151 | epoch: [6/30] iter: [193/391] loss_D: 1.3808 loss_G: 0.7075 +2018-11-15 01:04:05,919 | epoch: [6/30] iter: [194/391] loss_D: 1.3834 loss_G: 0.7134 +2018-11-15 01:04:16,500 | epoch: [6/30] iter: [195/391] loss_D: 1.3940 loss_G: 0.7017 +2018-11-15 01:04:27,300 | epoch: [6/30] iter: [196/391] loss_D: 1.3888 loss_G: 0.6971 +2018-11-15 01:04:37,030 | epoch: [6/30] iter: [197/391] loss_D: 1.3973 loss_G: 0.6926 +2018-11-15 01:04:46,548 | epoch: [6/30] iter: [198/391] loss_D: 1.3938 loss_G: 0.6904 +2018-11-15 01:04:56,100 | epoch: [6/30] iter: [199/391] loss_D: 1.3909 loss_G: 0.6918 +2018-11-15 01:05:04,991 | epoch: [6/30] iter: [200/391] loss_D: 1.3884 loss_G: 0.6904 +2018-11-15 01:08:57,328 | epoch: [6/30] iter: [201/391] loss_D: 1.3910 loss_G: 0.6892 +2018-11-15 01:09:07,270 | epoch: [6/30] iter: [202/391] loss_D: 1.3854 loss_G: 0.6911 +2018-11-15 01:09:16,958 | epoch: [6/30] iter: [203/391] loss_D: 1.3871 loss_G: 0.6913 +2018-11-15 01:09:26,938 | epoch: [6/30] iter: [204/391] loss_D: 1.3862 loss_G: 0.6910 +2018-11-15 01:09:36,769 | epoch: [6/30] iter: [205/391] loss_D: 1.3847 loss_G: 0.6905 +2018-11-15 01:09:46,841 | epoch: [6/30] iter: [206/391] loss_D: 1.3895 loss_G: 0.6917 +2018-11-15 01:09:56,889 | epoch: [6/30] iter: [207/391] loss_D: 1.3851 loss_G: 0.6923 +2018-11-15 01:10:06,625 | epoch: [6/30] iter: [208/391] loss_D: 1.3819 loss_G: 0.6943 +2018-11-15 01:10:16,865 | epoch: [6/30] iter: [209/391] loss_D: 1.3856 loss_G: 0.6951 +2018-11-15 01:10:27,288 | epoch: [6/30] iter: [210/391] loss_D: 1.3839 loss_G: 0.6953 +2018-11-15 01:10:37,092 | epoch: [6/30] iter: [211/391] loss_D: 1.3836 loss_G: 0.6958 +2018-11-15 01:10:47,108 | epoch: [6/30] iter: [212/391] loss_D: 1.3846 loss_G: 0.6950 +2018-11-15 01:10:57,201 | epoch: [6/30] iter: [213/391] loss_D: 1.3836 loss_G: 0.6969 +2018-11-15 01:11:07,234 | epoch: [6/30] iter: [214/391] loss_D: 1.3833 loss_G: 0.6969 +2018-11-15 01:11:16,958 | epoch: [6/30] iter: [215/391] loss_D: 1.3802 loss_G: 0.6947 +2018-11-15 01:11:26,615 | epoch: [6/30] iter: [216/391] loss_D: 1.3817 loss_G: 0.6937 +2018-11-15 01:11:36,543 | epoch: [6/30] iter: [217/391] loss_D: 1.3831 loss_G: 0.6955 +2018-11-15 01:11:46,130 | epoch: [6/30] iter: [218/391] loss_D: 1.3834 loss_G: 0.6958 +2018-11-15 01:11:55,782 | epoch: [6/30] iter: [219/391] loss_D: 1.3828 loss_G: 0.6950 +2018-11-15 01:12:05,660 | epoch: [6/30] iter: [220/391] loss_D: 1.3824 loss_G: 0.6948 +2018-11-15 01:12:15,356 | epoch: [6/30] iter: [221/391] loss_D: 1.3791 loss_G: 0.6954 +2018-11-15 01:12:25,157 | epoch: [6/30] iter: [222/391] loss_D: 1.3825 loss_G: 0.6934 +2018-11-15 01:12:34,848 | epoch: [6/30] iter: [223/391] loss_D: 1.3845 loss_G: 0.6926 +2018-11-15 01:12:44,792 | epoch: [6/30] iter: [224/391] loss_D: 1.3852 loss_G: 0.6916 +2018-11-15 01:12:54,675 | epoch: [6/30] iter: [225/391] loss_D: 1.3975 loss_G: 0.6917 +2018-11-15 01:13:04,691 | epoch: [6/30] iter: [226/391] loss_D: 1.4008 loss_G: 0.6930 +2018-11-15 01:13:14,681 | epoch: [6/30] iter: [227/391] loss_D: 1.3971 loss_G: 0.6985 +2018-11-15 01:13:24,747 | epoch: [6/30] iter: [228/391] loss_D: 1.3918 loss_G: 0.7010 +2018-11-15 01:13:34,990 | epoch: [6/30] iter: [229/391] loss_D: 1.3866 loss_G: 0.7107 +2018-11-15 01:13:44,841 | epoch: [6/30] iter: [230/391] loss_D: 1.3763 loss_G: 0.7110 +2018-11-15 01:13:54,721 | epoch: [6/30] iter: [231/391] loss_D: 1.3771 loss_G: 0.7175 +2018-11-15 01:14:04,782 | epoch: [6/30] iter: [232/391] loss_D: 1.3773 loss_G: 0.7129 +2018-11-15 01:14:14,698 | epoch: [6/30] iter: [233/391] loss_D: 1.3857 loss_G: 0.7062 +2018-11-15 01:14:24,515 | epoch: [6/30] iter: [234/391] loss_D: 1.3856 loss_G: 0.6997 +2018-11-15 01:14:34,141 | epoch: [6/30] iter: [235/391] loss_D: 1.3922 loss_G: 0.6947 +2018-11-15 01:14:43,887 | epoch: [6/30] iter: [236/391] loss_D: 1.3958 loss_G: 0.6915 +2018-11-15 01:14:53,925 | epoch: [6/30] iter: [237/391] loss_D: 1.3944 loss_G: 0.6894 +2018-11-15 01:15:03,908 | epoch: [6/30] iter: [238/391] loss_D: 1.3872 loss_G: 0.6928 +2018-11-15 01:15:13,916 | epoch: [6/30] iter: [239/391] loss_D: 1.3880 loss_G: 0.6956 +2018-11-15 01:15:24,048 | epoch: [6/30] iter: [240/391] loss_D: 1.3851 loss_G: 0.6965 +2018-11-15 01:15:33,870 | epoch: [6/30] iter: [241/391] loss_D: 1.3878 loss_G: 0.6969 +2018-11-15 01:15:43,599 | epoch: [6/30] iter: [242/391] loss_D: 1.3870 loss_G: 0.6979 +2018-11-15 01:15:53,515 | epoch: [6/30] iter: [243/391] loss_D: 1.3859 loss_G: 0.6964 +2018-11-15 01:16:03,415 | epoch: [6/30] iter: [244/391] loss_D: 1.3877 loss_G: 0.6932 +2018-11-15 01:16:13,507 | epoch: [6/30] iter: [245/391] loss_D: 1.3898 loss_G: 0.6940 +2018-11-15 01:16:23,631 | epoch: [6/30] iter: [246/391] loss_D: 1.3903 loss_G: 0.6902 +2018-11-15 01:16:33,829 | epoch: [6/30] iter: [247/391] loss_D: 1.3861 loss_G: 0.6911 +2018-11-15 01:16:43,893 | epoch: [6/30] iter: [248/391] loss_D: 1.3904 loss_G: 0.6888 +2018-11-15 01:16:54,041 | epoch: [6/30] iter: [249/391] loss_D: 1.3877 loss_G: 0.6894 +2018-11-15 01:17:04,246 | epoch: [6/30] iter: [250/391] loss_D: 1.3900 loss_G: 0.6894 +2018-11-15 01:17:14,330 | epoch: [6/30] iter: [251/391] loss_D: 1.3880 loss_G: 0.6909 +2018-11-15 01:17:24,256 | epoch: [6/30] iter: [252/391] loss_D: 1.3892 loss_G: 0.6924 +2018-11-15 01:17:34,500 | epoch: [6/30] iter: [253/391] loss_D: 1.3878 loss_G: 0.6927 +2018-11-15 01:17:44,574 | epoch: [6/30] iter: [254/391] loss_D: 1.3857 loss_G: 0.6938 +2018-11-15 01:17:56,036 | epoch: [6/30] iter: [255/391] loss_D: 1.3867 loss_G: 0.6958 +2018-11-15 01:18:06,117 | epoch: [6/30] iter: [256/391] loss_D: 1.3850 loss_G: 0.6967 +2018-11-15 01:18:16,008 | epoch: [6/30] iter: [257/391] loss_D: 1.3872 loss_G: 0.6968 +2018-11-15 01:18:26,149 | epoch: [6/30] iter: [258/391] loss_D: 1.3822 loss_G: 0.6969 +2018-11-15 01:18:36,576 | epoch: [6/30] iter: [259/391] loss_D: 1.3833 loss_G: 0.6973 +2018-11-15 01:18:46,405 | epoch: [6/30] iter: [260/391] loss_D: 1.3846 loss_G: 0.6958 +2018-11-15 01:18:56,515 | epoch: [6/30] iter: [261/391] loss_D: 1.3845 loss_G: 0.6958 +2018-11-15 01:19:06,326 | epoch: [6/30] iter: [262/391] loss_D: 1.3844 loss_G: 0.6963 +2018-11-15 01:19:16,269 | epoch: [6/30] iter: [263/391] loss_D: 1.3842 loss_G: 0.6954 +2018-11-15 01:19:26,294 | epoch: [6/30] iter: [264/391] loss_D: 1.3826 loss_G: 0.6953 +2018-11-15 01:19:35,979 | epoch: [6/30] iter: [265/391] loss_D: 1.3851 loss_G: 0.6936 +2018-11-15 01:19:45,964 | epoch: [6/30] iter: [266/391] loss_D: 1.3871 loss_G: 0.6942 +2018-11-15 01:19:55,935 | epoch: [6/30] iter: [267/391] loss_D: 1.3845 loss_G: 0.6925 +2018-11-15 01:20:05,952 | epoch: [6/30] iter: [268/391] loss_D: 1.3850 loss_G: 0.6923 +2018-11-15 01:20:16,222 | epoch: [6/30] iter: [269/391] loss_D: 1.3866 loss_G: 0.6912 +2018-11-15 01:20:26,163 | epoch: [6/30] iter: [270/391] loss_D: 1.3865 loss_G: 0.6914 +2018-11-15 01:20:35,923 | epoch: [6/30] iter: [271/391] loss_D: 1.3880 loss_G: 0.6920 +2018-11-15 01:20:45,783 | epoch: [6/30] iter: [272/391] loss_D: 1.3906 loss_G: 0.6898 +2018-11-15 01:20:55,851 | epoch: [6/30] iter: [273/391] loss_D: 1.3876 loss_G: 0.6912 +2018-11-15 01:21:05,905 | epoch: [6/30] iter: [274/391] loss_D: 1.3904 loss_G: 0.6919 +2018-11-15 01:21:15,998 | epoch: [6/30] iter: [275/391] loss_D: 1.3884 loss_G: 0.6926 +2018-11-15 01:21:25,957 | epoch: [6/30] iter: [276/391] loss_D: 1.3877 loss_G: 0.6942 +2018-11-15 01:21:35,685 | epoch: [6/30] iter: [277/391] loss_D: 1.3884 loss_G: 0.6941 +2018-11-15 01:21:45,129 | epoch: [6/30] iter: [278/391] loss_D: 1.3886 loss_G: 0.6929 +2018-11-15 01:21:54,710 | epoch: [6/30] iter: [279/391] loss_D: 1.3894 loss_G: 0.6942 +2018-11-15 01:22:04,489 | epoch: [6/30] iter: [280/391] loss_D: 1.3872 loss_G: 0.6944 +2018-11-15 01:22:13,937 | epoch: [6/30] iter: [281/391] loss_D: 1.3856 loss_G: 0.6946 +2018-11-15 01:22:23,011 | epoch: [6/30] iter: [282/391] loss_D: 1.3860 loss_G: 0.6939 +2018-11-15 01:22:31,629 | epoch: [6/30] iter: [283/391] loss_D: 1.3840 loss_G: 0.6941 +2018-11-15 01:22:40,818 | epoch: [6/30] iter: [284/391] loss_D: 1.3868 loss_G: 0.6937 +2018-11-15 01:22:50,227 | epoch: [6/30] iter: [285/391] loss_D: 1.3872 loss_G: 0.6944 +2018-11-15 01:22:59,240 | epoch: [6/30] iter: [286/391] loss_D: 1.3865 loss_G: 0.6950 +2018-11-15 01:23:08,322 | epoch: [6/30] iter: [287/391] loss_D: 1.3893 loss_G: 0.6952 +2018-11-15 01:23:17,445 | epoch: [6/30] iter: [288/391] loss_D: 1.3839 loss_G: 0.6965 +2018-11-15 01:23:26,466 | epoch: [6/30] iter: [289/391] loss_D: 1.3858 loss_G: 0.6985 +2018-11-15 01:23:35,536 | epoch: [6/30] iter: [290/391] loss_D: 1.3820 loss_G: 0.6979 +2018-11-15 01:23:45,015 | epoch: [6/30] iter: [291/391] loss_D: 1.3792 loss_G: 0.6982 +2018-11-15 01:23:54,431 | epoch: [6/30] iter: [292/391] loss_D: 1.3827 loss_G: 0.6983 +2018-11-15 01:24:03,486 | epoch: [6/30] iter: [293/391] loss_D: 1.3823 loss_G: 0.6984 +2018-11-15 01:24:12,230 | epoch: [6/30] iter: [294/391] loss_D: 1.3814 loss_G: 0.6977 +2018-11-15 01:24:21,522 | epoch: [6/30] iter: [295/391] loss_D: 1.3802 loss_G: 0.7001 +2018-11-15 01:24:31,134 | epoch: [6/30] iter: [296/391] loss_D: 1.3833 loss_G: 0.6932 +2018-11-15 01:24:40,343 | epoch: [6/30] iter: [297/391] loss_D: 1.3838 loss_G: 0.6965 +2018-11-15 01:24:49,356 | epoch: [6/30] iter: [298/391] loss_D: 1.3833 loss_G: 0.6945 +2018-11-15 01:24:58,661 | epoch: [6/30] iter: [299/391] loss_D: 1.3874 loss_G: 0.6952 +2018-11-15 01:25:07,820 | epoch: [6/30] iter: [300/391] loss_D: 1.3925 loss_G: 0.6883 +2018-11-15 01:28:37,781 | epoch: [6/30] iter: [301/391] loss_D: 1.3860 loss_G: 0.6929 +2018-11-15 01:28:47,030 | epoch: [6/30] iter: [302/391] loss_D: 1.3938 loss_G: 0.6878 +2018-11-15 01:28:56,545 | epoch: [6/30] iter: [303/391] loss_D: 1.3894 loss_G: 0.6897 +2018-11-15 01:29:05,936 | epoch: [6/30] iter: [304/391] loss_D: 1.3910 loss_G: 0.6895 +2018-11-15 01:29:15,434 | epoch: [6/30] iter: [305/391] loss_D: 1.3868 loss_G: 0.6906 +2018-11-15 01:29:24,728 | epoch: [6/30] iter: [306/391] loss_D: 1.3863 loss_G: 0.6916 +2018-11-15 01:29:35,878 | epoch: [6/30] iter: [307/391] loss_D: 1.3875 loss_G: 0.6896 +2018-11-15 01:29:46,904 | epoch: [6/30] iter: [308/391] loss_D: 1.3892 loss_G: 0.6913 +2018-11-15 01:29:57,368 | epoch: [6/30] iter: [309/391] loss_D: 1.3858 loss_G: 0.6920 +2018-11-15 01:30:07,038 | epoch: [6/30] iter: [310/391] loss_D: 1.3865 loss_G: 0.6926 +2018-11-15 01:30:16,792 | epoch: [6/30] iter: [311/391] loss_D: 1.3866 loss_G: 0.6933 +2018-11-15 01:30:25,575 | epoch: [6/30] iter: [312/391] loss_D: 1.3874 loss_G: 0.6923 +2018-11-15 01:30:34,649 | epoch: [6/30] iter: [313/391] loss_D: 1.3859 loss_G: 0.6910 +2018-11-15 01:30:44,103 | epoch: [6/30] iter: [314/391] loss_D: 1.3868 loss_G: 0.6906 +2018-11-15 01:30:53,519 | epoch: [6/30] iter: [315/391] loss_D: 1.3866 loss_G: 0.6931 +2018-11-15 01:31:02,760 | epoch: [6/30] iter: [316/391] loss_D: 1.3877 loss_G: 0.6921 +2018-11-15 01:31:11,963 | epoch: [6/30] iter: [317/391] loss_D: 1.3855 loss_G: 0.6930 +2018-11-15 01:31:21,253 | epoch: [6/30] iter: [318/391] loss_D: 1.3874 loss_G: 0.6937 +2018-11-15 01:31:30,402 | epoch: [6/30] iter: [319/391] loss_D: 1.3872 loss_G: 0.6950 +2018-11-15 01:31:40,159 | epoch: [6/30] iter: [320/391] loss_D: 1.3832 loss_G: 0.6963 +2018-11-15 01:31:49,300 | epoch: [6/30] iter: [321/391] loss_D: 1.3862 loss_G: 0.6962 +2018-11-15 01:31:58,750 | epoch: [6/30] iter: [322/391] loss_D: 1.3855 loss_G: 0.6969 +2018-11-15 01:32:08,012 | epoch: [6/30] iter: [323/391] loss_D: 1.3874 loss_G: 0.6959 +2018-11-15 01:32:16,889 | epoch: [6/30] iter: [324/391] loss_D: 1.3867 loss_G: 0.6958 +2018-11-15 01:32:26,130 | epoch: [6/30] iter: [325/391] loss_D: 1.3852 loss_G: 0.6955 +2018-11-15 01:32:35,186 | epoch: [6/30] iter: [326/391] loss_D: 1.3853 loss_G: 0.6951 +2018-11-15 01:32:44,565 | epoch: [6/30] iter: [327/391] loss_D: 1.3885 loss_G: 0.6944 +2018-11-15 01:32:53,907 | epoch: [6/30] iter: [328/391] loss_D: 1.3878 loss_G: 0.6956 +2018-11-15 01:33:03,617 | epoch: [6/30] iter: [329/391] loss_D: 1.3865 loss_G: 0.6953 +2018-11-15 01:33:12,864 | epoch: [6/30] iter: [330/391] loss_D: 1.3888 loss_G: 0.6960 +2018-11-15 01:33:22,063 | epoch: [6/30] iter: [331/391] loss_D: 1.3891 loss_G: 0.6953 +2018-11-15 01:33:31,650 | epoch: [6/30] iter: [332/391] loss_D: 1.3878 loss_G: 0.6948 +2018-11-15 01:33:41,013 | epoch: [6/30] iter: [333/391] loss_D: 1.3861 loss_G: 0.6976 +2018-11-15 01:33:50,750 | epoch: [6/30] iter: [334/391] loss_D: 1.3863 loss_G: 0.6947 +2018-11-15 01:34:01,348 | epoch: [6/30] iter: [335/391] loss_D: 1.3870 loss_G: 0.6947 +2018-11-15 01:34:11,519 | epoch: [6/30] iter: [336/391] loss_D: 1.3855 loss_G: 0.6954 +2018-11-15 01:34:21,018 | epoch: [6/30] iter: [337/391] loss_D: 1.3870 loss_G: 0.6935 +2018-11-15 01:34:30,373 | epoch: [6/30] iter: [338/391] loss_D: 1.3858 loss_G: 0.6940 +2018-11-15 01:34:39,654 | epoch: [6/30] iter: [339/391] loss_D: 1.3872 loss_G: 0.6935 +2018-11-15 01:34:49,170 | epoch: [6/30] iter: [340/391] loss_D: 1.3880 loss_G: 0.6921 +2018-11-15 01:34:58,235 | epoch: [6/30] iter: [341/391] loss_D: 1.3905 loss_G: 0.6931 +2018-11-15 01:35:07,666 | epoch: [6/30] iter: [342/391] loss_D: 1.3888 loss_G: 0.6930 +2018-11-15 01:35:17,200 | epoch: [6/30] iter: [343/391] loss_D: 1.3891 loss_G: 0.6922 +2018-11-15 01:35:26,496 | epoch: [6/30] iter: [344/391] loss_D: 1.3880 loss_G: 0.6932 +2018-11-15 01:35:35,930 | epoch: [6/30] iter: [345/391] loss_D: 1.3869 loss_G: 0.6920 +2018-11-15 01:35:45,240 | epoch: [6/30] iter: [346/391] loss_D: 1.3867 loss_G: 0.6932 +2018-11-15 01:35:54,271 | epoch: [6/30] iter: [347/391] loss_D: 1.3880 loss_G: 0.6950 +2018-11-15 01:36:03,194 | epoch: [6/30] iter: [348/391] loss_D: 1.3867 loss_G: 0.6948 +2018-11-15 01:36:12,023 | epoch: [6/30] iter: [349/391] loss_D: 1.3882 loss_G: 0.6934 +2018-11-15 01:36:21,191 | epoch: [6/30] iter: [350/391] loss_D: 1.3854 loss_G: 0.6938 +2018-11-15 01:36:30,656 | epoch: [6/30] iter: [351/391] loss_D: 1.3866 loss_G: 0.6946 +2018-11-15 01:36:40,018 | epoch: [6/30] iter: [352/391] loss_D: 1.3870 loss_G: 0.6936 +2018-11-15 01:36:49,604 | epoch: [6/30] iter: [353/391] loss_D: 1.3845 loss_G: 0.6941 +2018-11-15 01:36:59,047 | epoch: [6/30] iter: [354/391] loss_D: 1.3841 loss_G: 0.6943 +2018-11-15 01:37:08,457 | epoch: [6/30] iter: [355/391] loss_D: 1.3826 loss_G: 0.6951 +2018-11-15 01:37:18,023 | epoch: [6/30] iter: [356/391] loss_D: 1.3827 loss_G: 0.6948 +2018-11-15 01:37:27,689 | epoch: [6/30] iter: [357/391] loss_D: 1.3844 loss_G: 0.6939 +2018-11-15 01:37:36,700 | epoch: [6/30] iter: [358/391] loss_D: 1.3854 loss_G: 0.6938 +2018-11-15 01:37:46,095 | epoch: [6/30] iter: [359/391] loss_D: 1.3834 loss_G: 0.6925 +2018-11-15 01:37:55,446 | epoch: [6/30] iter: [360/391] loss_D: 1.3876 loss_G: 0.6942 +2018-11-15 01:38:04,721 | epoch: [6/30] iter: [361/391] loss_D: 1.3888 loss_G: 0.6949 +2018-11-15 01:38:13,693 | epoch: [6/30] iter: [362/391] loss_D: 1.3871 loss_G: 0.6948 +2018-11-15 01:38:23,686 | epoch: [6/30] iter: [363/391] loss_D: 1.3863 loss_G: 0.6971 +2018-11-15 01:38:33,708 | epoch: [6/30] iter: [364/391] loss_D: 1.3874 loss_G: 0.6956 +2018-11-15 01:38:43,381 | epoch: [6/30] iter: [365/391] loss_D: 1.3872 loss_G: 0.6960 +2018-11-15 01:38:53,418 | epoch: [6/30] iter: [366/391] loss_D: 1.3857 loss_G: 0.6970 +2018-11-15 01:39:03,561 | epoch: [6/30] iter: [367/391] loss_D: 1.3851 loss_G: 0.6974 +2018-11-15 01:39:13,458 | epoch: [6/30] iter: [368/391] loss_D: 1.3837 loss_G: 0.6975 +2018-11-15 01:39:23,043 | epoch: [6/30] iter: [369/391] loss_D: 1.3854 loss_G: 0.6959 +2018-11-15 01:39:32,526 | epoch: [6/30] iter: [370/391] loss_D: 1.3867 loss_G: 0.6963 +2018-11-15 01:39:42,220 | epoch: [6/30] iter: [371/391] loss_D: 1.3860 loss_G: 0.6952 +2018-11-15 01:39:51,484 | epoch: [6/30] iter: [372/391] loss_D: 1.3886 loss_G: 0.6928 +2018-11-15 01:40:01,233 | epoch: [6/30] iter: [373/391] loss_D: 1.3882 loss_G: 0.6916 +2018-11-15 01:40:11,010 | epoch: [6/30] iter: [374/391] loss_D: 1.3911 loss_G: 0.6929 +2018-11-15 01:40:20,735 | epoch: [6/30] iter: [375/391] loss_D: 1.3882 loss_G: 0.6907 +2018-11-15 01:40:30,870 | epoch: [6/30] iter: [376/391] loss_D: 1.3912 loss_G: 0.6920 +2018-11-15 01:40:40,270 | epoch: [6/30] iter: [377/391] loss_D: 1.3879 loss_G: 0.6928 +2018-11-15 01:40:49,449 | epoch: [6/30] iter: [378/391] loss_D: 1.3885 loss_G: 0.6927 +2018-11-15 01:40:59,197 | epoch: [6/30] iter: [379/391] loss_D: 1.3872 loss_G: 0.6938 +2018-11-15 01:41:08,567 | epoch: [6/30] iter: [380/391] loss_D: 1.3879 loss_G: 0.6930 +2018-11-15 01:41:18,279 | epoch: [6/30] iter: [381/391] loss_D: 1.3864 loss_G: 0.6933 +2018-11-15 01:41:27,494 | epoch: [6/30] iter: [382/391] loss_D: 1.3848 loss_G: 0.6943 +2018-11-15 01:41:37,092 | epoch: [6/30] iter: [383/391] loss_D: 1.3850 loss_G: 0.6940 +2018-11-15 01:41:46,655 | epoch: [6/30] iter: [384/391] loss_D: 1.3846 loss_G: 0.6932 +2018-11-15 01:41:55,546 | epoch: [6/30] iter: [385/391] loss_D: 1.3860 loss_G: 0.6942 +2018-11-15 01:42:04,859 | epoch: [6/30] iter: [386/391] loss_D: 1.3862 loss_G: 0.6938 +2018-11-15 01:42:14,869 | epoch: [6/30] iter: [387/391] loss_D: 1.3848 loss_G: 0.6928 +2018-11-15 01:42:24,723 | epoch: [6/30] iter: [388/391] loss_D: 1.3851 loss_G: 0.6936 +2018-11-15 01:42:33,767 | epoch: [6/30] iter: [389/391] loss_D: 1.3887 loss_G: 0.6930 +2018-11-15 01:42:39,868 | epoch: [6/30] iter: [390/391] loss_D: 1.3879 loss_G: 0.6930 +2018-11-15 01:42:50,204 | epoch: [7/30] iter: [0/391] loss_D: 1.3852 loss_G: 0.6928 +2018-11-15 01:42:59,619 | epoch: [7/30] iter: [1/391] loss_D: 1.3848 loss_G: 0.6937 +2018-11-15 01:43:09,002 | epoch: [7/30] iter: [2/391] loss_D: 1.3856 loss_G: 0.6938 +2018-11-15 01:43:18,573 | epoch: [7/30] iter: [3/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 01:43:28,025 | epoch: [7/30] iter: [4/391] loss_D: 1.3856 loss_G: 0.6938 +2018-11-15 01:43:37,219 | epoch: [7/30] iter: [5/391] loss_D: 1.3850 loss_G: 0.6933 +2018-11-15 01:43:46,343 | epoch: [7/30] iter: [6/391] loss_D: 1.3856 loss_G: 0.6931 +2018-11-15 01:43:56,055 | epoch: [7/30] iter: [7/391] loss_D: 1.3859 loss_G: 0.6927 +2018-11-15 01:44:05,724 | epoch: [7/30] iter: [8/391] loss_D: 1.3858 loss_G: 0.6929 +2018-11-15 01:44:14,898 | epoch: [7/30] iter: [9/391] loss_D: 1.3848 loss_G: 0.6911 +2018-11-15 01:46:34,554 | epoch: [7/30] iter: [10/391] loss_D: 1.3856 loss_G: 0.6929 +2018-11-15 01:46:41,390 | epoch: [7/30] iter: [11/391] loss_D: 1.3861 loss_G: 0.6925 +2018-11-15 01:46:46,342 | epoch: [7/30] iter: [12/391] loss_D: 1.3863 loss_G: 0.6915 +2018-11-15 01:46:52,586 | epoch: [7/30] iter: [13/391] loss_D: 1.3871 loss_G: 0.6908 +2018-11-15 01:46:58,810 | epoch: [7/30] iter: [14/391] loss_D: 1.3876 loss_G: 0.6932 +2018-11-15 01:47:03,722 | epoch: [7/30] iter: [15/391] loss_D: 1.3883 loss_G: 0.6936 +2018-11-15 01:47:09,448 | epoch: [7/30] iter: [16/391] loss_D: 1.3864 loss_G: 0.6943 +2018-11-15 01:47:15,194 | epoch: [7/30] iter: [17/391] loss_D: 1.3869 loss_G: 0.6951 +2018-11-15 01:47:20,315 | epoch: [7/30] iter: [18/391] loss_D: 1.3861 loss_G: 0.6979 +2018-11-15 01:47:28,692 | epoch: [7/30] iter: [19/391] loss_D: 1.3886 loss_G: 0.6996 +2018-11-15 01:47:35,576 | epoch: [7/30] iter: [20/391] loss_D: 1.3868 loss_G: 0.6998 +2018-11-15 01:47:41,208 | epoch: [7/30] iter: [21/391] loss_D: 1.3845 loss_G: 0.7008 +2018-11-15 01:47:46,506 | epoch: [7/30] iter: [22/391] loss_D: 1.3838 loss_G: 0.6973 +2018-11-15 01:47:52,449 | epoch: [7/30] iter: [23/391] loss_D: 1.3846 loss_G: 0.6989 +2018-11-15 01:47:58,501 | epoch: [7/30] iter: [24/391] loss_D: 1.3860 loss_G: 0.6957 +2018-11-15 01:48:07,075 | epoch: [7/30] iter: [25/391] loss_D: 1.3832 loss_G: 0.6942 +2018-11-15 01:48:12,977 | epoch: [7/30] iter: [26/391] loss_D: 1.3859 loss_G: 0.6939 +2018-11-15 01:48:18,985 | epoch: [7/30] iter: [27/391] loss_D: 1.3866 loss_G: 0.6920 +2018-11-15 01:48:23,837 | epoch: [7/30] iter: [28/391] loss_D: 1.3860 loss_G: 0.6934 +2018-11-15 01:48:32,600 | epoch: [7/30] iter: [29/391] loss_D: 1.3864 loss_G: 0.6927 +2018-11-15 01:48:39,854 | epoch: [7/30] iter: [30/391] loss_D: 1.3855 loss_G: 0.6924 +2018-11-15 01:48:47,412 | epoch: [7/30] iter: [31/391] loss_D: 1.3876 loss_G: 0.6918 +2018-11-15 01:48:52,493 | epoch: [7/30] iter: [32/391] loss_D: 1.3859 loss_G: 0.6921 +2018-11-15 01:49:00,714 | epoch: [7/30] iter: [33/391] loss_D: 1.3884 loss_G: 0.6907 +2018-11-15 01:49:07,998 | epoch: [7/30] iter: [34/391] loss_D: 1.3874 loss_G: 0.6919 +2018-11-15 01:49:15,637 | epoch: [7/30] iter: [35/391] loss_D: 1.3874 loss_G: 0.6923 +2018-11-15 01:49:20,850 | epoch: [7/30] iter: [36/391] loss_D: 1.3866 loss_G: 0.6913 +2018-11-15 01:49:26,656 | epoch: [7/30] iter: [37/391] loss_D: 1.3883 loss_G: 0.6922 +2018-11-15 01:49:32,813 | epoch: [7/30] iter: [38/391] loss_D: 1.3868 loss_G: 0.6928 +2018-11-15 01:49:38,715 | epoch: [7/30] iter: [39/391] loss_D: 1.3857 loss_G: 0.6929 +2018-11-15 01:49:43,828 | epoch: [7/30] iter: [40/391] loss_D: 1.3882 loss_G: 0.6929 +2018-11-15 01:49:51,983 | epoch: [7/30] iter: [41/391] loss_D: 1.3870 loss_G: 0.6945 +2018-11-15 01:49:59,588 | epoch: [7/30] iter: [42/391] loss_D: 1.3849 loss_G: 0.6935 +2018-11-15 01:50:04,316 | epoch: [7/30] iter: [43/391] loss_D: 1.3831 loss_G: 0.6946 +2018-11-15 01:50:08,741 | epoch: [7/30] iter: [44/391] loss_D: 1.3835 loss_G: 0.6963 +2018-11-15 01:50:14,503 | epoch: [7/30] iter: [45/391] loss_D: 1.3819 loss_G: 0.6959 +2018-11-15 01:50:21,994 | epoch: [7/30] iter: [46/391] loss_D: 1.3830 loss_G: 0.6959 +2018-11-15 01:50:29,414 | epoch: [7/30] iter: [47/391] loss_D: 1.3848 loss_G: 0.6955 +2018-11-15 01:50:36,573 | epoch: [7/30] iter: [48/391] loss_D: 1.3804 loss_G: 0.6964 +2018-11-15 01:50:41,845 | epoch: [7/30] iter: [49/391] loss_D: 1.3812 loss_G: 0.6965 +2018-11-15 01:50:46,968 | epoch: [7/30] iter: [50/391] loss_D: 1.3806 loss_G: 0.6968 +2018-11-15 01:50:51,514 | epoch: [7/30] iter: [51/391] loss_D: 1.3796 loss_G: 0.6976 +2018-11-15 01:50:56,737 | epoch: [7/30] iter: [52/391] loss_D: 1.3810 loss_G: 0.6958 +2018-11-15 01:51:04,144 | epoch: [7/30] iter: [53/391] loss_D: 1.3773 loss_G: 0.6978 +2018-11-15 01:51:11,647 | epoch: [7/30] iter: [54/391] loss_D: 1.3828 loss_G: 0.6959 +2018-11-15 01:51:16,852 | epoch: [7/30] iter: [55/391] loss_D: 1.3866 loss_G: 0.6865 +2018-11-15 01:51:24,983 | epoch: [7/30] iter: [56/391] loss_D: 1.3984 loss_G: 0.6860 +2018-11-15 01:51:32,069 | epoch: [7/30] iter: [57/391] loss_D: 1.4016 loss_G: 0.6806 +2018-11-15 01:51:36,958 | epoch: [7/30] iter: [58/391] loss_D: 1.4027 loss_G: 0.6849 +2018-11-15 01:51:42,634 | epoch: [7/30] iter: [59/391] loss_D: 1.3896 loss_G: 0.6995 +2018-11-15 01:51:50,142 | epoch: [7/30] iter: [60/391] loss_D: 1.3866 loss_G: 0.7126 +2018-11-15 01:51:57,877 | epoch: [7/30] iter: [61/391] loss_D: 1.3794 loss_G: 0.7164 +2018-11-15 01:52:03,408 | epoch: [7/30] iter: [62/391] loss_D: 1.3732 loss_G: 0.7198 +2018-11-15 01:52:09,494 | epoch: [7/30] iter: [63/391] loss_D: 1.3678 loss_G: 0.7269 +2018-11-15 01:52:15,373 | epoch: [7/30] iter: [64/391] loss_D: 1.3779 loss_G: 0.7101 +2018-11-15 01:52:23,823 | epoch: [7/30] iter: [65/391] loss_D: 1.3840 loss_G: 0.7034 +2018-11-15 01:52:32,607 | epoch: [7/30] iter: [66/391] loss_D: 1.3886 loss_G: 0.6961 +2018-11-15 01:52:39,255 | epoch: [7/30] iter: [67/391] loss_D: 1.3961 loss_G: 0.6920 +2018-11-15 01:52:45,385 | epoch: [7/30] iter: [68/391] loss_D: 1.4004 loss_G: 0.6893 +2018-11-15 01:52:50,554 | epoch: [7/30] iter: [69/391] loss_D: 1.3962 loss_G: 0.6884 +2018-11-15 01:52:58,697 | epoch: [7/30] iter: [70/391] loss_D: 1.3911 loss_G: 0.6882 +2018-11-15 01:53:06,072 | epoch: [7/30] iter: [71/391] loss_D: 1.3908 loss_G: 0.6887 +2018-11-15 01:53:11,453 | epoch: [7/30] iter: [72/391] loss_D: 1.3908 loss_G: 0.6895 +2018-11-15 01:53:16,950 | epoch: [7/30] iter: [73/391] loss_D: 1.3884 loss_G: 0.6901 +2018-11-15 01:53:25,099 | epoch: [7/30] iter: [74/391] loss_D: 1.3893 loss_G: 0.6921 +2018-11-15 01:53:32,790 | epoch: [7/30] iter: [75/391] loss_D: 1.3879 loss_G: 0.6916 +2018-11-15 01:53:40,815 | epoch: [7/30] iter: [76/391] loss_D: 1.3883 loss_G: 0.6925 +2018-11-15 01:53:48,150 | epoch: [7/30] iter: [77/391] loss_D: 1.3893 loss_G: 0.6936 +2018-11-15 01:53:53,457 | epoch: [7/30] iter: [78/391] loss_D: 1.3880 loss_G: 0.6925 +2018-11-15 01:54:01,785 | epoch: [7/30] iter: [79/391] loss_D: 1.3885 loss_G: 0.6939 +2018-11-15 01:54:09,171 | epoch: [7/30] iter: [80/391] loss_D: 1.3876 loss_G: 0.6937 +2018-11-15 01:54:14,386 | epoch: [7/30] iter: [81/391] loss_D: 1.3888 loss_G: 0.6925 +2018-11-15 01:54:22,689 | epoch: [7/30] iter: [82/391] loss_D: 1.3875 loss_G: 0.6940 +2018-11-15 01:54:29,875 | epoch: [7/30] iter: [83/391] loss_D: 1.3876 loss_G: 0.6941 +2018-11-15 01:54:34,972 | epoch: [7/30] iter: [84/391] loss_D: 1.3864 loss_G: 0.6941 +2018-11-15 01:54:40,581 | epoch: [7/30] iter: [85/391] loss_D: 1.3844 loss_G: 0.6945 +2018-11-15 01:54:48,134 | epoch: [7/30] iter: [86/391] loss_D: 1.3864 loss_G: 0.6942 +2018-11-15 01:54:56,070 | epoch: [7/30] iter: [87/391] loss_D: 1.3850 loss_G: 0.6945 +2018-11-15 01:55:01,244 | epoch: [7/30] iter: [88/391] loss_D: 1.3866 loss_G: 0.6956 +2018-11-15 01:55:07,450 | epoch: [7/30] iter: [89/391] loss_D: 1.3863 loss_G: 0.6951 +2018-11-15 01:55:13,071 | epoch: [7/30] iter: [90/391] loss_D: 1.3867 loss_G: 0.6943 +2018-11-15 01:55:18,231 | epoch: [7/30] iter: [91/391] loss_D: 1.3878 loss_G: 0.6938 +2018-11-15 01:55:26,308 | epoch: [7/30] iter: [92/391] loss_D: 1.3865 loss_G: 0.6941 +2018-11-15 01:55:33,975 | epoch: [7/30] iter: [93/391] loss_D: 1.3881 loss_G: 0.6933 +2018-11-15 01:55:41,760 | epoch: [7/30] iter: [94/391] loss_D: 1.3887 loss_G: 0.6934 +2018-11-15 01:55:46,867 | epoch: [7/30] iter: [95/391] loss_D: 1.3852 loss_G: 0.6931 +2018-11-15 01:55:52,354 | epoch: [7/30] iter: [96/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 01:55:58,118 | epoch: [7/30] iter: [97/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 01:56:03,519 | epoch: [7/30] iter: [98/391] loss_D: 1.3870 loss_G: 0.6927 +2018-11-15 01:56:08,617 | epoch: [7/30] iter: [99/391] loss_D: 1.3874 loss_G: 0.6935 +2018-11-15 01:56:14,850 | epoch: [7/30] iter: [100/391] loss_D: 1.3869 loss_G: 0.6923 +2018-11-15 01:56:20,651 | epoch: [7/30] iter: [101/391] loss_D: 1.3854 loss_G: 0.6926 +2018-11-15 01:56:26,022 | epoch: [7/30] iter: [102/391] loss_D: 1.3861 loss_G: 0.6921 +2018-11-15 01:56:31,953 | epoch: [7/30] iter: [103/391] loss_D: 1.3849 loss_G: 0.6934 +2018-11-15 01:56:37,917 | epoch: [7/30] iter: [104/391] loss_D: 1.3864 loss_G: 0.6933 +2018-11-15 01:56:43,116 | epoch: [7/30] iter: [105/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 01:56:48,655 | epoch: [7/30] iter: [106/391] loss_D: 1.3863 loss_G: 0.6919 +2018-11-15 01:56:53,162 | epoch: [7/30] iter: [107/391] loss_D: 1.3869 loss_G: 0.6926 +2018-11-15 01:56:58,383 | epoch: [7/30] iter: [108/391] loss_D: 1.3858 loss_G: 0.6930 +2018-11-15 01:57:05,796 | epoch: [7/30] iter: [109/391] loss_D: 1.3842 loss_G: 0.6925 +2018-11-15 01:59:03,996 | epoch: [7/30] iter: [110/391] loss_D: 1.3853 loss_G: 0.6928 +2018-11-15 01:59:09,958 | epoch: [7/30] iter: [111/391] loss_D: 1.3879 loss_G: 0.6931 +2018-11-15 01:59:16,996 | epoch: [7/30] iter: [112/391] loss_D: 1.3850 loss_G: 0.6923 +2018-11-15 01:59:24,310 | epoch: [7/30] iter: [113/391] loss_D: 1.3851 loss_G: 0.6919 +2018-11-15 01:59:31,701 | epoch: [7/30] iter: [114/391] loss_D: 1.3903 loss_G: 0.6914 +2018-11-15 01:59:38,909 | epoch: [7/30] iter: [115/391] loss_D: 1.3874 loss_G: 0.6913 +2018-11-15 01:59:45,602 | epoch: [7/30] iter: [116/391] loss_D: 1.3883 loss_G: 0.6907 +2018-11-15 01:59:52,161 | epoch: [7/30] iter: [117/391] loss_D: 1.3927 loss_G: 0.6917 +2018-11-15 01:59:59,217 | epoch: [7/30] iter: [118/391] loss_D: 1.3890 loss_G: 0.6916 +2018-11-15 02:00:05,843 | epoch: [7/30] iter: [119/391] loss_D: 1.3895 loss_G: 0.6942 +2018-11-15 02:00:12,625 | epoch: [7/30] iter: [120/391] loss_D: 1.3894 loss_G: 0.6944 +2018-11-15 02:00:19,506 | epoch: [7/30] iter: [121/391] loss_D: 1.3857 loss_G: 0.6950 +2018-11-15 02:00:26,764 | epoch: [7/30] iter: [122/391] loss_D: 1.3839 loss_G: 0.6953 +2018-11-15 02:00:33,608 | epoch: [7/30] iter: [123/391] loss_D: 1.3866 loss_G: 0.6939 +2018-11-15 02:00:40,437 | epoch: [7/30] iter: [124/391] loss_D: 1.3858 loss_G: 0.6962 +2018-11-15 02:00:47,442 | epoch: [7/30] iter: [125/391] loss_D: 1.3865 loss_G: 0.6948 +2018-11-15 02:00:54,406 | epoch: [7/30] iter: [126/391] loss_D: 1.3847 loss_G: 0.6941 +2018-11-15 02:01:01,475 | epoch: [7/30] iter: [127/391] loss_D: 1.3849 loss_G: 0.6935 +2018-11-15 02:01:08,387 | epoch: [7/30] iter: [128/391] loss_D: 1.3873 loss_G: 0.6924 +2018-11-15 02:01:15,440 | epoch: [7/30] iter: [129/391] loss_D: 1.3866 loss_G: 0.6918 +2018-11-15 02:01:22,718 | epoch: [7/30] iter: [130/391] loss_D: 1.3859 loss_G: 0.6930 +2018-11-15 02:01:29,839 | epoch: [7/30] iter: [131/391] loss_D: 1.3864 loss_G: 0.6926 +2018-11-15 02:01:36,881 | epoch: [7/30] iter: [132/391] loss_D: 1.3859 loss_G: 0.6925 +2018-11-15 02:01:43,896 | epoch: [7/30] iter: [133/391] loss_D: 1.3851 loss_G: 0.6935 +2018-11-15 02:01:50,586 | epoch: [7/30] iter: [134/391] loss_D: 1.3885 loss_G: 0.6922 +2018-11-15 02:01:57,482 | epoch: [7/30] iter: [135/391] loss_D: 1.3870 loss_G: 0.6924 +2018-11-15 02:02:04,934 | epoch: [7/30] iter: [136/391] loss_D: 1.3872 loss_G: 0.6938 +2018-11-15 02:02:11,651 | epoch: [7/30] iter: [137/391] loss_D: 1.3865 loss_G: 0.6943 +2018-11-15 02:02:18,660 | epoch: [7/30] iter: [138/391] loss_D: 1.3855 loss_G: 0.6934 +2018-11-15 02:02:25,585 | epoch: [7/30] iter: [139/391] loss_D: 1.3866 loss_G: 0.6931 +2018-11-15 02:02:32,603 | epoch: [7/30] iter: [140/391] loss_D: 1.3870 loss_G: 0.6944 +2018-11-15 02:02:39,606 | epoch: [7/30] iter: [141/391] loss_D: 1.3875 loss_G: 0.6932 +2018-11-15 02:02:46,723 | epoch: [7/30] iter: [142/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 02:02:53,387 | epoch: [7/30] iter: [143/391] loss_D: 1.3858 loss_G: 0.6949 +2018-11-15 02:03:00,432 | epoch: [7/30] iter: [144/391] loss_D: 1.3854 loss_G: 0.6942 +2018-11-15 02:03:07,694 | epoch: [7/30] iter: [145/391] loss_D: 1.3862 loss_G: 0.6943 +2018-11-15 02:03:14,589 | epoch: [7/30] iter: [146/391] loss_D: 1.3871 loss_G: 0.6939 +2018-11-15 02:03:21,854 | epoch: [7/30] iter: [147/391] loss_D: 1.3855 loss_G: 0.6939 +2018-11-15 02:03:29,178 | epoch: [7/30] iter: [148/391] loss_D: 1.3838 loss_G: 0.6935 +2018-11-15 02:03:36,264 | epoch: [7/30] iter: [149/391] loss_D: 1.3858 loss_G: 0.6935 +2018-11-15 02:03:43,459 | epoch: [7/30] iter: [150/391] loss_D: 1.3883 loss_G: 0.6935 +2018-11-15 02:03:50,807 | epoch: [7/30] iter: [151/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 02:03:57,824 | epoch: [7/30] iter: [152/391] loss_D: 1.3849 loss_G: 0.6933 +2018-11-15 02:04:05,056 | epoch: [7/30] iter: [153/391] loss_D: 1.3875 loss_G: 0.6936 +2018-11-15 02:04:11,953 | epoch: [7/30] iter: [154/391] loss_D: 1.3868 loss_G: 0.6941 +2018-11-15 02:04:19,088 | epoch: [7/30] iter: [155/391] loss_D: 1.3856 loss_G: 0.6936 +2018-11-15 02:04:26,469 | epoch: [7/30] iter: [156/391] loss_D: 1.3861 loss_G: 0.6937 +2018-11-15 02:04:33,214 | epoch: [7/30] iter: [157/391] loss_D: 1.3872 loss_G: 0.6939 +2018-11-15 02:04:40,007 | epoch: [7/30] iter: [158/391] loss_D: 1.3845 loss_G: 0.6945 +2018-11-15 02:04:47,115 | epoch: [7/30] iter: [159/391] loss_D: 1.3858 loss_G: 0.6947 +2018-11-15 02:04:54,417 | epoch: [7/30] iter: [160/391] loss_D: 1.3870 loss_G: 0.6923 +2018-11-15 02:05:01,530 | epoch: [7/30] iter: [161/391] loss_D: 1.3859 loss_G: 0.6938 +2018-11-15 02:05:08,578 | epoch: [7/30] iter: [162/391] loss_D: 1.3863 loss_G: 0.6941 +2018-11-15 02:05:15,699 | epoch: [7/30] iter: [163/391] loss_D: 1.3833 loss_G: 0.6956 +2018-11-15 02:05:22,774 | epoch: [7/30] iter: [164/391] loss_D: 1.3861 loss_G: 0.6952 +2018-11-15 02:05:30,004 | epoch: [7/30] iter: [165/391] loss_D: 1.3856 loss_G: 0.6958 +2018-11-15 02:05:37,279 | epoch: [7/30] iter: [166/391] loss_D: 1.3846 loss_G: 0.6967 +2018-11-15 02:05:44,346 | epoch: [7/30] iter: [167/391] loss_D: 1.3861 loss_G: 0.6947 +2018-11-15 02:05:51,556 | epoch: [7/30] iter: [168/391] loss_D: 1.3835 loss_G: 0.6957 +2018-11-15 02:05:58,335 | epoch: [7/30] iter: [169/391] loss_D: 1.3843 loss_G: 0.6953 +2018-11-15 02:06:05,610 | epoch: [7/30] iter: [170/391] loss_D: 1.3837 loss_G: 0.6941 +2018-11-15 02:06:12,806 | epoch: [7/30] iter: [171/391] loss_D: 1.3861 loss_G: 0.6941 +2018-11-15 02:06:20,009 | epoch: [7/30] iter: [172/391] loss_D: 1.3851 loss_G: 0.6935 +2018-11-15 02:06:27,144 | epoch: [7/30] iter: [173/391] loss_D: 1.3843 loss_G: 0.6934 +2018-11-15 02:06:34,078 | epoch: [7/30] iter: [174/391] loss_D: 1.3856 loss_G: 0.6911 +2018-11-15 02:06:41,193 | epoch: [7/30] iter: [175/391] loss_D: 1.3849 loss_G: 0.6927 +2018-11-15 02:06:47,820 | epoch: [7/30] iter: [176/391] loss_D: 1.3849 loss_G: 0.6931 +2018-11-15 02:06:54,622 | epoch: [7/30] iter: [177/391] loss_D: 1.3858 loss_G: 0.6930 +2018-11-15 02:07:01,920 | epoch: [7/30] iter: [178/391] loss_D: 1.3857 loss_G: 0.6929 +2018-11-15 02:07:08,959 | epoch: [7/30] iter: [179/391] loss_D: 1.3874 loss_G: 0.6933 +2018-11-15 02:07:15,742 | epoch: [7/30] iter: [180/391] loss_D: 1.3840 loss_G: 0.6933 +2018-11-15 02:07:22,882 | epoch: [7/30] iter: [181/391] loss_D: 1.3829 loss_G: 0.6934 +2018-11-15 02:07:29,358 | epoch: [7/30] iter: [182/391] loss_D: 1.3855 loss_G: 0.6945 +2018-11-15 02:07:36,003 | epoch: [7/30] iter: [183/391] loss_D: 1.3865 loss_G: 0.6923 +2018-11-15 02:07:43,490 | epoch: [7/30] iter: [184/391] loss_D: 1.3858 loss_G: 0.6932 +2018-11-15 02:07:50,479 | epoch: [7/30] iter: [185/391] loss_D: 1.3869 loss_G: 0.6938 +2018-11-15 02:07:57,851 | epoch: [7/30] iter: [186/391] loss_D: 1.3848 loss_G: 0.6933 +2018-11-15 02:08:04,711 | epoch: [7/30] iter: [187/391] loss_D: 1.3871 loss_G: 0.6930 +2018-11-15 02:08:11,662 | epoch: [7/30] iter: [188/391] loss_D: 1.3872 loss_G: 0.6925 +2018-11-15 02:08:18,654 | epoch: [7/30] iter: [189/391] loss_D: 1.3867 loss_G: 0.6920 +2018-11-15 02:08:26,126 | epoch: [7/30] iter: [190/391] loss_D: 1.3867 loss_G: 0.6914 +2018-11-15 02:08:33,470 | epoch: [7/30] iter: [191/391] loss_D: 1.3867 loss_G: 0.6915 +2018-11-15 02:08:40,516 | epoch: [7/30] iter: [192/391] loss_D: 1.3865 loss_G: 0.6925 +2018-11-15 02:08:47,765 | epoch: [7/30] iter: [193/391] loss_D: 1.3869 loss_G: 0.6923 +2018-11-15 02:08:54,931 | epoch: [7/30] iter: [194/391] loss_D: 1.3894 loss_G: 0.6912 +2018-11-15 02:09:01,800 | epoch: [7/30] iter: [195/391] loss_D: 1.3868 loss_G: 0.6915 +2018-11-15 02:09:09,061 | epoch: [7/30] iter: [196/391] loss_D: 1.3864 loss_G: 0.6929 +2018-11-15 02:09:16,487 | epoch: [7/30] iter: [197/391] loss_D: 1.3893 loss_G: 0.6919 +2018-11-15 02:09:23,674 | epoch: [7/30] iter: [198/391] loss_D: 1.3864 loss_G: 0.6924 +2018-11-15 02:09:30,836 | epoch: [7/30] iter: [199/391] loss_D: 1.3874 loss_G: 0.6917 +2018-11-15 02:09:37,683 | epoch: [7/30] iter: [200/391] loss_D: 1.3876 loss_G: 0.6932 +2018-11-15 02:09:45,042 | epoch: [7/30] iter: [201/391] loss_D: 1.3856 loss_G: 0.6943 +2018-11-15 02:09:51,933 | epoch: [7/30] iter: [202/391] loss_D: 1.3878 loss_G: 0.6934 +2018-11-15 02:09:58,906 | epoch: [7/30] iter: [203/391] loss_D: 1.3860 loss_G: 0.6917 +2018-11-15 02:10:06,172 | epoch: [7/30] iter: [204/391] loss_D: 1.3864 loss_G: 0.6916 +2018-11-15 02:10:13,134 | epoch: [7/30] iter: [205/391] loss_D: 1.3882 loss_G: 0.6921 +2018-11-15 02:10:20,410 | epoch: [7/30] iter: [206/391] loss_D: 1.3874 loss_G: 0.6921 +2018-11-15 02:10:27,598 | epoch: [7/30] iter: [207/391] loss_D: 1.3883 loss_G: 0.6929 +2018-11-15 02:10:34,653 | epoch: [7/30] iter: [208/391] loss_D: 1.3885 loss_G: 0.6920 +2018-11-15 02:10:41,858 | epoch: [7/30] iter: [209/391] loss_D: 1.3871 loss_G: 0.6936 +2018-11-15 02:13:00,401 | epoch: [7/30] iter: [210/391] loss_D: 1.3886 loss_G: 0.6930 +2018-11-15 02:13:04,525 | epoch: [7/30] iter: [211/391] loss_D: 1.3869 loss_G: 0.6925 +2018-11-15 02:13:08,703 | epoch: [7/30] iter: [212/391] loss_D: 1.3869 loss_G: 0.6935 +2018-11-15 02:13:13,054 | epoch: [7/30] iter: [213/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 02:13:18,997 | epoch: [7/30] iter: [214/391] loss_D: 1.3876 loss_G: 0.6933 +2018-11-15 02:13:25,705 | epoch: [7/30] iter: [215/391] loss_D: 1.3855 loss_G: 0.6935 +2018-11-15 02:13:32,842 | epoch: [7/30] iter: [216/391] loss_D: 1.3856 loss_G: 0.6946 +2018-11-15 02:13:40,095 | epoch: [7/30] iter: [217/391] loss_D: 1.3858 loss_G: 0.6951 +2018-11-15 02:13:47,256 | epoch: [7/30] iter: [218/391] loss_D: 1.3863 loss_G: 0.6954 +2018-11-15 02:13:54,539 | epoch: [7/30] iter: [219/391] loss_D: 1.3855 loss_G: 0.6949 +2018-11-15 02:14:01,582 | epoch: [7/30] iter: [220/391] loss_D: 1.3868 loss_G: 0.6952 +2018-11-15 02:14:08,683 | epoch: [7/30] iter: [221/391] loss_D: 1.3866 loss_G: 0.6957 +2018-11-15 02:14:16,183 | epoch: [7/30] iter: [222/391] loss_D: 1.3859 loss_G: 0.6948 +2018-11-15 02:14:23,465 | epoch: [7/30] iter: [223/391] loss_D: 1.3855 loss_G: 0.6938 +2018-11-15 02:14:30,703 | epoch: [7/30] iter: [224/391] loss_D: 1.3854 loss_G: 0.6944 +2018-11-15 02:14:37,397 | epoch: [7/30] iter: [225/391] loss_D: 1.3853 loss_G: 0.6933 +2018-11-15 02:14:44,045 | epoch: [7/30] iter: [226/391] loss_D: 1.3852 loss_G: 0.6929 +2018-11-15 02:14:51,244 | epoch: [7/30] iter: [227/391] loss_D: 1.3847 loss_G: 0.6953 +2018-11-15 02:14:58,314 | epoch: [7/30] iter: [228/391] loss_D: 1.3869 loss_G: 0.6945 +2018-11-15 02:15:05,413 | epoch: [7/30] iter: [229/391] loss_D: 1.3852 loss_G: 0.6955 +2018-11-15 02:15:12,217 | epoch: [7/30] iter: [230/391] loss_D: 1.3837 loss_G: 0.6935 +2018-11-15 02:15:18,630 | epoch: [7/30] iter: [231/391] loss_D: 1.3867 loss_G: 0.6932 +2018-11-15 02:15:25,776 | epoch: [7/30] iter: [232/391] loss_D: 1.3864 loss_G: 0.6936 +2018-11-15 02:15:32,912 | epoch: [7/30] iter: [233/391] loss_D: 1.3866 loss_G: 0.6926 +2018-11-15 02:15:39,966 | epoch: [7/30] iter: [234/391] loss_D: 1.3866 loss_G: 0.6931 +2018-11-15 02:15:46,928 | epoch: [7/30] iter: [235/391] loss_D: 1.3861 loss_G: 0.6930 +2018-11-15 02:15:53,930 | epoch: [7/30] iter: [236/391] loss_D: 1.3873 loss_G: 0.6937 +2018-11-15 02:16:00,902 | epoch: [7/30] iter: [237/391] loss_D: 1.3882 loss_G: 0.6933 +2018-11-15 02:16:07,905 | epoch: [7/30] iter: [238/391] loss_D: 1.3871 loss_G: 0.6952 +2018-11-15 02:16:15,214 | epoch: [7/30] iter: [239/391] loss_D: 1.3864 loss_G: 0.6942 +2018-11-15 02:16:22,289 | epoch: [7/30] iter: [240/391] loss_D: 1.3865 loss_G: 0.6932 +2018-11-15 02:16:29,279 | epoch: [7/30] iter: [241/391] loss_D: 1.3848 loss_G: 0.6948 +2018-11-15 02:16:36,179 | epoch: [7/30] iter: [242/391] loss_D: 1.3870 loss_G: 0.6944 +2018-11-15 02:16:43,278 | epoch: [7/30] iter: [243/391] loss_D: 1.3863 loss_G: 0.6950 +2018-11-15 02:16:50,647 | epoch: [7/30] iter: [244/391] loss_D: 1.3849 loss_G: 0.6944 +2018-11-15 02:16:57,668 | epoch: [7/30] iter: [245/391] loss_D: 1.3869 loss_G: 0.6948 +2018-11-15 02:17:04,873 | epoch: [7/30] iter: [246/391] loss_D: 1.3844 loss_G: 0.6955 +2018-11-15 02:17:11,686 | epoch: [7/30] iter: [247/391] loss_D: 1.3864 loss_G: 0.6939 +2018-11-15 02:17:18,293 | epoch: [7/30] iter: [248/391] loss_D: 1.3854 loss_G: 0.6939 +2018-11-15 02:17:25,536 | epoch: [7/30] iter: [249/391] loss_D: 1.3860 loss_G: 0.6943 +2018-11-15 02:17:32,130 | epoch: [7/30] iter: [250/391] loss_D: 1.3864 loss_G: 0.6929 +2018-11-15 02:17:38,931 | epoch: [7/30] iter: [251/391] loss_D: 1.3877 loss_G: 0.6928 +2018-11-15 02:17:45,852 | epoch: [7/30] iter: [252/391] loss_D: 1.3858 loss_G: 0.6932 +2018-11-15 02:17:52,828 | epoch: [7/30] iter: [253/391] loss_D: 1.3875 loss_G: 0.6934 +2018-11-15 02:17:59,575 | epoch: [7/30] iter: [254/391] loss_D: 1.3865 loss_G: 0.6937 +2018-11-15 02:18:06,399 | epoch: [7/30] iter: [255/391] loss_D: 1.3864 loss_G: 0.6927 +2018-11-15 02:18:13,554 | epoch: [7/30] iter: [256/391] loss_D: 1.3865 loss_G: 0.6944 +2018-11-15 02:18:20,810 | epoch: [7/30] iter: [257/391] loss_D: 1.3877 loss_G: 0.6938 +2018-11-15 02:18:27,598 | epoch: [7/30] iter: [258/391] loss_D: 1.3886 loss_G: 0.6936 +2018-11-15 02:18:34,718 | epoch: [7/30] iter: [259/391] loss_D: 1.3867 loss_G: 0.6929 +2018-11-15 02:18:42,002 | epoch: [7/30] iter: [260/391] loss_D: 1.3864 loss_G: 0.6936 +2018-11-15 02:18:49,040 | epoch: [7/30] iter: [261/391] loss_D: 1.3885 loss_G: 0.6939 +2018-11-15 02:18:55,763 | epoch: [7/30] iter: [262/391] loss_D: 1.3877 loss_G: 0.6937 +2018-11-15 02:19:02,728 | epoch: [7/30] iter: [263/391] loss_D: 1.3870 loss_G: 0.6931 +2018-11-15 02:19:10,158 | epoch: [7/30] iter: [264/391] loss_D: 1.3884 loss_G: 0.6932 +2018-11-15 02:19:17,497 | epoch: [7/30] iter: [265/391] loss_D: 1.3872 loss_G: 0.6948 +2018-11-15 02:19:25,039 | epoch: [7/30] iter: [266/391] loss_D: 1.3875 loss_G: 0.6934 +2018-11-15 02:19:32,317 | epoch: [7/30] iter: [267/391] loss_D: 1.3875 loss_G: 0.6943 +2018-11-15 02:19:39,674 | epoch: [7/30] iter: [268/391] loss_D: 1.3877 loss_G: 0.6942 +2018-11-15 02:19:46,706 | epoch: [7/30] iter: [269/391] loss_D: 1.3857 loss_G: 0.6937 +2018-11-15 02:19:53,854 | epoch: [7/30] iter: [270/391] loss_D: 1.3850 loss_G: 0.6945 +2018-11-15 02:20:00,779 | epoch: [7/30] iter: [271/391] loss_D: 1.3869 loss_G: 0.6942 +2018-11-15 02:20:07,439 | epoch: [7/30] iter: [272/391] loss_D: 1.3860 loss_G: 0.6948 +2018-11-15 02:20:14,326 | epoch: [7/30] iter: [273/391] loss_D: 1.3839 loss_G: 0.6957 +2018-11-15 02:20:21,526 | epoch: [7/30] iter: [274/391] loss_D: 1.3838 loss_G: 0.6955 +2018-11-15 02:20:28,740 | epoch: [7/30] iter: [275/391] loss_D: 1.3840 loss_G: 0.6942 +2018-11-15 02:20:36,024 | epoch: [7/30] iter: [276/391] loss_D: 1.3840 loss_G: 0.6951 +2018-11-15 02:20:43,227 | epoch: [7/30] iter: [277/391] loss_D: 1.3852 loss_G: 0.6940 +2018-11-15 02:20:50,247 | epoch: [7/30] iter: [278/391] loss_D: 1.3847 loss_G: 0.6947 +2018-11-15 02:20:56,990 | epoch: [7/30] iter: [279/391] loss_D: 1.3844 loss_G: 0.6933 +2018-11-15 02:21:04,227 | epoch: [7/30] iter: [280/391] loss_D: 1.3847 loss_G: 0.6935 +2018-11-15 02:21:11,570 | epoch: [7/30] iter: [281/391] loss_D: 1.3853 loss_G: 0.6937 +2018-11-15 02:21:18,613 | epoch: [7/30] iter: [282/391] loss_D: 1.3843 loss_G: 0.6930 +2018-11-15 02:21:25,471 | epoch: [7/30] iter: [283/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 02:21:33,020 | epoch: [7/30] iter: [284/391] loss_D: 1.3867 loss_G: 0.6942 +2018-11-15 02:21:40,070 | epoch: [7/30] iter: [285/391] loss_D: 1.3874 loss_G: 0.6931 +2018-11-15 02:21:47,118 | epoch: [7/30] iter: [286/391] loss_D: 1.3851 loss_G: 0.6929 +2018-11-15 02:21:53,994 | epoch: [7/30] iter: [287/391] loss_D: 1.3855 loss_G: 0.6936 +2018-11-15 02:22:00,485 | epoch: [7/30] iter: [288/391] loss_D: 1.3879 loss_G: 0.6911 +2018-11-15 02:22:07,732 | epoch: [7/30] iter: [289/391] loss_D: 1.3857 loss_G: 0.6913 +2018-11-15 02:22:14,704 | epoch: [7/30] iter: [290/391] loss_D: 1.3909 loss_G: 0.6907 +2018-11-15 02:22:21,606 | epoch: [7/30] iter: [291/391] loss_D: 1.3899 loss_G: 0.6908 +2018-11-15 02:22:28,729 | epoch: [7/30] iter: [292/391] loss_D: 1.3893 loss_G: 0.6915 +2018-11-15 02:22:35,487 | epoch: [7/30] iter: [293/391] loss_D: 1.3910 loss_G: 0.6910 +2018-11-15 02:22:42,364 | epoch: [7/30] iter: [294/391] loss_D: 1.3902 loss_G: 0.6933 +2018-11-15 02:22:49,605 | epoch: [7/30] iter: [295/391] loss_D: 1.3888 loss_G: 0.6961 +2018-11-15 02:22:57,067 | epoch: [7/30] iter: [296/391] loss_D: 1.3876 loss_G: 0.6955 +2018-11-15 02:23:04,357 | epoch: [7/30] iter: [297/391] loss_D: 1.3871 loss_G: 0.6974 +2018-11-15 02:23:11,069 | epoch: [7/30] iter: [298/391] loss_D: 1.3848 loss_G: 0.6984 +2018-11-15 02:23:18,205 | epoch: [7/30] iter: [299/391] loss_D: 1.3851 loss_G: 0.6963 +2018-11-15 02:23:24,951 | epoch: [7/30] iter: [300/391] loss_D: 1.3847 loss_G: 0.6971 +2018-11-15 02:23:32,203 | epoch: [7/30] iter: [301/391] loss_D: 1.3855 loss_G: 0.6961 +2018-11-15 02:23:39,055 | epoch: [7/30] iter: [302/391] loss_D: 1.3855 loss_G: 0.6942 +2018-11-15 02:23:46,269 | epoch: [7/30] iter: [303/391] loss_D: 1.3868 loss_G: 0.6940 +2018-11-15 02:23:53,119 | epoch: [7/30] iter: [304/391] loss_D: 1.3862 loss_G: 0.6935 +2018-11-15 02:24:00,243 | epoch: [7/30] iter: [305/391] loss_D: 1.3867 loss_G: 0.6937 +2018-11-15 02:24:07,390 | epoch: [7/30] iter: [306/391] loss_D: 1.3863 loss_G: 0.6924 +2018-11-15 02:24:14,506 | epoch: [7/30] iter: [307/391] loss_D: 1.3864 loss_G: 0.6936 +2018-11-15 02:24:21,118 | epoch: [7/30] iter: [308/391] loss_D: 1.3871 loss_G: 0.6917 +2018-11-15 02:24:28,376 | epoch: [7/30] iter: [309/391] loss_D: 1.3874 loss_G: 0.6913 +2018-11-15 02:26:22,473 | epoch: [7/30] iter: [310/391] loss_D: 1.3872 loss_G: 0.6922 +2018-11-15 02:26:26,405 | epoch: [7/30] iter: [311/391] loss_D: 1.3886 loss_G: 0.6921 +2018-11-15 02:26:30,873 | epoch: [7/30] iter: [312/391] loss_D: 1.3868 loss_G: 0.6917 +2018-11-15 02:26:34,877 | epoch: [7/30] iter: [313/391] loss_D: 1.3873 loss_G: 0.6923 +2018-11-15 02:26:41,420 | epoch: [7/30] iter: [314/391] loss_D: 1.3875 loss_G: 0.6926 +2018-11-15 02:26:48,237 | epoch: [7/30] iter: [315/391] loss_D: 1.3879 loss_G: 0.6924 +2018-11-15 02:26:55,341 | epoch: [7/30] iter: [316/391] loss_D: 1.3887 loss_G: 0.6917 +2018-11-15 02:27:02,241 | epoch: [7/30] iter: [317/391] loss_D: 1.3890 loss_G: 0.6915 +2018-11-15 02:27:09,165 | epoch: [7/30] iter: [318/391] loss_D: 1.3888 loss_G: 0.6928 +2018-11-15 02:27:16,317 | epoch: [7/30] iter: [319/391] loss_D: 1.3883 loss_G: 0.6921 +2018-11-15 02:27:23,486 | epoch: [7/30] iter: [320/391] loss_D: 1.3878 loss_G: 0.6944 +2018-11-15 02:27:30,812 | epoch: [7/30] iter: [321/391] loss_D: 1.3886 loss_G: 0.6929 +2018-11-15 02:27:37,573 | epoch: [7/30] iter: [322/391] loss_D: 1.3879 loss_G: 0.6937 +2018-11-15 02:27:44,342 | epoch: [7/30] iter: [323/391] loss_D: 1.3865 loss_G: 0.6945 +2018-11-15 02:27:51,272 | epoch: [7/30] iter: [324/391] loss_D: 1.3871 loss_G: 0.6942 +2018-11-15 02:27:58,189 | epoch: [7/30] iter: [325/391] loss_D: 1.3860 loss_G: 0.6946 +2018-11-15 02:28:05,305 | epoch: [7/30] iter: [326/391] loss_D: 1.3855 loss_G: 0.6951 +2018-11-15 02:28:12,401 | epoch: [7/30] iter: [327/391] loss_D: 1.3850 loss_G: 0.6955 +2018-11-15 02:28:19,481 | epoch: [7/30] iter: [328/391] loss_D: 1.3839 loss_G: 0.6946 +2018-11-15 02:28:26,745 | epoch: [7/30] iter: [329/391] loss_D: 1.3847 loss_G: 0.6951 +2018-11-15 02:28:33,673 | epoch: [7/30] iter: [330/391] loss_D: 1.3853 loss_G: 0.6950 +2018-11-15 02:28:40,300 | epoch: [7/30] iter: [331/391] loss_D: 1.3847 loss_G: 0.6947 +2018-11-15 02:28:47,585 | epoch: [7/30] iter: [332/391] loss_D: 1.3841 loss_G: 0.6941 +2018-11-15 02:28:54,899 | epoch: [7/30] iter: [333/391] loss_D: 1.3857 loss_G: 0.6945 +2018-11-15 02:29:01,575 | epoch: [7/30] iter: [334/391] loss_D: 1.3827 loss_G: 0.6945 +2018-11-15 02:29:08,667 | epoch: [7/30] iter: [335/391] loss_D: 1.3812 loss_G: 0.6940 +2018-11-15 02:29:15,466 | epoch: [7/30] iter: [336/391] loss_D: 1.3832 loss_G: 0.6943 +2018-11-15 02:29:22,617 | epoch: [7/30] iter: [337/391] loss_D: 1.3859 loss_G: 0.6946 +2018-11-15 02:29:29,638 | epoch: [7/30] iter: [338/391] loss_D: 1.3828 loss_G: 0.6958 +2018-11-15 02:29:36,874 | epoch: [7/30] iter: [339/391] loss_D: 1.3833 loss_G: 0.6941 +2018-11-15 02:29:44,034 | epoch: [7/30] iter: [340/391] loss_D: 1.3851 loss_G: 0.6916 +2018-11-15 02:29:51,339 | epoch: [7/30] iter: [341/391] loss_D: 1.3870 loss_G: 0.6895 +2018-11-15 02:29:57,533 | epoch: [7/30] iter: [342/391] loss_D: 1.3848 loss_G: 0.6915 +2018-11-15 02:30:01,475 | epoch: [7/30] iter: [343/391] loss_D: 1.3907 loss_G: 0.6901 +2018-11-15 02:30:05,625 | epoch: [7/30] iter: [344/391] loss_D: 1.3881 loss_G: 0.6915 +2018-11-15 02:30:09,702 | epoch: [7/30] iter: [345/391] loss_D: 1.3924 loss_G: 0.6911 +2018-11-15 02:30:13,865 | epoch: [7/30] iter: [346/391] loss_D: 1.3897 loss_G: 0.6941 +2018-11-15 02:30:18,244 | epoch: [7/30] iter: [347/391] loss_D: 1.3871 loss_G: 0.6948 +2018-11-15 02:30:24,601 | epoch: [7/30] iter: [348/391] loss_D: 1.3890 loss_G: 0.6991 +2018-11-15 02:30:31,499 | epoch: [7/30] iter: [349/391] loss_D: 1.3861 loss_G: 0.6989 +2018-11-15 02:30:38,759 | epoch: [7/30] iter: [350/391] loss_D: 1.3850 loss_G: 0.6988 +2018-11-15 02:30:45,846 | epoch: [7/30] iter: [351/391] loss_D: 1.3848 loss_G: 0.6985 +2018-11-15 02:30:52,634 | epoch: [7/30] iter: [352/391] loss_D: 1.3827 loss_G: 0.6998 +2018-11-15 02:30:59,782 | epoch: [7/30] iter: [353/391] loss_D: 1.3841 loss_G: 0.6983 +2018-11-15 02:31:06,942 | epoch: [7/30] iter: [354/391] loss_D: 1.3848 loss_G: 0.6968 +2018-11-15 02:31:13,979 | epoch: [7/30] iter: [355/391] loss_D: 1.3857 loss_G: 0.6969 +2018-11-15 02:31:20,881 | epoch: [7/30] iter: [356/391] loss_D: 1.3868 loss_G: 0.6973 +2018-11-15 02:31:28,279 | epoch: [7/30] iter: [357/391] loss_D: 1.3868 loss_G: 0.6966 +2018-11-15 02:31:35,418 | epoch: [7/30] iter: [358/391] loss_D: 1.3876 loss_G: 0.6975 +2018-11-15 02:31:42,762 | epoch: [7/30] iter: [359/391] loss_D: 1.3838 loss_G: 0.6965 +2018-11-15 02:31:49,719 | epoch: [7/30] iter: [360/391] loss_D: 1.3830 loss_G: 0.6979 +2018-11-15 02:31:57,112 | epoch: [7/30] iter: [361/391] loss_D: 1.3851 loss_G: 0.6992 +2018-11-15 02:32:03,921 | epoch: [7/30] iter: [362/391] loss_D: 1.3860 loss_G: 0.6971 +2018-11-15 02:32:10,998 | epoch: [7/30] iter: [363/391] loss_D: 1.3849 loss_G: 0.6960 +2018-11-15 02:32:18,190 | epoch: [7/30] iter: [364/391] loss_D: 1.3858 loss_G: 0.6939 +2018-11-15 02:32:25,148 | epoch: [7/30] iter: [365/391] loss_D: 1.3852 loss_G: 0.6925 +2018-11-15 02:32:32,055 | epoch: [7/30] iter: [366/391] loss_D: 1.3893 loss_G: 0.6929 +2018-11-15 02:32:36,112 | epoch: [7/30] iter: [367/391] loss_D: 1.3876 loss_G: 0.6911 +2018-11-15 02:32:40,329 | epoch: [7/30] iter: [368/391] loss_D: 1.3898 loss_G: 0.6908 +2018-11-15 02:32:44,207 | epoch: [7/30] iter: [369/391] loss_D: 1.3883 loss_G: 0.6899 +2018-11-15 02:32:48,286 | epoch: [7/30] iter: [370/391] loss_D: 1.3884 loss_G: 0.6909 +2018-11-15 02:32:52,467 | epoch: [7/30] iter: [371/391] loss_D: 1.3875 loss_G: 0.6913 +2018-11-15 02:32:56,452 | epoch: [7/30] iter: [372/391] loss_D: 1.3893 loss_G: 0.6918 +2018-11-15 02:33:00,815 | epoch: [7/30] iter: [373/391] loss_D: 1.3870 loss_G: 0.6924 +2018-11-15 02:33:05,931 | epoch: [7/30] iter: [374/391] loss_D: 1.3866 loss_G: 0.6936 +2018-11-15 02:33:12,878 | epoch: [7/30] iter: [375/391] loss_D: 1.3844 loss_G: 0.6950 +2018-11-15 02:33:19,493 | epoch: [7/30] iter: [376/391] loss_D: 1.3858 loss_G: 0.6942 +2018-11-15 02:33:26,847 | epoch: [7/30] iter: [377/391] loss_D: 1.3846 loss_G: 0.6948 +2018-11-15 02:33:33,774 | epoch: [7/30] iter: [378/391] loss_D: 1.3844 loss_G: 0.6956 +2018-11-15 02:33:40,525 | epoch: [7/30] iter: [379/391] loss_D: 1.3859 loss_G: 0.6955 +2018-11-15 02:33:47,213 | epoch: [7/30] iter: [380/391] loss_D: 1.3852 loss_G: 0.6956 +2018-11-15 02:33:54,390 | epoch: [7/30] iter: [381/391] loss_D: 1.3870 loss_G: 0.6936 +2018-11-15 02:34:01,373 | epoch: [7/30] iter: [382/391] loss_D: 1.3857 loss_G: 0.6937 +2018-11-15 02:34:08,710 | epoch: [7/30] iter: [383/391] loss_D: 1.3851 loss_G: 0.6940 +2018-11-15 02:34:16,129 | epoch: [7/30] iter: [384/391] loss_D: 1.3872 loss_G: 0.6941 +2018-11-15 02:34:22,987 | epoch: [7/30] iter: [385/391] loss_D: 1.3871 loss_G: 0.6928 +2018-11-15 02:34:29,632 | epoch: [7/30] iter: [386/391] loss_D: 1.3889 loss_G: 0.6929 +2018-11-15 02:34:36,237 | epoch: [7/30] iter: [387/391] loss_D: 1.3871 loss_G: 0.6913 +2018-11-15 02:34:42,926 | epoch: [7/30] iter: [388/391] loss_D: 1.3877 loss_G: 0.6928 +2018-11-15 02:34:50,064 | epoch: [7/30] iter: [389/391] loss_D: 1.3867 loss_G: 0.6926 +2018-11-15 02:34:54,836 | epoch: [7/30] iter: [390/391] loss_D: 1.3856 loss_G: 0.6926 +2018-11-15 02:35:02,556 | epoch: [8/30] iter: [0/391] loss_D: 1.3881 loss_G: 0.6912 +2018-11-15 02:35:07,291 | epoch: [8/30] iter: [1/391] loss_D: 1.3871 loss_G: 0.6926 +2018-11-15 02:35:11,560 | epoch: [8/30] iter: [2/391] loss_D: 1.3886 loss_G: 0.6932 +2018-11-15 02:35:15,576 | epoch: [8/30] iter: [3/391] loss_D: 1.3863 loss_G: 0.6930 +2018-11-15 02:35:19,664 | epoch: [8/30] iter: [4/391] loss_D: 1.3844 loss_G: 0.6935 +2018-11-15 02:35:23,643 | epoch: [8/30] iter: [5/391] loss_D: 1.3858 loss_G: 0.6939 +2018-11-15 02:35:28,213 | epoch: [8/30] iter: [6/391] loss_D: 1.3851 loss_G: 0.6942 +2018-11-15 02:35:34,858 | epoch: [8/30] iter: [7/391] loss_D: 1.3863 loss_G: 0.6937 +2018-11-15 02:35:42,320 | epoch: [8/30] iter: [8/391] loss_D: 1.3836 loss_G: 0.6944 +2018-11-15 02:35:49,665 | epoch: [8/30] iter: [9/391] loss_D: 1.3844 loss_G: 0.6948 +2018-11-15 02:35:56,787 | epoch: [8/30] iter: [10/391] loss_D: 1.3840 loss_G: 0.6942 +2018-11-15 02:36:03,618 | epoch: [8/30] iter: [11/391] loss_D: 1.3856 loss_G: 0.6943 +2018-11-15 02:36:10,709 | epoch: [8/30] iter: [12/391] loss_D: 1.3836 loss_G: 0.6942 +2018-11-15 02:36:17,627 | epoch: [8/30] iter: [13/391] loss_D: 1.3821 loss_G: 0.6931 +2018-11-15 02:36:24,966 | epoch: [8/30] iter: [14/391] loss_D: 1.3858 loss_G: 0.6945 +2018-11-15 02:36:32,138 | epoch: [8/30] iter: [15/391] loss_D: 1.3864 loss_G: 0.6935 +2018-11-15 02:36:38,986 | epoch: [8/30] iter: [16/391] loss_D: 1.3869 loss_G: 0.6926 +2018-11-15 02:36:45,757 | epoch: [8/30] iter: [17/391] loss_D: 1.3873 loss_G: 0.6922 +2018-11-15 02:36:52,501 | epoch: [8/30] iter: [18/391] loss_D: 1.3881 loss_G: 0.6940 +2018-11-15 02:38:38,038 | epoch: [8/30] iter: [19/391] loss_D: 1.3889 loss_G: 0.6934 +2018-11-15 02:38:42,330 | epoch: [8/30] iter: [20/391] loss_D: 1.3864 loss_G: 0.6947 +2018-11-15 02:38:46,626 | epoch: [8/30] iter: [21/391] loss_D: 1.3868 loss_G: 0.6941 +2018-11-15 02:38:50,994 | epoch: [8/30] iter: [22/391] loss_D: 1.3860 loss_G: 0.6947 +2018-11-15 02:38:57,689 | epoch: [8/30] iter: [23/391] loss_D: 1.3869 loss_G: 0.6955 +2018-11-15 02:39:04,669 | epoch: [8/30] iter: [24/391] loss_D: 1.3866 loss_G: 0.6968 +2018-11-15 02:39:11,677 | epoch: [8/30] iter: [25/391] loss_D: 1.3839 loss_G: 0.6982 +2018-11-15 02:39:19,311 | epoch: [8/30] iter: [26/391] loss_D: 1.3851 loss_G: 0.6981 +2018-11-15 02:39:26,659 | epoch: [8/30] iter: [27/391] loss_D: 1.3860 loss_G: 0.6949 +2018-11-15 02:39:33,402 | epoch: [8/30] iter: [28/391] loss_D: 1.3863 loss_G: 0.6955 +2018-11-15 02:39:40,116 | epoch: [8/30] iter: [29/391] loss_D: 1.3861 loss_G: 0.6943 +2018-11-15 02:39:47,063 | epoch: [8/30] iter: [30/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 02:39:54,323 | epoch: [8/30] iter: [31/391] loss_D: 1.3855 loss_G: 0.6932 +2018-11-15 02:40:01,160 | epoch: [8/30] iter: [32/391] loss_D: 1.3887 loss_G: 0.6920 +2018-11-15 02:40:08,069 | epoch: [8/30] iter: [33/391] loss_D: 1.3904 loss_G: 0.6909 +2018-11-15 02:40:15,361 | epoch: [8/30] iter: [34/391] loss_D: 1.3885 loss_G: 0.6911 +2018-11-15 02:40:22,787 | epoch: [8/30] iter: [35/391] loss_D: 1.3882 loss_G: 0.6907 +2018-11-15 02:40:27,530 | epoch: [8/30] iter: [36/391] loss_D: 1.3889 loss_G: 0.6906 +2018-11-15 02:40:31,648 | epoch: [8/30] iter: [37/391] loss_D: 1.3893 loss_G: 0.6913 +2018-11-15 02:40:35,749 | epoch: [8/30] iter: [38/391] loss_D: 1.3878 loss_G: 0.6920 +2018-11-15 02:40:40,009 | epoch: [8/30] iter: [39/391] loss_D: 1.3856 loss_G: 0.6919 +2018-11-15 02:40:44,242 | epoch: [8/30] iter: [40/391] loss_D: 1.3879 loss_G: 0.6920 +2018-11-15 02:40:48,628 | epoch: [8/30] iter: [41/391] loss_D: 1.3865 loss_G: 0.6916 +2018-11-15 02:40:55,790 | epoch: [8/30] iter: [42/391] loss_D: 1.3867 loss_G: 0.6929 +2018-11-15 02:41:02,746 | epoch: [8/30] iter: [43/391] loss_D: 1.3858 loss_G: 0.6922 +2018-11-15 02:41:09,897 | epoch: [8/30] iter: [44/391] loss_D: 1.3860 loss_G: 0.6928 +2018-11-15 02:41:16,730 | epoch: [8/30] iter: [45/391] loss_D: 1.3852 loss_G: 0.6934 +2018-11-15 02:41:23,825 | epoch: [8/30] iter: [46/391] loss_D: 1.3860 loss_G: 0.6930 +2018-11-15 02:41:30,584 | epoch: [8/30] iter: [47/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-15 02:41:37,894 | epoch: [8/30] iter: [48/391] loss_D: 1.3855 loss_G: 0.6934 +2018-11-15 02:41:45,185 | epoch: [8/30] iter: [49/391] loss_D: 1.3879 loss_G: 0.6929 +2018-11-15 02:41:50,633 | epoch: [8/30] iter: [50/391] loss_D: 1.3866 loss_G: 0.6926 +2018-11-15 02:41:54,750 | epoch: [8/30] iter: [51/391] loss_D: 1.3855 loss_G: 0.6924 +2018-11-15 02:41:58,854 | epoch: [8/30] iter: [52/391] loss_D: 1.3855 loss_G: 0.6925 +2018-11-15 02:42:03,100 | epoch: [8/30] iter: [53/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 02:42:07,313 | epoch: [8/30] iter: [54/391] loss_D: 1.3860 loss_G: 0.6932 +2018-11-15 02:42:11,410 | epoch: [8/30] iter: [55/391] loss_D: 1.3862 loss_G: 0.6931 +2018-11-15 02:42:18,014 | epoch: [8/30] iter: [56/391] loss_D: 1.3861 loss_G: 0.6921 +2018-11-15 02:42:24,829 | epoch: [8/30] iter: [57/391] loss_D: 1.3872 loss_G: 0.6919 +2018-11-15 02:42:31,842 | epoch: [8/30] iter: [58/391] loss_D: 1.3872 loss_G: 0.6920 +2018-11-15 02:42:39,026 | epoch: [8/30] iter: [59/391] loss_D: 1.3872 loss_G: 0.6928 +2018-11-15 02:42:46,014 | epoch: [8/30] iter: [60/391] loss_D: 1.3880 loss_G: 0.6931 +2018-11-15 02:42:52,631 | epoch: [8/30] iter: [61/391] loss_D: 1.3895 loss_G: 0.6941 +2018-11-15 02:42:59,609 | epoch: [8/30] iter: [62/391] loss_D: 1.3858 loss_G: 0.6935 +2018-11-15 02:43:06,712 | epoch: [8/30] iter: [63/391] loss_D: 1.3849 loss_G: 0.6937 +2018-11-15 02:43:14,079 | epoch: [8/30] iter: [64/391] loss_D: 1.3868 loss_G: 0.6950 +2018-11-15 02:43:21,508 | epoch: [8/30] iter: [65/391] loss_D: 1.3871 loss_G: 0.6943 +2018-11-15 02:43:28,162 | epoch: [8/30] iter: [66/391] loss_D: 1.3839 loss_G: 0.6967 +2018-11-15 02:43:35,226 | epoch: [8/30] iter: [67/391] loss_D: 1.3846 loss_G: 0.6971 +2018-11-15 02:43:42,678 | epoch: [8/30] iter: [68/391] loss_D: 1.3843 loss_G: 0.6963 +2018-11-15 02:43:47,541 | epoch: [8/30] iter: [69/391] loss_D: 1.3847 loss_G: 0.6951 +2018-11-15 02:43:51,444 | epoch: [8/30] iter: [70/391] loss_D: 1.3863 loss_G: 0.6947 +2018-11-15 02:43:55,463 | epoch: [8/30] iter: [71/391] loss_D: 1.3846 loss_G: 0.6965 +2018-11-15 02:43:59,478 | epoch: [8/30] iter: [72/391] loss_D: 1.3861 loss_G: 0.6966 +2018-11-15 02:44:03,413 | epoch: [8/30] iter: [73/391] loss_D: 1.3863 loss_G: 0.6938 +2018-11-15 02:44:07,457 | epoch: [8/30] iter: [74/391] loss_D: 1.3867 loss_G: 0.6924 +2018-11-15 02:44:11,551 | epoch: [8/30] iter: [75/391] loss_D: 1.3882 loss_G: 0.6923 +2018-11-15 02:44:15,641 | epoch: [8/30] iter: [76/391] loss_D: 1.3867 loss_G: 0.6930 +2018-11-15 02:44:20,009 | epoch: [8/30] iter: [77/391] loss_D: 1.3868 loss_G: 0.6926 +2018-11-15 02:44:27,367 | epoch: [8/30] iter: [78/391] loss_D: 1.3885 loss_G: 0.6920 +2018-11-15 02:44:34,331 | epoch: [8/30] iter: [79/391] loss_D: 1.3871 loss_G: 0.6920 +2018-11-15 02:44:41,394 | epoch: [8/30] iter: [80/391] loss_D: 1.3880 loss_G: 0.6934 +2018-11-15 02:44:48,010 | epoch: [8/30] iter: [81/391] loss_D: 1.3886 loss_G: 0.6929 +2018-11-15 02:44:55,308 | epoch: [8/30] iter: [82/391] loss_D: 1.3876 loss_G: 0.6930 +2018-11-15 02:45:02,435 | epoch: [8/30] iter: [83/391] loss_D: 1.3868 loss_G: 0.6923 +2018-11-15 02:45:09,190 | epoch: [8/30] iter: [84/391] loss_D: 1.3884 loss_G: 0.6928 +2018-11-15 02:45:15,920 | epoch: [8/30] iter: [85/391] loss_D: 1.3870 loss_G: 0.6922 +2018-11-15 02:45:23,030 | epoch: [8/30] iter: [86/391] loss_D: 1.3858 loss_G: 0.6937 +2018-11-15 02:45:30,288 | epoch: [8/30] iter: [87/391] loss_D: 1.3864 loss_G: 0.6923 +2018-11-15 02:45:36,975 | epoch: [8/30] iter: [88/391] loss_D: 1.3845 loss_G: 0.6934 +2018-11-15 02:45:43,639 | epoch: [8/30] iter: [89/391] loss_D: 1.3860 loss_G: 0.6931 +2018-11-15 02:45:50,687 | epoch: [8/30] iter: [90/391] loss_D: 1.3861 loss_G: 0.6930 +2018-11-15 02:45:58,104 | epoch: [8/30] iter: [91/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 02:46:03,337 | epoch: [8/30] iter: [92/391] loss_D: 1.3864 loss_G: 0.6935 +2018-11-15 02:46:07,432 | epoch: [8/30] iter: [93/391] loss_D: 1.3844 loss_G: 0.6932 +2018-11-15 02:46:11,370 | epoch: [8/30] iter: [94/391] loss_D: 1.3855 loss_G: 0.6922 +2018-11-15 02:46:15,251 | epoch: [8/30] iter: [95/391] loss_D: 1.3863 loss_G: 0.6927 +2018-11-15 02:46:19,312 | epoch: [8/30] iter: [96/391] loss_D: 1.3867 loss_G: 0.6922 +2018-11-15 02:46:23,337 | epoch: [8/30] iter: [97/391] loss_D: 1.3877 loss_G: 0.6911 +2018-11-15 02:46:27,565 | epoch: [8/30] iter: [98/391] loss_D: 1.3872 loss_G: 0.6920 +2018-11-15 02:46:31,494 | epoch: [8/30] iter: [99/391] loss_D: 1.3867 loss_G: 0.6906 +2018-11-15 02:46:35,659 | epoch: [8/30] iter: [100/391] loss_D: 1.3902 loss_G: 0.6897 +2018-11-15 02:46:41,915 | epoch: [8/30] iter: [101/391] loss_D: 1.3900 loss_G: 0.6932 +2018-11-15 02:46:47,859 | epoch: [8/30] iter: [102/391] loss_D: 1.3893 loss_G: 0.6941 +2018-11-15 02:46:52,676 | epoch: [8/30] iter: [103/391] loss_D: 1.3866 loss_G: 0.6947 +2018-11-15 02:46:58,617 | epoch: [8/30] iter: [104/391] loss_D: 1.3870 loss_G: 0.6954 +2018-11-15 02:47:02,876 | epoch: [8/30] iter: [105/391] loss_D: 1.3872 loss_G: 0.6957 +2018-11-15 02:47:07,457 | epoch: [8/30] iter: [106/391] loss_D: 1.3858 loss_G: 0.6961 +2018-11-15 02:47:11,842 | epoch: [8/30] iter: [107/391] loss_D: 1.3854 loss_G: 0.6961 +2018-11-15 02:47:16,488 | epoch: [8/30] iter: [108/391] loss_D: 1.3868 loss_G: 0.6949 +2018-11-15 02:47:24,095 | epoch: [8/30] iter: [109/391] loss_D: 1.3860 loss_G: 0.6945 +2018-11-15 02:47:29,032 | epoch: [8/30] iter: [110/391] loss_D: 1.3871 loss_G: 0.6942 +2018-11-15 02:47:34,928 | epoch: [8/30] iter: [111/391] loss_D: 1.3860 loss_G: 0.6936 +2018-11-15 02:47:39,028 | epoch: [8/30] iter: [112/391] loss_D: 1.3865 loss_G: 0.6942 +2018-11-15 02:47:43,213 | epoch: [8/30] iter: [113/391] loss_D: 1.3854 loss_G: 0.6935 +2018-11-15 02:47:47,426 | epoch: [8/30] iter: [114/391] loss_D: 1.3865 loss_G: 0.6927 +2018-11-15 02:47:53,637 | epoch: [8/30] iter: [115/391] loss_D: 1.3869 loss_G: 0.6932 +2018-11-15 02:47:58,143 | epoch: [8/30] iter: [116/391] loss_D: 1.3876 loss_G: 0.6925 +2018-11-15 02:48:02,528 | epoch: [8/30] iter: [117/391] loss_D: 1.3875 loss_G: 0.6922 +2018-11-15 02:48:06,993 | epoch: [8/30] iter: [118/391] loss_D: 1.3867 loss_G: 0.6924 +2018-11-15 02:50:01,890 | epoch: [8/30] iter: [119/391] loss_D: 1.3865 loss_G: 0.6920 +2018-11-15 02:50:08,761 | epoch: [8/30] iter: [120/391] loss_D: 1.3861 loss_G: 0.6928 +2018-11-15 02:50:15,459 | epoch: [8/30] iter: [121/391] loss_D: 1.3866 loss_G: 0.6931 +2018-11-15 02:50:22,115 | epoch: [8/30] iter: [122/391] loss_D: 1.3865 loss_G: 0.6929 +2018-11-15 02:50:29,079 | epoch: [8/30] iter: [123/391] loss_D: 1.3861 loss_G: 0.6941 +2018-11-15 02:50:35,765 | epoch: [8/30] iter: [124/391] loss_D: 1.3865 loss_G: 0.6936 +2018-11-15 02:50:42,622 | epoch: [8/30] iter: [125/391] loss_D: 1.3862 loss_G: 0.6933 +2018-11-15 02:50:49,598 | epoch: [8/30] iter: [126/391] loss_D: 1.3851 loss_G: 0.6935 +2018-11-15 02:50:56,711 | epoch: [8/30] iter: [127/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 02:51:03,748 | epoch: [8/30] iter: [128/391] loss_D: 1.3857 loss_G: 0.6931 +2018-11-15 02:51:10,758 | epoch: [8/30] iter: [129/391] loss_D: 1.3861 loss_G: 0.6932 +2018-11-15 02:51:17,840 | epoch: [8/30] iter: [130/391] loss_D: 1.3853 loss_G: 0.6930 +2018-11-15 02:51:24,674 | epoch: [8/30] iter: [131/391] loss_D: 1.3849 loss_G: 0.6946 +2018-11-15 02:51:30,863 | epoch: [8/30] iter: [132/391] loss_D: 1.3854 loss_G: 0.6935 +2018-11-15 02:51:34,919 | epoch: [8/30] iter: [133/391] loss_D: 1.3853 loss_G: 0.6937 +2018-11-15 02:51:39,042 | epoch: [8/30] iter: [134/391] loss_D: 1.3851 loss_G: 0.6933 +2018-11-15 02:51:43,148 | epoch: [8/30] iter: [135/391] loss_D: 1.3860 loss_G: 0.6927 +2018-11-15 02:51:47,128 | epoch: [8/30] iter: [136/391] loss_D: 1.3845 loss_G: 0.6936 +2018-11-15 02:51:51,410 | epoch: [8/30] iter: [137/391] loss_D: 1.3855 loss_G: 0.6934 +2018-11-15 02:51:57,855 | epoch: [8/30] iter: [138/391] loss_D: 1.3847 loss_G: 0.6933 +2018-11-15 02:52:04,742 | epoch: [8/30] iter: [139/391] loss_D: 1.3852 loss_G: 0.6940 +2018-11-15 02:52:11,819 | epoch: [8/30] iter: [140/391] loss_D: 1.3860 loss_G: 0.6926 +2018-11-15 02:52:18,921 | epoch: [8/30] iter: [141/391] loss_D: 1.3858 loss_G: 0.6928 +2018-11-15 02:52:26,026 | epoch: [8/30] iter: [142/391] loss_D: 1.3864 loss_G: 0.6933 +2018-11-15 02:52:32,933 | epoch: [8/30] iter: [143/391] loss_D: 1.3873 loss_G: 0.6919 +2018-11-15 02:52:39,846 | epoch: [8/30] iter: [144/391] loss_D: 1.3870 loss_G: 0.6926 +2018-11-15 02:52:47,178 | epoch: [8/30] iter: [145/391] loss_D: 1.3870 loss_G: 0.6916 +2018-11-15 02:52:53,690 | epoch: [8/30] iter: [146/391] loss_D: 1.3886 loss_G: 0.6932 +2018-11-15 02:53:00,422 | epoch: [8/30] iter: [147/391] loss_D: 1.3894 loss_G: 0.6929 +2018-11-15 02:53:07,541 | epoch: [8/30] iter: [148/391] loss_D: 1.3861 loss_G: 0.6942 +2018-11-15 02:53:14,280 | epoch: [8/30] iter: [149/391] loss_D: 1.3868 loss_G: 0.6947 +2018-11-15 02:53:21,418 | epoch: [8/30] iter: [150/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 02:53:25,607 | epoch: [8/30] iter: [151/391] loss_D: 1.3867 loss_G: 0.6936 +2018-11-15 02:53:29,616 | epoch: [8/30] iter: [152/391] loss_D: 1.3855 loss_G: 0.6940 +2018-11-15 02:53:33,726 | epoch: [8/30] iter: [153/391] loss_D: 1.3862 loss_G: 0.6943 +2018-11-15 02:53:37,961 | epoch: [8/30] iter: [154/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 02:53:42,140 | epoch: [8/30] iter: [155/391] loss_D: 1.3846 loss_G: 0.6958 +2018-11-15 02:53:46,662 | epoch: [8/30] iter: [156/391] loss_D: 1.3856 loss_G: 0.6951 +2018-11-15 02:53:52,274 | epoch: [8/30] iter: [157/391] loss_D: 1.3877 loss_G: 0.6931 +2018-11-15 02:53:57,420 | epoch: [8/30] iter: [158/391] loss_D: 1.3870 loss_G: 0.6939 +2018-11-15 02:54:02,983 | epoch: [8/30] iter: [159/391] loss_D: 1.3864 loss_G: 0.6936 +2018-11-15 02:54:07,562 | epoch: [8/30] iter: [160/391] loss_D: 1.3876 loss_G: 0.6941 +2018-11-15 02:54:11,770 | epoch: [8/30] iter: [161/391] loss_D: 1.3871 loss_G: 0.6936 +2018-11-15 02:54:15,891 | epoch: [8/30] iter: [162/391] loss_D: 1.3868 loss_G: 0.6930 +2018-11-15 02:54:22,077 | epoch: [8/30] iter: [163/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 02:54:27,300 | epoch: [8/30] iter: [164/391] loss_D: 1.3861 loss_G: 0.6940 +2018-11-15 02:54:32,229 | epoch: [8/30] iter: [165/391] loss_D: 1.3858 loss_G: 0.6932 +2018-11-15 02:54:38,281 | epoch: [8/30] iter: [166/391] loss_D: 1.3878 loss_G: 0.6934 +2018-11-15 02:54:42,634 | epoch: [8/30] iter: [167/391] loss_D: 1.3854 loss_G: 0.6939 +2018-11-15 02:54:47,246 | epoch: [8/30] iter: [168/391] loss_D: 1.3865 loss_G: 0.6931 +2018-11-15 02:54:51,608 | epoch: [8/30] iter: [169/391] loss_D: 1.3866 loss_G: 0.6941 +2018-11-15 02:54:56,158 | epoch: [8/30] iter: [170/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 02:55:00,460 | epoch: [8/30] iter: [171/391] loss_D: 1.3853 loss_G: 0.6931 +2018-11-15 02:55:05,204 | epoch: [8/30] iter: [172/391] loss_D: 1.3860 loss_G: 0.6929 +2018-11-15 02:55:12,686 | epoch: [8/30] iter: [173/391] loss_D: 1.3866 loss_G: 0.6938 +2018-11-15 02:55:17,457 | epoch: [8/30] iter: [174/391] loss_D: 1.3858 loss_G: 0.6932 +2018-11-15 02:55:21,604 | epoch: [8/30] iter: [175/391] loss_D: 1.3848 loss_G: 0.6935 +2018-11-15 02:55:27,030 | epoch: [8/30] iter: [176/391] loss_D: 1.3867 loss_G: 0.6921 +2018-11-15 02:55:33,761 | epoch: [8/30] iter: [177/391] loss_D: 1.3855 loss_G: 0.6929 +2018-11-15 02:55:38,182 | epoch: [8/30] iter: [178/391] loss_D: 1.3861 loss_G: 0.6932 +2018-11-15 02:55:42,658 | epoch: [8/30] iter: [179/391] loss_D: 1.3861 loss_G: 0.6932 +2018-11-15 02:55:48,826 | epoch: [8/30] iter: [180/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 02:55:54,765 | epoch: [8/30] iter: [181/391] loss_D: 1.3855 loss_G: 0.6927 +2018-11-15 02:56:00,569 | epoch: [8/30] iter: [182/391] loss_D: 1.3864 loss_G: 0.6936 +2018-11-15 02:56:05,368 | epoch: [8/30] iter: [183/391] loss_D: 1.3861 loss_G: 0.6927 +2018-11-15 02:56:09,881 | epoch: [8/30] iter: [184/391] loss_D: 1.3857 loss_G: 0.6934 +2018-11-15 02:56:15,496 | epoch: [8/30] iter: [185/391] loss_D: 1.3863 loss_G: 0.6938 +2018-11-15 02:56:22,109 | epoch: [8/30] iter: [186/391] loss_D: 1.3862 loss_G: 0.6929 +2018-11-15 02:56:26,509 | epoch: [8/30] iter: [187/391] loss_D: 1.3867 loss_G: 0.6937 +2018-11-15 02:56:30,846 | epoch: [8/30] iter: [188/391] loss_D: 1.3864 loss_G: 0.6939 +2018-11-15 02:56:34,895 | epoch: [8/30] iter: [189/391] loss_D: 1.3850 loss_G: 0.6947 +2018-11-15 02:56:40,446 | epoch: [8/30] iter: [190/391] loss_D: 1.3865 loss_G: 0.6943 +2018-11-15 02:56:45,779 | epoch: [8/30] iter: [191/391] loss_D: 1.3865 loss_G: 0.6935 +2018-11-15 02:56:51,155 | epoch: [8/30] iter: [192/391] loss_D: 1.3858 loss_G: 0.6940 +2018-11-15 02:56:55,711 | epoch: [8/30] iter: [193/391] loss_D: 1.3870 loss_G: 0.6935 +2018-11-15 02:57:00,180 | epoch: [8/30] iter: [194/391] loss_D: 1.3861 loss_G: 0.6936 +2018-11-15 02:57:07,383 | epoch: [8/30] iter: [195/391] loss_D: 1.3865 loss_G: 0.6938 +2018-11-15 02:57:12,600 | epoch: [8/30] iter: [196/391] loss_D: 1.3854 loss_G: 0.6945 +2018-11-15 02:57:16,655 | epoch: [8/30] iter: [197/391] loss_D: 1.3857 loss_G: 0.6944 +2018-11-15 02:57:21,195 | epoch: [8/30] iter: [198/391] loss_D: 1.3840 loss_G: 0.6952 +2018-11-15 02:57:25,463 | epoch: [8/30] iter: [199/391] loss_D: 1.3860 loss_G: 0.6944 +2018-11-15 02:57:31,086 | epoch: [8/30] iter: [200/391] loss_D: 1.3848 loss_G: 0.6950 +2018-11-15 02:57:38,008 | epoch: [8/30] iter: [201/391] loss_D: 1.3866 loss_G: 0.6948 +2018-11-15 02:57:43,682 | epoch: [8/30] iter: [202/391] loss_D: 1.3848 loss_G: 0.6932 +2018-11-15 02:57:48,690 | epoch: [8/30] iter: [203/391] loss_D: 1.3854 loss_G: 0.6952 +2018-11-15 02:57:52,765 | epoch: [8/30] iter: [204/391] loss_D: 1.3858 loss_G: 0.6938 +2018-11-15 02:57:57,470 | epoch: [8/30] iter: [205/391] loss_D: 1.3862 loss_G: 0.6945 +2018-11-15 02:58:01,547 | epoch: [8/30] iter: [206/391] loss_D: 1.3850 loss_G: 0.6931 +2018-11-15 02:58:05,679 | epoch: [8/30] iter: [207/391] loss_D: 1.3872 loss_G: 0.6931 +2018-11-15 02:58:10,866 | epoch: [8/30] iter: [208/391] loss_D: 1.3863 loss_G: 0.6930 +2018-11-15 02:58:15,947 | epoch: [8/30] iter: [209/391] loss_D: 1.3850 loss_G: 0.6930 +2018-11-15 02:58:22,382 | epoch: [8/30] iter: [210/391] loss_D: 1.3862 loss_G: 0.6934 +2018-11-15 02:58:28,349 | epoch: [8/30] iter: [211/391] loss_D: 1.3875 loss_G: 0.6939 +2018-11-15 02:58:33,359 | epoch: [8/30] iter: [212/391] loss_D: 1.3877 loss_G: 0.6930 +2018-11-15 02:58:39,446 | epoch: [8/30] iter: [213/391] loss_D: 1.3874 loss_G: 0.6931 +2018-11-15 02:58:43,721 | epoch: [8/30] iter: [214/391] loss_D: 1.3887 loss_G: 0.6924 +2018-11-15 02:58:48,371 | epoch: [8/30] iter: [215/391] loss_D: 1.3892 loss_G: 0.6918 +2018-11-15 02:58:52,826 | epoch: [8/30] iter: [216/391] loss_D: 1.3884 loss_G: 0.6919 +2018-11-15 02:58:56,914 | epoch: [8/30] iter: [217/391] loss_D: 1.3891 loss_G: 0.6920 +2018-11-15 02:59:01,301 | epoch: [8/30] iter: [218/391] loss_D: 1.3890 loss_G: 0.6923 +2018-11-15 03:00:55,750 | epoch: [8/30] iter: [219/391] loss_D: 1.3880 loss_G: 0.6924 +2018-11-15 03:00:59,893 | epoch: [8/30] iter: [220/391] loss_D: 1.3890 loss_G: 0.6932 +2018-11-15 03:01:04,231 | epoch: [8/30] iter: [221/391] loss_D: 1.3882 loss_G: 0.6923 +2018-11-15 03:01:10,930 | epoch: [8/30] iter: [222/391] loss_D: 1.3879 loss_G: 0.6940 +2018-11-15 03:01:17,995 | epoch: [8/30] iter: [223/391] loss_D: 1.3884 loss_G: 0.6930 +2018-11-15 03:01:24,862 | epoch: [8/30] iter: [224/391] loss_D: 1.3869 loss_G: 0.6943 +2018-11-15 03:01:31,999 | epoch: [8/30] iter: [225/391] loss_D: 1.3864 loss_G: 0.6950 +2018-11-15 03:01:38,887 | epoch: [8/30] iter: [226/391] loss_D: 1.3861 loss_G: 0.6949 +2018-11-15 03:01:45,850 | epoch: [8/30] iter: [227/391] loss_D: 1.3860 loss_G: 0.6956 +2018-11-15 03:01:53,040 | epoch: [8/30] iter: [228/391] loss_D: 1.3858 loss_G: 0.6946 +2018-11-15 03:02:00,059 | epoch: [8/30] iter: [229/391] loss_D: 1.3864 loss_G: 0.6958 +2018-11-15 03:02:07,100 | epoch: [8/30] iter: [230/391] loss_D: 1.3854 loss_G: 0.6948 +2018-11-15 03:02:14,484 | epoch: [8/30] iter: [231/391] loss_D: 1.3849 loss_G: 0.6960 +2018-11-15 03:02:21,413 | epoch: [8/30] iter: [232/391] loss_D: 1.3830 loss_G: 0.6957 +2018-11-15 03:02:28,218 | epoch: [8/30] iter: [233/391] loss_D: 1.3853 loss_G: 0.6964 +2018-11-15 03:02:34,919 | epoch: [8/30] iter: [234/391] loss_D: 1.3842 loss_G: 0.6961 +2018-11-15 03:02:41,691 | epoch: [8/30] iter: [235/391] loss_D: 1.3859 loss_G: 0.6941 +2018-11-15 03:02:48,804 | epoch: [8/30] iter: [236/391] loss_D: 1.3848 loss_G: 0.6944 +2018-11-15 03:02:55,906 | epoch: [8/30] iter: [237/391] loss_D: 1.3864 loss_G: 0.6936 +2018-11-15 03:03:03,207 | epoch: [8/30] iter: [238/391] loss_D: 1.3854 loss_G: 0.6930 +2018-11-15 03:03:10,546 | epoch: [8/30] iter: [239/391] loss_D: 1.3869 loss_G: 0.6934 +2018-11-15 03:03:17,309 | epoch: [8/30] iter: [240/391] loss_D: 1.3853 loss_G: 0.6938 +2018-11-15 03:03:24,383 | epoch: [8/30] iter: [241/391] loss_D: 1.3857 loss_G: 0.6920 +2018-11-15 03:03:31,724 | epoch: [8/30] iter: [242/391] loss_D: 1.3872 loss_G: 0.6926 +2018-11-15 03:03:38,558 | epoch: [8/30] iter: [243/391] loss_D: 1.3863 loss_G: 0.6927 +2018-11-15 03:03:45,591 | epoch: [8/30] iter: [244/391] loss_D: 1.3883 loss_G: 0.6918 +2018-11-15 03:03:51,501 | epoch: [8/30] iter: [245/391] loss_D: 1.3861 loss_G: 0.6921 +2018-11-15 03:03:55,736 | epoch: [8/30] iter: [246/391] loss_D: 1.3880 loss_G: 0.6921 +2018-11-15 03:03:59,817 | epoch: [8/30] iter: [247/391] loss_D: 1.3861 loss_G: 0.6915 +2018-11-15 03:04:03,996 | epoch: [8/30] iter: [248/391] loss_D: 1.3865 loss_G: 0.6936 +2018-11-15 03:04:07,882 | epoch: [8/30] iter: [249/391] loss_D: 1.3879 loss_G: 0.6921 +2018-11-15 03:04:11,898 | epoch: [8/30] iter: [250/391] loss_D: 1.3884 loss_G: 0.6934 +2018-11-15 03:04:15,908 | epoch: [8/30] iter: [251/391] loss_D: 1.3853 loss_G: 0.6940 +2018-11-15 03:04:22,015 | epoch: [8/30] iter: [252/391] loss_D: 1.3880 loss_G: 0.6937 +2018-11-15 03:04:26,625 | epoch: [8/30] iter: [253/391] loss_D: 1.3889 loss_G: 0.6937 +2018-11-15 03:04:31,139 | epoch: [8/30] iter: [254/391] loss_D: 1.3866 loss_G: 0.6932 +2018-11-15 03:04:37,803 | epoch: [8/30] iter: [255/391] loss_D: 1.3886 loss_G: 0.6936 +2018-11-15 03:04:43,581 | epoch: [8/30] iter: [256/391] loss_D: 1.3882 loss_G: 0.6948 +2018-11-15 03:04:48,070 | epoch: [8/30] iter: [257/391] loss_D: 1.3862 loss_G: 0.6938 +2018-11-15 03:04:52,629 | epoch: [8/30] iter: [258/391] loss_D: 1.3868 loss_G: 0.6936 +2018-11-15 03:04:57,004 | epoch: [8/30] iter: [259/391] loss_D: 1.3864 loss_G: 0.6930 +2018-11-15 03:05:02,018 | epoch: [8/30] iter: [260/391] loss_D: 1.3865 loss_G: 0.6934 +2018-11-15 03:05:09,524 | epoch: [8/30] iter: [261/391] loss_D: 1.3865 loss_G: 0.6934 +2018-11-15 03:05:14,122 | epoch: [8/30] iter: [262/391] loss_D: 1.3872 loss_G: 0.6941 +2018-11-15 03:05:18,378 | epoch: [8/30] iter: [263/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 03:05:22,792 | epoch: [8/30] iter: [264/391] loss_D: 1.3863 loss_G: 0.6940 +2018-11-15 03:05:27,156 | epoch: [8/30] iter: [265/391] loss_D: 1.3875 loss_G: 0.6926 +2018-11-15 03:05:33,886 | epoch: [8/30] iter: [266/391] loss_D: 1.3864 loss_G: 0.6927 +2018-11-15 03:05:39,720 | epoch: [8/30] iter: [267/391] loss_D: 1.3880 loss_G: 0.6929 +2018-11-15 03:05:44,102 | epoch: [8/30] iter: [268/391] loss_D: 1.3857 loss_G: 0.6924 +2018-11-15 03:05:48,634 | epoch: [8/30] iter: [269/391] loss_D: 1.3861 loss_G: 0.6927 +2018-11-15 03:05:52,967 | epoch: [8/30] iter: [270/391] loss_D: 1.3863 loss_G: 0.6926 +2018-11-15 03:05:58,046 | epoch: [8/30] iter: [271/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 03:06:05,473 | epoch: [8/30] iter: [272/391] loss_D: 1.3876 loss_G: 0.6928 +2018-11-15 03:06:09,981 | epoch: [8/30] iter: [273/391] loss_D: 1.3876 loss_G: 0.6930 +2018-11-15 03:06:14,173 | epoch: [8/30] iter: [274/391] loss_D: 1.3868 loss_G: 0.6930 +2018-11-15 03:06:18,432 | epoch: [8/30] iter: [275/391] loss_D: 1.3884 loss_G: 0.6923 +2018-11-15 03:06:23,450 | epoch: [8/30] iter: [276/391] loss_D: 1.3871 loss_G: 0.6928 +2018-11-15 03:06:28,863 | epoch: [8/30] iter: [277/391] loss_D: 1.3870 loss_G: 0.6925 +2018-11-15 03:06:34,910 | epoch: [8/30] iter: [278/391] loss_D: 1.3867 loss_G: 0.6929 +2018-11-15 03:06:39,398 | epoch: [8/30] iter: [279/391] loss_D: 1.3869 loss_G: 0.6932 +2018-11-15 03:06:44,052 | epoch: [8/30] iter: [280/391] loss_D: 1.3872 loss_G: 0.6928 +2018-11-15 03:06:48,376 | epoch: [8/30] iter: [281/391] loss_D: 1.3869 loss_G: 0.6928 +2018-11-15 03:06:52,801 | epoch: [8/30] iter: [282/391] loss_D: 1.3869 loss_G: 0.6928 +2018-11-15 03:07:00,138 | epoch: [8/30] iter: [283/391] loss_D: 1.3857 loss_G: 0.6926 +2018-11-15 03:07:05,126 | epoch: [8/30] iter: [284/391] loss_D: 1.3868 loss_G: 0.6928 +2018-11-15 03:07:11,337 | epoch: [8/30] iter: [285/391] loss_D: 1.3853 loss_G: 0.6929 +2018-11-15 03:07:17,165 | epoch: [8/30] iter: [286/391] loss_D: 1.3860 loss_G: 0.6931 +2018-11-15 03:07:21,937 | epoch: [8/30] iter: [287/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-15 03:07:26,495 | epoch: [8/30] iter: [288/391] loss_D: 1.3873 loss_G: 0.6935 +2018-11-15 03:07:31,150 | epoch: [8/30] iter: [289/391] loss_D: 1.3854 loss_G: 0.6931 +2018-11-15 03:07:35,693 | epoch: [8/30] iter: [290/391] loss_D: 1.3863 loss_G: 0.6931 +2018-11-15 03:07:42,476 | epoch: [8/30] iter: [291/391] loss_D: 1.3854 loss_G: 0.6932 +2018-11-15 03:07:48,252 | epoch: [8/30] iter: [292/391] loss_D: 1.3857 loss_G: 0.6933 +2018-11-15 03:07:52,493 | epoch: [8/30] iter: [293/391] loss_D: 1.3850 loss_G: 0.6933 +2018-11-15 03:07:56,692 | epoch: [8/30] iter: [294/391] loss_D: 1.3854 loss_G: 0.6934 +2018-11-15 03:08:00,869 | epoch: [8/30] iter: [295/391] loss_D: 1.3847 loss_G: 0.6938 +2018-11-15 03:08:06,877 | epoch: [8/30] iter: [296/391] loss_D: 1.3847 loss_G: 0.6931 +2018-11-15 03:08:12,729 | epoch: [8/30] iter: [297/391] loss_D: 1.3856 loss_G: 0.6937 +2018-11-15 03:08:17,561 | epoch: [8/30] iter: [298/391] loss_D: 1.3847 loss_G: 0.6939 +2018-11-15 03:08:23,638 | epoch: [8/30] iter: [299/391] loss_D: 1.3849 loss_G: 0.6950 +2018-11-15 03:08:29,597 | epoch: [8/30] iter: [300/391] loss_D: 1.3844 loss_G: 0.6942 +2018-11-15 03:08:34,264 | epoch: [8/30] iter: [301/391] loss_D: 1.3844 loss_G: 0.6926 +2018-11-15 03:08:38,659 | epoch: [8/30] iter: [302/391] loss_D: 1.3865 loss_G: 0.6922 +2018-11-15 03:08:44,696 | epoch: [8/30] iter: [303/391] loss_D: 1.3870 loss_G: 0.6922 +2018-11-15 03:08:51,124 | epoch: [8/30] iter: [304/391] loss_D: 1.3869 loss_G: 0.6930 +2018-11-15 03:08:55,561 | epoch: [8/30] iter: [305/391] loss_D: 1.3883 loss_G: 0.6933 +2018-11-15 03:08:59,941 | epoch: [8/30] iter: [306/391] loss_D: 1.3885 loss_G: 0.6929 +2018-11-15 03:09:04,523 | epoch: [8/30] iter: [307/391] loss_D: 1.3901 loss_G: 0.6935 +2018-11-15 03:09:09,403 | epoch: [8/30] iter: [308/391] loss_D: 1.3893 loss_G: 0.6942 +2018-11-15 03:09:17,084 | epoch: [8/30] iter: [309/391] loss_D: 1.3858 loss_G: 0.6945 +2018-11-15 03:09:21,783 | epoch: [8/30] iter: [310/391] loss_D: 1.3884 loss_G: 0.6938 +2018-11-15 03:09:27,519 | epoch: [8/30] iter: [311/391] loss_D: 1.3870 loss_G: 0.6951 +2018-11-15 03:09:33,411 | epoch: [8/30] iter: [312/391] loss_D: 1.3855 loss_G: 0.6945 +2018-11-15 03:09:38,172 | epoch: [8/30] iter: [313/391] loss_D: 1.3860 loss_G: 0.6955 +2018-11-15 03:09:43,776 | epoch: [8/30] iter: [314/391] loss_D: 1.3865 loss_G: 0.6953 +2018-11-15 03:09:48,124 | epoch: [8/30] iter: [315/391] loss_D: 1.3849 loss_G: 0.6945 +2018-11-15 03:09:52,233 | epoch: [8/30] iter: [316/391] loss_D: 1.3862 loss_G: 0.6951 +2018-11-15 03:09:56,255 | epoch: [8/30] iter: [317/391] loss_D: 1.3863 loss_G: 0.6941 +2018-11-15 03:10:02,430 | epoch: [8/30] iter: [318/391] loss_D: 1.3854 loss_G: 0.6938 +2018-11-15 03:11:52,486 | epoch: [8/30] iter: [319/391] loss_D: 1.3859 loss_G: 0.6935 +2018-11-15 03:11:56,658 | epoch: [8/30] iter: [320/391] loss_D: 1.3852 loss_G: 0.6937 +2018-11-15 03:12:00,857 | epoch: [8/30] iter: [321/391] loss_D: 1.3872 loss_G: 0.6940 +2018-11-15 03:12:07,543 | epoch: [8/30] iter: [322/391] loss_D: 1.3867 loss_G: 0.6929 +2018-11-15 03:12:14,538 | epoch: [8/30] iter: [323/391] loss_D: 1.3862 loss_G: 0.6936 +2018-11-15 03:12:21,721 | epoch: [8/30] iter: [324/391] loss_D: 1.3876 loss_G: 0.6932 +2018-11-15 03:12:28,996 | epoch: [8/30] iter: [325/391] loss_D: 1.3856 loss_G: 0.6933 +2018-11-15 03:12:36,295 | epoch: [8/30] iter: [326/391] loss_D: 1.3862 loss_G: 0.6938 +2018-11-15 03:12:43,078 | epoch: [8/30] iter: [327/391] loss_D: 1.3853 loss_G: 0.6939 +2018-11-15 03:12:50,458 | epoch: [8/30] iter: [328/391] loss_D: 1.3860 loss_G: 0.6945 +2018-11-15 03:12:57,451 | epoch: [8/30] iter: [329/391] loss_D: 1.3860 loss_G: 0.6943 +2018-11-15 03:13:04,670 | epoch: [8/30] iter: [330/391] loss_D: 1.3868 loss_G: 0.6943 +2018-11-15 03:13:11,801 | epoch: [8/30] iter: [331/391] loss_D: 1.3860 loss_G: 0.6941 +2018-11-15 03:13:18,484 | epoch: [8/30] iter: [332/391] loss_D: 1.3849 loss_G: 0.6942 +2018-11-15 03:13:25,690 | epoch: [8/30] iter: [333/391] loss_D: 1.3852 loss_G: 0.6939 +2018-11-15 03:13:32,909 | epoch: [8/30] iter: [334/391] loss_D: 1.3845 loss_G: 0.6938 +2018-11-15 03:13:39,577 | epoch: [8/30] iter: [335/391] loss_D: 1.3857 loss_G: 0.6943 +2018-11-15 03:13:46,502 | epoch: [8/30] iter: [336/391] loss_D: 1.3844 loss_G: 0.6949 +2018-11-15 03:13:53,283 | epoch: [8/30] iter: [337/391] loss_D: 1.3849 loss_G: 0.6942 +2018-11-15 03:14:00,464 | epoch: [8/30] iter: [338/391] loss_D: 1.3839 loss_G: 0.6932 +2018-11-15 03:14:05,375 | epoch: [8/30] iter: [339/391] loss_D: 1.3847 loss_G: 0.6944 +2018-11-15 03:14:09,416 | epoch: [8/30] iter: [340/391] loss_D: 1.3877 loss_G: 0.6926 +2018-11-15 03:14:13,424 | epoch: [8/30] iter: [341/391] loss_D: 1.3883 loss_G: 0.6905 +2018-11-15 03:14:17,478 | epoch: [8/30] iter: [342/391] loss_D: 1.3891 loss_G: 0.6932 +2018-11-15 03:14:21,599 | epoch: [8/30] iter: [343/391] loss_D: 1.3884 loss_G: 0.6949 +2018-11-15 03:14:25,564 | epoch: [8/30] iter: [344/391] loss_D: 1.3835 loss_G: 0.6968 +2018-11-15 03:14:29,601 | epoch: [8/30] iter: [345/391] loss_D: 1.3822 loss_G: 0.6984 +2018-11-15 03:14:33,790 | epoch: [8/30] iter: [346/391] loss_D: 1.3838 loss_G: 0.6969 +2018-11-15 03:14:37,842 | epoch: [8/30] iter: [347/391] loss_D: 1.3830 loss_G: 0.6949 +2018-11-15 03:14:43,639 | epoch: [8/30] iter: [348/391] loss_D: 1.3834 loss_G: 0.6935 +2018-11-15 03:14:48,143 | epoch: [8/30] iter: [349/391] loss_D: 1.3845 loss_G: 0.6936 +2018-11-15 03:14:52,583 | epoch: [8/30] iter: [350/391] loss_D: 1.3853 loss_G: 0.6936 +2018-11-15 03:14:56,910 | epoch: [8/30] iter: [351/391] loss_D: 1.3851 loss_G: 0.6939 +2018-11-15 03:15:01,323 | epoch: [8/30] iter: [352/391] loss_D: 1.3831 loss_G: 0.6940 +2018-11-15 03:15:08,259 | epoch: [8/30] iter: [353/391] loss_D: 1.3820 loss_G: 0.6944 +2018-11-15 03:15:13,448 | epoch: [8/30] iter: [354/391] loss_D: 1.3831 loss_G: 0.6958 +2018-11-15 03:15:17,913 | epoch: [8/30] iter: [355/391] loss_D: 1.3838 loss_G: 0.6930 +2018-11-15 03:15:22,490 | epoch: [8/30] iter: [356/391] loss_D: 1.3851 loss_G: 0.6941 +2018-11-15 03:15:30,208 | epoch: [8/30] iter: [357/391] loss_D: 1.3847 loss_G: 0.6901 +2018-11-15 03:15:34,759 | epoch: [8/30] iter: [358/391] loss_D: 1.3907 loss_G: 0.6890 +2018-11-15 03:15:39,292 | epoch: [8/30] iter: [359/391] loss_D: 1.3958 loss_G: 0.6871 +2018-11-15 03:15:43,743 | epoch: [8/30] iter: [360/391] loss_D: 1.3924 loss_G: 0.6889 +2018-11-15 03:15:48,057 | epoch: [8/30] iter: [361/391] loss_D: 1.3938 loss_G: 0.6917 +2018-11-15 03:15:52,557 | epoch: [8/30] iter: [362/391] loss_D: 1.3922 loss_G: 0.6943 +2018-11-15 03:15:57,223 | epoch: [8/30] iter: [363/391] loss_D: 1.3968 loss_G: 0.6987 +2018-11-15 03:16:01,721 | epoch: [8/30] iter: [364/391] loss_D: 1.3908 loss_G: 0.6998 +2018-11-15 03:16:06,934 | epoch: [8/30] iter: [365/391] loss_D: 1.3893 loss_G: 0.7039 +2018-11-15 03:16:14,147 | epoch: [8/30] iter: [366/391] loss_D: 1.3874 loss_G: 0.7062 +2018-11-15 03:16:18,645 | epoch: [8/30] iter: [367/391] loss_D: 1.3843 loss_G: 0.7051 +2018-11-15 03:16:23,102 | epoch: [8/30] iter: [368/391] loss_D: 1.3839 loss_G: 0.7061 +2018-11-15 03:16:27,315 | epoch: [8/30] iter: [369/391] loss_D: 1.3854 loss_G: 0.7025 +2018-11-15 03:16:31,786 | epoch: [8/30] iter: [370/391] loss_D: 1.3853 loss_G: 0.7030 +2018-11-15 03:16:38,295 | epoch: [8/30] iter: [371/391] loss_D: 1.3914 loss_G: 0.6949 +2018-11-15 03:16:44,370 | epoch: [8/30] iter: [372/391] loss_D: 1.3914 loss_G: 0.6913 +2018-11-15 03:16:50,395 | epoch: [8/30] iter: [373/391] loss_D: 1.3928 loss_G: 0.6912 +2018-11-15 03:16:55,333 | epoch: [8/30] iter: [374/391] loss_D: 1.3925 loss_G: 0.6904 +2018-11-15 03:17:01,026 | epoch: [8/30] iter: [375/391] loss_D: 1.3906 loss_G: 0.6911 +2018-11-15 03:17:05,229 | epoch: [8/30] iter: [376/391] loss_D: 1.3891 loss_G: 0.6912 +2018-11-15 03:17:09,228 | epoch: [8/30] iter: [377/391] loss_D: 1.3877 loss_G: 0.6916 +2018-11-15 03:17:13,542 | epoch: [8/30] iter: [378/391] loss_D: 1.3872 loss_G: 0.6921 +2018-11-15 03:17:19,553 | epoch: [8/30] iter: [379/391] loss_D: 1.3873 loss_G: 0.6939 +2018-11-15 03:17:25,180 | epoch: [8/30] iter: [380/391] loss_D: 1.3865 loss_G: 0.6936 +2018-11-15 03:17:30,317 | epoch: [8/30] iter: [381/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 03:17:34,636 | epoch: [8/30] iter: [382/391] loss_D: 1.3855 loss_G: 0.6943 +2018-11-15 03:17:40,122 | epoch: [8/30] iter: [383/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 03:17:47,174 | epoch: [8/30] iter: [384/391] loss_D: 1.3852 loss_G: 0.6932 +2018-11-15 03:17:51,865 | epoch: [8/30] iter: [385/391] loss_D: 1.3843 loss_G: 0.6940 +2018-11-15 03:17:56,251 | epoch: [8/30] iter: [386/391] loss_D: 1.3856 loss_G: 0.6936 +2018-11-15 03:18:02,869 | epoch: [8/30] iter: [387/391] loss_D: 1.3846 loss_G: 0.6937 +2018-11-15 03:18:08,458 | epoch: [8/30] iter: [388/391] loss_D: 1.3860 loss_G: 0.6937 +2018-11-15 03:18:14,544 | epoch: [8/30] iter: [389/391] loss_D: 1.3837 loss_G: 0.6943 +2018-11-15 03:18:17,270 | epoch: [8/30] iter: [390/391] loss_D: 1.3824 loss_G: 0.6947 +2018-11-15 03:18:22,056 | epoch: [9/30] iter: [0/391] loss_D: 1.3830 loss_G: 0.6941 +2018-11-15 03:18:26,294 | epoch: [9/30] iter: [1/391] loss_D: 1.3831 loss_G: 0.6936 +2018-11-15 03:18:30,643 | epoch: [9/30] iter: [2/391] loss_D: 1.3843 loss_G: 0.6940 +2018-11-15 03:18:34,896 | epoch: [9/30] iter: [3/391] loss_D: 1.3813 loss_G: 0.6937 +2018-11-15 03:18:39,690 | epoch: [9/30] iter: [4/391] loss_D: 1.3842 loss_G: 0.6915 +2018-11-15 03:18:44,718 | epoch: [9/30] iter: [5/391] loss_D: 1.3863 loss_G: 0.6929 +2018-11-15 03:18:51,011 | epoch: [9/30] iter: [6/391] loss_D: 1.3854 loss_G: 0.6920 +2018-11-15 03:18:56,500 | epoch: [9/30] iter: [7/391] loss_D: 1.3893 loss_G: 0.6930 +2018-11-15 03:19:01,845 | epoch: [9/30] iter: [8/391] loss_D: 1.3888 loss_G: 0.6919 +2018-11-15 03:19:07,892 | epoch: [9/30] iter: [9/391] loss_D: 1.3866 loss_G: 0.6933 +2018-11-15 03:19:13,938 | epoch: [9/30] iter: [10/391] loss_D: 1.3865 loss_G: 0.6923 +2018-11-15 03:19:18,623 | epoch: [9/30] iter: [11/391] loss_D: 1.3890 loss_G: 0.6952 +2018-11-15 03:19:24,717 | epoch: [9/30] iter: [12/391] loss_D: 1.3867 loss_G: 0.6933 +2018-11-15 03:19:29,272 | epoch: [9/30] iter: [13/391] loss_D: 1.3879 loss_G: 0.6933 +2018-11-15 03:19:33,461 | epoch: [9/30] iter: [14/391] loss_D: 1.3881 loss_G: 0.6928 +2018-11-15 03:19:37,755 | epoch: [9/30] iter: [15/391] loss_D: 1.3872 loss_G: 0.6932 +2018-11-15 03:19:43,705 | epoch: [9/30] iter: [16/391] loss_D: 1.3897 loss_G: 0.6937 +2018-11-15 03:19:49,392 | epoch: [9/30] iter: [17/391] loss_D: 1.3881 loss_G: 0.6940 +2018-11-15 03:19:54,448 | epoch: [9/30] iter: [18/391] loss_D: 1.3879 loss_G: 0.6933 +2018-11-15 03:20:00,488 | epoch: [9/30] iter: [19/391] loss_D: 1.3872 loss_G: 0.6944 +2018-11-15 03:20:04,745 | epoch: [9/30] iter: [20/391] loss_D: 1.3871 loss_G: 0.6936 +2018-11-15 03:20:09,297 | epoch: [9/30] iter: [21/391] loss_D: 1.3867 loss_G: 0.6943 +2018-11-15 03:20:13,612 | epoch: [9/30] iter: [22/391] loss_D: 1.3879 loss_G: 0.6938 +2018-11-15 03:20:17,788 | epoch: [9/30] iter: [23/391] loss_D: 1.3870 loss_G: 0.6945 +2018-11-15 03:20:22,075 | epoch: [9/30] iter: [24/391] loss_D: 1.3852 loss_G: 0.6938 +2018-11-15 03:20:28,088 | epoch: [9/30] iter: [25/391] loss_D: 1.3858 loss_G: 0.6949 +2018-11-15 03:20:34,086 | epoch: [9/30] iter: [26/391] loss_D: 1.3860 loss_G: 0.6941 +2018-11-15 03:20:38,541 | epoch: [9/30] iter: [27/391] loss_D: 1.3859 loss_G: 0.6934 +2018-11-15 03:22:37,208 | epoch: [9/30] iter: [28/391] loss_D: 1.3859 loss_G: 0.6944 +2018-11-15 03:22:43,751 | epoch: [9/30] iter: [29/391] loss_D: 1.3855 loss_G: 0.6939 +2018-11-15 03:22:50,606 | epoch: [9/30] iter: [30/391] loss_D: 1.3848 loss_G: 0.6945 +2018-11-15 03:22:57,822 | epoch: [9/30] iter: [31/391] loss_D: 1.3862 loss_G: 0.6936 +2018-11-15 03:23:04,959 | epoch: [9/30] iter: [32/391] loss_D: 1.3854 loss_G: 0.6940 +2018-11-15 03:23:11,798 | epoch: [9/30] iter: [33/391] loss_D: 1.3858 loss_G: 0.6936 +2018-11-15 03:23:18,982 | epoch: [9/30] iter: [34/391] loss_D: 1.3831 loss_G: 0.6940 +2018-11-15 03:23:26,120 | epoch: [9/30] iter: [35/391] loss_D: 1.3844 loss_G: 0.6937 +2018-11-15 03:23:33,269 | epoch: [9/30] iter: [36/391] loss_D: 1.3861 loss_G: 0.6940 +2018-11-15 03:23:40,575 | epoch: [9/30] iter: [37/391] loss_D: 1.3860 loss_G: 0.6934 +2018-11-15 03:23:47,715 | epoch: [9/30] iter: [38/391] loss_D: 1.3864 loss_G: 0.6929 +2018-11-15 03:23:54,365 | epoch: [9/30] iter: [39/391] loss_D: 1.3863 loss_G: 0.6919 +2018-11-15 03:24:01,452 | epoch: [9/30] iter: [40/391] loss_D: 1.3855 loss_G: 0.6934 +2018-11-15 03:24:08,854 | epoch: [9/30] iter: [41/391] loss_D: 1.3854 loss_G: 0.6940 +2018-11-15 03:24:15,698 | epoch: [9/30] iter: [42/391] loss_D: 1.3869 loss_G: 0.6928 +2018-11-15 03:24:22,541 | epoch: [9/30] iter: [43/391] loss_D: 1.3864 loss_G: 0.6943 +2018-11-15 03:24:29,414 | epoch: [9/30] iter: [44/391] loss_D: 1.3881 loss_G: 0.6928 +2018-11-15 03:24:36,644 | epoch: [9/30] iter: [45/391] loss_D: 1.3884 loss_G: 0.6916 +2018-11-15 03:24:43,177 | epoch: [9/30] iter: [46/391] loss_D: 1.3857 loss_G: 0.6943 +2018-11-15 03:24:47,458 | epoch: [9/30] iter: [47/391] loss_D: 1.3884 loss_G: 0.6923 +2018-11-15 03:24:51,470 | epoch: [9/30] iter: [48/391] loss_D: 1.3885 loss_G: 0.6918 +2018-11-15 03:24:55,320 | epoch: [9/30] iter: [49/391] loss_D: 1.3879 loss_G: 0.6930 +2018-11-15 03:24:59,244 | epoch: [9/30] iter: [50/391] loss_D: 1.3883 loss_G: 0.6929 +2018-11-15 03:25:03,330 | epoch: [9/30] iter: [51/391] loss_D: 1.3871 loss_G: 0.6940 +2018-11-15 03:25:08,411 | epoch: [9/30] iter: [52/391] loss_D: 1.3873 loss_G: 0.6924 +2018-11-15 03:25:15,771 | epoch: [9/30] iter: [53/391] loss_D: 1.3883 loss_G: 0.6929 +2018-11-15 03:25:22,534 | epoch: [9/30] iter: [54/391] loss_D: 1.3874 loss_G: 0.6925 +2018-11-15 03:25:29,466 | epoch: [9/30] iter: [55/391] loss_D: 1.3868 loss_G: 0.6929 +2018-11-15 03:25:36,646 | epoch: [9/30] iter: [56/391] loss_D: 1.3856 loss_G: 0.6941 +2018-11-15 03:25:43,654 | epoch: [9/30] iter: [57/391] loss_D: 1.3868 loss_G: 0.6933 +2018-11-15 03:25:50,451 | epoch: [9/30] iter: [58/391] loss_D: 1.3864 loss_G: 0.6933 +2018-11-15 03:25:57,374 | epoch: [9/30] iter: [59/391] loss_D: 1.3874 loss_G: 0.6930 +2018-11-15 03:26:04,552 | epoch: [9/30] iter: [60/391] loss_D: 1.3867 loss_G: 0.6931 +2018-11-15 03:26:11,705 | epoch: [9/30] iter: [61/391] loss_D: 1.3853 loss_G: 0.6936 +2018-11-15 03:26:18,624 | epoch: [9/30] iter: [62/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 03:26:25,809 | epoch: [9/30] iter: [63/391] loss_D: 1.3860 loss_G: 0.6941 +2018-11-15 03:26:33,036 | epoch: [9/30] iter: [64/391] loss_D: 1.3858 loss_G: 0.6937 +2018-11-15 03:26:39,834 | epoch: [9/30] iter: [65/391] loss_D: 1.3857 loss_G: 0.6939 +2018-11-15 03:26:47,018 | epoch: [9/30] iter: [66/391] loss_D: 1.3861 loss_G: 0.6933 +2018-11-15 03:26:53,667 | epoch: [9/30] iter: [67/391] loss_D: 1.3847 loss_G: 0.6934 +2018-11-15 03:27:00,058 | epoch: [9/30] iter: [68/391] loss_D: 1.3849 loss_G: 0.6936 +2018-11-15 03:27:04,190 | epoch: [9/30] iter: [69/391] loss_D: 1.3842 loss_G: 0.6945 +2018-11-15 03:27:08,263 | epoch: [9/30] iter: [70/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 03:27:12,151 | epoch: [9/30] iter: [71/391] loss_D: 1.3844 loss_G: 0.6942 +2018-11-15 03:27:16,241 | epoch: [9/30] iter: [72/391] loss_D: 1.3856 loss_G: 0.6937 +2018-11-15 03:27:20,614 | epoch: [9/30] iter: [73/391] loss_D: 1.3856 loss_G: 0.6929 +2018-11-15 03:27:26,330 | epoch: [9/30] iter: [74/391] loss_D: 1.3866 loss_G: 0.6924 +2018-11-15 03:27:33,209 | epoch: [9/30] iter: [75/391] loss_D: 1.3864 loss_G: 0.6928 +2018-11-15 03:27:40,054 | epoch: [9/30] iter: [76/391] loss_D: 1.3872 loss_G: 0.6926 +2018-11-15 03:27:46,847 | epoch: [9/30] iter: [77/391] loss_D: 1.3849 loss_G: 0.6927 +2018-11-15 03:27:54,272 | epoch: [9/30] iter: [78/391] loss_D: 1.3855 loss_G: 0.6918 +2018-11-15 03:28:01,573 | epoch: [9/30] iter: [79/391] loss_D: 1.3866 loss_G: 0.6927 +2018-11-15 03:28:08,639 | epoch: [9/30] iter: [80/391] loss_D: 1.3870 loss_G: 0.6923 +2018-11-15 03:28:15,325 | epoch: [9/30] iter: [81/391] loss_D: 1.3876 loss_G: 0.6940 +2018-11-15 03:28:19,315 | epoch: [9/30] iter: [82/391] loss_D: 1.3882 loss_G: 0.6937 +2018-11-15 03:28:23,318 | epoch: [9/30] iter: [83/391] loss_D: 1.3857 loss_G: 0.6942 +2018-11-15 03:28:27,253 | epoch: [9/30] iter: [84/391] loss_D: 1.3873 loss_G: 0.6942 +2018-11-15 03:28:31,499 | epoch: [9/30] iter: [85/391] loss_D: 1.3861 loss_G: 0.6943 +2018-11-15 03:28:35,442 | epoch: [9/30] iter: [86/391] loss_D: 1.3865 loss_G: 0.6945 +2018-11-15 03:28:39,629 | epoch: [9/30] iter: [87/391] loss_D: 1.3858 loss_G: 0.6937 +2018-11-15 03:28:43,786 | epoch: [9/30] iter: [88/391] loss_D: 1.3874 loss_G: 0.6941 +2018-11-15 03:28:48,673 | epoch: [9/30] iter: [89/391] loss_D: 1.3864 loss_G: 0.6947 +2018-11-15 03:28:56,133 | epoch: [9/30] iter: [90/391] loss_D: 1.3867 loss_G: 0.6943 +2018-11-15 03:29:03,430 | epoch: [9/30] iter: [91/391] loss_D: 1.3860 loss_G: 0.6949 +2018-11-15 03:29:10,518 | epoch: [9/30] iter: [92/391] loss_D: 1.3861 loss_G: 0.6944 +2018-11-15 03:29:17,154 | epoch: [9/30] iter: [93/391] loss_D: 1.3862 loss_G: 0.6950 +2018-11-15 03:29:24,322 | epoch: [9/30] iter: [94/391] loss_D: 1.3856 loss_G: 0.6937 +2018-11-15 03:29:31,644 | epoch: [9/30] iter: [95/391] loss_D: 1.3855 loss_G: 0.6938 +2018-11-15 03:29:38,655 | epoch: [9/30] iter: [96/391] loss_D: 1.3865 loss_G: 0.6936 +2018-11-15 03:29:45,342 | epoch: [9/30] iter: [97/391] loss_D: 1.3854 loss_G: 0.6938 +2018-11-15 03:29:52,482 | epoch: [9/30] iter: [98/391] loss_D: 1.3865 loss_G: 0.6939 +2018-11-15 03:29:57,522 | epoch: [9/30] iter: [99/391] loss_D: 1.3858 loss_G: 0.6936 +2018-11-15 03:30:01,696 | epoch: [9/30] iter: [100/391] loss_D: 1.3858 loss_G: 0.6938 +2018-11-15 03:30:05,892 | epoch: [9/30] iter: [101/391] loss_D: 1.3860 loss_G: 0.6932 +2018-11-15 03:30:09,961 | epoch: [9/30] iter: [102/391] loss_D: 1.3856 loss_G: 0.6930 +2018-11-15 03:30:13,916 | epoch: [9/30] iter: [103/391] loss_D: 1.3867 loss_G: 0.6929 +2018-11-15 03:30:18,028 | epoch: [9/30] iter: [104/391] loss_D: 1.3851 loss_G: 0.6929 +2018-11-15 03:30:22,064 | epoch: [9/30] iter: [105/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-15 03:30:26,265 | epoch: [9/30] iter: [106/391] loss_D: 1.3859 loss_G: 0.6930 +2018-11-15 03:30:30,382 | epoch: [9/30] iter: [107/391] loss_D: 1.3860 loss_G: 0.6925 +2018-11-15 03:30:34,423 | epoch: [9/30] iter: [108/391] loss_D: 1.3864 loss_G: 0.6937 +2018-11-15 03:30:41,034 | epoch: [9/30] iter: [109/391] loss_D: 1.3876 loss_G: 0.6934 +2018-11-15 03:30:47,823 | epoch: [9/30] iter: [110/391] loss_D: 1.3861 loss_G: 0.6924 +2018-11-15 03:30:55,359 | epoch: [9/30] iter: [111/391] loss_D: 1.3854 loss_G: 0.6931 +2018-11-15 03:31:02,264 | epoch: [9/30] iter: [112/391] loss_D: 1.3849 loss_G: 0.6938 +2018-11-15 03:31:08,959 | epoch: [9/30] iter: [113/391] loss_D: 1.3852 loss_G: 0.6932 +2018-11-15 03:31:15,650 | epoch: [9/30] iter: [114/391] loss_D: 1.3853 loss_G: 0.6926 +2018-11-15 03:31:22,802 | epoch: [9/30] iter: [115/391] loss_D: 1.3850 loss_G: 0.6935 +2018-11-15 03:31:29,838 | epoch: [9/30] iter: [116/391] loss_D: 1.3862 loss_G: 0.6935 +2018-11-15 03:31:36,795 | epoch: [9/30] iter: [117/391] loss_D: 1.3856 loss_G: 0.6944 +2018-11-15 03:31:44,043 | epoch: [9/30] iter: [118/391] loss_D: 1.3862 loss_G: 0.6936 +2018-11-15 03:31:51,297 | epoch: [9/30] iter: [119/391] loss_D: 1.3852 loss_G: 0.6919 +2018-11-15 03:31:58,259 | epoch: [9/30] iter: [120/391] loss_D: 1.3850 loss_G: 0.6937 +2018-11-15 03:32:04,452 | epoch: [9/30] iter: [121/391] loss_D: 1.3863 loss_G: 0.6934 +2018-11-15 03:32:08,587 | epoch: [9/30] iter: [122/391] loss_D: 1.3855 loss_G: 0.6938 +2018-11-15 03:32:12,480 | epoch: [9/30] iter: [123/391] loss_D: 1.3847 loss_G: 0.6929 +2018-11-15 03:32:16,351 | epoch: [9/30] iter: [124/391] loss_D: 1.3841 loss_G: 0.6938 +2018-11-15 03:32:20,165 | epoch: [9/30] iter: [125/391] loss_D: 1.3852 loss_G: 0.6937 +2018-11-15 03:32:24,332 | epoch: [9/30] iter: [126/391] loss_D: 1.3848 loss_G: 0.6939 +2018-11-15 03:32:29,511 | epoch: [9/30] iter: [127/391] loss_D: 1.3847 loss_G: 0.6926 +2018-11-15 03:34:34,940 | epoch: [9/30] iter: [128/391] loss_D: 1.3842 loss_G: 0.6932 +2018-11-15 03:34:38,732 | epoch: [9/30] iter: [129/391] loss_D: 1.3855 loss_G: 0.6923 +2018-11-15 03:34:42,835 | epoch: [9/30] iter: [130/391] loss_D: 1.3870 loss_G: 0.6933 +2018-11-15 03:34:47,062 | epoch: [9/30] iter: [131/391] loss_D: 1.3842 loss_G: 0.6940 +2018-11-15 03:34:53,633 | epoch: [9/30] iter: [132/391] loss_D: 1.3844 loss_G: 0.6934 +2018-11-15 03:35:00,925 | epoch: [9/30] iter: [133/391] loss_D: 1.3837 loss_G: 0.6934 +2018-11-15 03:35:07,371 | epoch: [9/30] iter: [134/391] loss_D: 1.3847 loss_G: 0.6936 +2018-11-15 03:35:14,212 | epoch: [9/30] iter: [135/391] loss_D: 1.3854 loss_G: 0.6941 +2018-11-15 03:35:21,463 | epoch: [9/30] iter: [136/391] loss_D: 1.3859 loss_G: 0.6929 +2018-11-15 03:35:28,339 | epoch: [9/30] iter: [137/391] loss_D: 1.3860 loss_G: 0.6927 +2018-11-15 03:35:35,482 | epoch: [9/30] iter: [138/391] loss_D: 1.3866 loss_G: 0.6929 +2018-11-15 03:35:42,471 | epoch: [9/30] iter: [139/391] loss_D: 1.3862 loss_G: 0.6931 +2018-11-15 03:35:49,093 | epoch: [9/30] iter: [140/391] loss_D: 1.3864 loss_G: 0.6930 +2018-11-15 03:35:55,767 | epoch: [9/30] iter: [141/391] loss_D: 1.3872 loss_G: 0.6922 +2018-11-15 03:36:02,778 | epoch: [9/30] iter: [142/391] loss_D: 1.3872 loss_G: 0.6940 +2018-11-15 03:36:09,829 | epoch: [9/30] iter: [143/391] loss_D: 1.3887 loss_G: 0.6931 +2018-11-15 03:36:16,549 | epoch: [9/30] iter: [144/391] loss_D: 1.3874 loss_G: 0.6944 +2018-11-15 03:36:23,804 | epoch: [9/30] iter: [145/391] loss_D: 1.3885 loss_G: 0.6943 +2018-11-15 03:36:30,885 | epoch: [9/30] iter: [146/391] loss_D: 1.3873 loss_G: 0.6942 +2018-11-15 03:36:37,881 | epoch: [9/30] iter: [147/391] loss_D: 1.3867 loss_G: 0.6949 +2018-11-15 03:36:42,606 | epoch: [9/30] iter: [148/391] loss_D: 1.3858 loss_G: 0.6954 +2018-11-15 03:36:46,746 | epoch: [9/30] iter: [149/391] loss_D: 1.3863 loss_G: 0.6937 +2018-11-15 03:36:50,644 | epoch: [9/30] iter: [150/391] loss_D: 1.3847 loss_G: 0.6947 +2018-11-15 03:36:54,540 | epoch: [9/30] iter: [151/391] loss_D: 1.3857 loss_G: 0.6939 +2018-11-15 03:36:58,603 | epoch: [9/30] iter: [152/391] loss_D: 1.3851 loss_G: 0.6938 +2018-11-15 03:37:02,720 | epoch: [9/30] iter: [153/391] loss_D: 1.3880 loss_G: 0.6925 +2018-11-15 03:37:06,682 | epoch: [9/30] iter: [154/391] loss_D: 1.3873 loss_G: 0.6932 +2018-11-15 03:37:10,611 | epoch: [9/30] iter: [155/391] loss_D: 1.3888 loss_G: 0.6936 +2018-11-15 03:37:14,506 | epoch: [9/30] iter: [156/391] loss_D: 1.3862 loss_G: 0.6957 +2018-11-15 03:37:18,785 | epoch: [9/30] iter: [157/391] loss_D: 1.3860 loss_G: 0.6977 +2018-11-15 03:37:23,045 | epoch: [9/30] iter: [158/391] loss_D: 1.3819 loss_G: 0.6997 +2018-11-15 03:37:29,719 | epoch: [9/30] iter: [159/391] loss_D: 1.3841 loss_G: 0.6973 +2018-11-15 03:37:36,595 | epoch: [9/30] iter: [160/391] loss_D: 1.3853 loss_G: 0.6963 +2018-11-15 03:37:43,666 | epoch: [9/30] iter: [161/391] loss_D: 1.3862 loss_G: 0.6946 +2018-11-15 03:37:50,994 | epoch: [9/30] iter: [162/391] loss_D: 1.3861 loss_G: 0.6941 +2018-11-15 03:37:57,914 | epoch: [9/30] iter: [163/391] loss_D: 1.3851 loss_G: 0.6936 +2018-11-15 03:38:04,821 | epoch: [9/30] iter: [164/391] loss_D: 1.3858 loss_G: 0.6933 +2018-11-15 03:38:11,934 | epoch: [9/30] iter: [165/391] loss_D: 1.3843 loss_G: 0.6949 +2018-11-15 03:38:19,138 | epoch: [9/30] iter: [166/391] loss_D: 1.3845 loss_G: 0.6930 +2018-11-15 03:38:25,774 | epoch: [9/30] iter: [167/391] loss_D: 1.3839 loss_G: 0.6928 +2018-11-15 03:38:32,700 | epoch: [9/30] iter: [168/391] loss_D: 1.3833 loss_G: 0.6929 +2018-11-15 03:38:38,026 | epoch: [9/30] iter: [169/391] loss_D: 1.3873 loss_G: 0.6928 +2018-11-15 03:38:42,190 | epoch: [9/30] iter: [170/391] loss_D: 1.3895 loss_G: 0.6934 +2018-11-15 03:38:46,293 | epoch: [9/30] iter: [171/391] loss_D: 1.3877 loss_G: 0.6940 +2018-11-15 03:38:50,331 | epoch: [9/30] iter: [172/391] loss_D: 1.3871 loss_G: 0.6943 +2018-11-15 03:38:54,321 | epoch: [9/30] iter: [173/391] loss_D: 1.3885 loss_G: 0.6951 +2018-11-15 03:38:58,170 | epoch: [9/30] iter: [174/391] loss_D: 1.3869 loss_G: 0.6958 +2018-11-15 03:39:02,415 | epoch: [9/30] iter: [175/391] loss_D: 1.3866 loss_G: 0.6961 +2018-11-15 03:39:06,603 | epoch: [9/30] iter: [176/391] loss_D: 1.3866 loss_G: 0.6974 +2018-11-15 03:39:11,032 | epoch: [9/30] iter: [177/391] loss_D: 1.3855 loss_G: 0.6948 +2018-11-15 03:39:16,907 | epoch: [9/30] iter: [178/391] loss_D: 1.3849 loss_G: 0.6932 +2018-11-15 03:39:22,920 | epoch: [9/30] iter: [179/391] loss_D: 1.3861 loss_G: 0.6964 +2018-11-15 03:39:27,788 | epoch: [9/30] iter: [180/391] loss_D: 1.3885 loss_G: 0.6979 +2018-11-15 03:39:32,145 | epoch: [9/30] iter: [181/391] loss_D: 1.3869 loss_G: 0.7003 +2018-11-15 03:39:36,694 | epoch: [9/30] iter: [182/391] loss_D: 1.3811 loss_G: 0.6991 +2018-11-15 03:39:41,326 | epoch: [9/30] iter: [183/391] loss_D: 1.3859 loss_G: 0.6987 +2018-11-15 03:39:47,723 | epoch: [9/30] iter: [184/391] loss_D: 1.3842 loss_G: 0.6983 +2018-11-15 03:39:53,442 | epoch: [9/30] iter: [185/391] loss_D: 1.3825 loss_G: 0.6976 +2018-11-15 03:39:59,393 | epoch: [9/30] iter: [186/391] loss_D: 1.3851 loss_G: 0.6967 +2018-11-15 03:40:04,159 | epoch: [9/30] iter: [187/391] loss_D: 1.3872 loss_G: 0.6931 +2018-11-15 03:40:08,533 | epoch: [9/30] iter: [188/391] loss_D: 1.3862 loss_G: 0.6922 +2018-11-15 03:40:13,067 | epoch: [9/30] iter: [189/391] loss_D: 1.3846 loss_G: 0.6943 +2018-11-15 03:40:17,370 | epoch: [9/30] iter: [190/391] loss_D: 1.3858 loss_G: 0.6947 +2018-11-15 03:40:21,412 | epoch: [9/30] iter: [191/391] loss_D: 1.3844 loss_G: 0.6936 +2018-11-15 03:40:27,363 | epoch: [9/30] iter: [192/391] loss_D: 1.3876 loss_G: 0.6924 +2018-11-15 03:40:32,021 | epoch: [9/30] iter: [193/391] loss_D: 1.3850 loss_G: 0.6939 +2018-11-15 03:40:36,477 | epoch: [9/30] iter: [194/391] loss_D: 1.3864 loss_G: 0.6925 +2018-11-15 03:40:40,942 | epoch: [9/30] iter: [195/391] loss_D: 1.3864 loss_G: 0.6948 +2018-11-15 03:40:45,352 | epoch: [9/30] iter: [196/391] loss_D: 1.3850 loss_G: 0.6913 +2018-11-15 03:40:52,065 | epoch: [9/30] iter: [197/391] loss_D: 1.3872 loss_G: 0.6927 +2018-11-15 03:40:57,819 | epoch: [9/30] iter: [198/391] loss_D: 1.3900 loss_G: 0.6930 +2018-11-15 03:41:02,177 | epoch: [9/30] iter: [199/391] loss_D: 1.3886 loss_G: 0.6939 +2018-11-15 03:41:06,382 | epoch: [9/30] iter: [200/391] loss_D: 1.3885 loss_G: 0.6945 +2018-11-15 03:41:10,606 | epoch: [9/30] iter: [201/391] loss_D: 1.3878 loss_G: 0.6951 +2018-11-15 03:41:14,947 | epoch: [9/30] iter: [202/391] loss_D: 1.3881 loss_G: 0.6961 +2018-11-15 03:41:19,335 | epoch: [9/30] iter: [203/391] loss_D: 1.3883 loss_G: 0.6959 +2018-11-15 03:41:25,091 | epoch: [9/30] iter: [204/391] loss_D: 1.3881 loss_G: 0.6962 +2018-11-15 03:41:30,784 | epoch: [9/30] iter: [205/391] loss_D: 1.3871 loss_G: 0.6946 +2018-11-15 03:41:35,644 | epoch: [9/30] iter: [206/391] loss_D: 1.3855 loss_G: 0.6947 +2018-11-15 03:41:40,115 | epoch: [9/30] iter: [207/391] loss_D: 1.3861 loss_G: 0.6952 +2018-11-15 03:41:44,502 | epoch: [9/30] iter: [208/391] loss_D: 1.3858 loss_G: 0.6945 +2018-11-15 03:41:49,438 | epoch: [9/30] iter: [209/391] loss_D: 1.3855 loss_G: 0.6947 +2018-11-15 03:41:54,747 | epoch: [9/30] iter: [210/391] loss_D: 1.3854 loss_G: 0.6955 +2018-11-15 03:41:58,983 | epoch: [9/30] iter: [211/391] loss_D: 1.3858 loss_G: 0.6948 +2018-11-15 03:42:03,622 | epoch: [9/30] iter: [212/391] loss_D: 1.3856 loss_G: 0.6964 +2018-11-15 03:42:11,083 | epoch: [9/30] iter: [213/391] loss_D: 1.3830 loss_G: 0.6972 +2018-11-15 03:42:16,067 | epoch: [9/30] iter: [214/391] loss_D: 1.3838 loss_G: 0.6951 +2018-11-15 03:42:21,874 | epoch: [9/30] iter: [215/391] loss_D: 1.3869 loss_G: 0.6975 +2018-11-15 03:42:26,166 | epoch: [9/30] iter: [216/391] loss_D: 1.3847 loss_G: 0.6964 +2018-11-15 03:42:30,805 | epoch: [9/30] iter: [217/391] loss_D: 1.3839 loss_G: 0.6956 +2018-11-15 03:42:38,448 | epoch: [9/30] iter: [218/391] loss_D: 1.3832 loss_G: 0.6966 +2018-11-15 03:42:43,332 | epoch: [9/30] iter: [219/391] loss_D: 1.3835 loss_G: 0.6954 +2018-11-15 03:42:47,472 | epoch: [9/30] iter: [220/391] loss_D: 1.3838 loss_G: 0.6960 +2018-11-15 03:42:52,012 | epoch: [9/30] iter: [221/391] loss_D: 1.3851 loss_G: 0.6946 +2018-11-15 03:42:56,349 | epoch: [9/30] iter: [222/391] loss_D: 1.3839 loss_G: 0.6938 +2018-11-15 03:43:01,033 | epoch: [9/30] iter: [223/391] loss_D: 1.3836 loss_G: 0.6949 +2018-11-15 03:43:05,389 | epoch: [9/30] iter: [224/391] loss_D: 1.3850 loss_G: 0.6941 +2018-11-15 03:43:09,832 | epoch: [9/30] iter: [225/391] loss_D: 1.3848 loss_G: 0.6929 +2018-11-15 03:43:14,600 | epoch: [9/30] iter: [226/391] loss_D: 1.3858 loss_G: 0.6940 +2018-11-15 03:43:18,838 | epoch: [9/30] iter: [227/391] loss_D: 1.3850 loss_G: 0.6942 +2018-11-15 03:45:23,513 | epoch: [9/30] iter: [228/391] loss_D: 1.3870 loss_G: 0.6914 +2018-11-15 03:45:27,498 | epoch: [9/30] iter: [229/391] loss_D: 1.3883 loss_G: 0.6909 +2018-11-15 03:45:31,779 | epoch: [9/30] iter: [230/391] loss_D: 1.3854 loss_G: 0.6936 +2018-11-15 03:45:36,614 | epoch: [9/30] iter: [231/391] loss_D: 1.3871 loss_G: 0.6931 +2018-11-15 03:45:43,673 | epoch: [9/30] iter: [232/391] loss_D: 1.3856 loss_G: 0.6930 +2018-11-15 03:45:50,575 | epoch: [9/30] iter: [233/391] loss_D: 1.3881 loss_G: 0.6937 +2018-11-15 03:45:57,705 | epoch: [9/30] iter: [234/391] loss_D: 1.3856 loss_G: 0.6916 +2018-11-15 03:46:04,738 | epoch: [9/30] iter: [235/391] loss_D: 1.3869 loss_G: 0.6926 +2018-11-15 03:46:11,443 | epoch: [9/30] iter: [236/391] loss_D: 1.3854 loss_G: 0.6929 +2018-11-15 03:46:18,478 | epoch: [9/30] iter: [237/391] loss_D: 1.3864 loss_G: 0.6921 +2018-11-15 03:46:25,323 | epoch: [9/30] iter: [238/391] loss_D: 1.3877 loss_G: 0.6947 +2018-11-15 03:46:32,348 | epoch: [9/30] iter: [239/391] loss_D: 1.3859 loss_G: 0.6926 +2018-11-15 03:46:39,098 | epoch: [9/30] iter: [240/391] loss_D: 1.3903 loss_G: 0.6922 +2018-11-15 03:46:46,529 | epoch: [9/30] iter: [241/391] loss_D: 1.3867 loss_G: 0.6933 +2018-11-15 03:46:53,809 | epoch: [9/30] iter: [242/391] loss_D: 1.3859 loss_G: 0.6947 +2018-11-15 03:47:00,629 | epoch: [9/30] iter: [243/391] loss_D: 1.3846 loss_G: 0.6933 +2018-11-15 03:47:07,971 | epoch: [9/30] iter: [244/391] loss_D: 1.3823 loss_G: 0.6950 +2018-11-15 03:47:15,278 | epoch: [9/30] iter: [245/391] loss_D: 1.3882 loss_G: 0.6939 +2018-11-15 03:47:22,194 | epoch: [9/30] iter: [246/391] loss_D: 1.3847 loss_G: 0.6954 +2018-11-15 03:47:27,048 | epoch: [9/30] iter: [247/391] loss_D: 1.3864 loss_G: 0.6982 +2018-11-15 03:47:31,098 | epoch: [9/30] iter: [248/391] loss_D: 1.3859 loss_G: 0.6981 +2018-11-15 03:47:34,930 | epoch: [9/30] iter: [249/391] loss_D: 1.3863 loss_G: 0.6969 +2018-11-15 03:47:38,933 | epoch: [9/30] iter: [250/391] loss_D: 1.3842 loss_G: 0.6985 +2018-11-15 03:47:42,919 | epoch: [9/30] iter: [251/391] loss_D: 1.3842 loss_G: 0.6980 +2018-11-15 03:47:47,201 | epoch: [9/30] iter: [252/391] loss_D: 1.3842 loss_G: 0.6950 +2018-11-15 03:47:51,320 | epoch: [9/30] iter: [253/391] loss_D: 1.3842 loss_G: 0.6948 +2018-11-15 03:47:55,796 | epoch: [9/30] iter: [254/391] loss_D: 1.3852 loss_G: 0.6952 +2018-11-15 03:48:02,619 | epoch: [9/30] iter: [255/391] loss_D: 1.3860 loss_G: 0.6951 +2018-11-15 03:48:09,346 | epoch: [9/30] iter: [256/391] loss_D: 1.3868 loss_G: 0.6947 +2018-11-15 03:48:16,643 | epoch: [9/30] iter: [257/391] loss_D: 1.3865 loss_G: 0.6929 +2018-11-15 03:48:23,459 | epoch: [9/30] iter: [258/391] loss_D: 1.3842 loss_G: 0.6940 +2018-11-15 03:48:30,703 | epoch: [9/30] iter: [259/391] loss_D: 1.3842 loss_G: 0.6944 +2018-11-15 03:48:37,906 | epoch: [9/30] iter: [260/391] loss_D: 1.3873 loss_G: 0.6938 +2018-11-15 03:48:45,107 | epoch: [9/30] iter: [261/391] loss_D: 1.3830 loss_G: 0.6954 +2018-11-15 03:48:52,334 | epoch: [9/30] iter: [262/391] loss_D: 1.3852 loss_G: 0.6944 +2018-11-15 03:48:59,546 | epoch: [9/30] iter: [263/391] loss_D: 1.3849 loss_G: 0.6950 +2018-11-15 03:49:06,388 | epoch: [9/30] iter: [264/391] loss_D: 1.3838 loss_G: 0.6958 +2018-11-15 03:49:13,558 | epoch: [9/30] iter: [265/391] loss_D: 1.3838 loss_G: 0.6956 +2018-11-15 03:49:18,507 | epoch: [9/30] iter: [266/391] loss_D: 1.3829 loss_G: 0.6952 +2018-11-15 03:49:22,518 | epoch: [9/30] iter: [267/391] loss_D: 1.3844 loss_G: 0.6943 +2018-11-15 03:49:26,760 | epoch: [9/30] iter: [268/391] loss_D: 1.3838 loss_G: 0.6953 +2018-11-15 03:49:31,042 | epoch: [9/30] iter: [269/391] loss_D: 1.3861 loss_G: 0.6948 +2018-11-15 03:49:34,989 | epoch: [9/30] iter: [270/391] loss_D: 1.3871 loss_G: 0.6944 +2018-11-15 03:49:38,929 | epoch: [9/30] iter: [271/391] loss_D: 1.3912 loss_G: 0.6950 +2018-11-15 03:49:42,955 | epoch: [9/30] iter: [272/391] loss_D: 1.3892 loss_G: 0.6934 +2018-11-15 03:49:47,333 | epoch: [9/30] iter: [273/391] loss_D: 1.3909 loss_G: 0.6946 +2018-11-15 03:49:54,134 | epoch: [9/30] iter: [274/391] loss_D: 1.3904 loss_G: 0.6985 +2018-11-15 03:50:01,451 | epoch: [9/30] iter: [275/391] loss_D: 1.3857 loss_G: 0.6992 +2018-11-15 03:50:08,585 | epoch: [9/30] iter: [276/391] loss_D: 1.3911 loss_G: 0.6993 +2018-11-15 03:50:15,451 | epoch: [9/30] iter: [277/391] loss_D: 1.3850 loss_G: 0.6999 +2018-11-15 03:50:22,571 | epoch: [9/30] iter: [278/391] loss_D: 1.3843 loss_G: 0.6996 +2018-11-15 03:50:29,458 | epoch: [9/30] iter: [279/391] loss_D: 1.3831 loss_G: 0.6982 +2018-11-15 03:50:34,750 | epoch: [9/30] iter: [280/391] loss_D: 1.3858 loss_G: 0.6962 +2018-11-15 03:50:38,934 | epoch: [9/30] iter: [281/391] loss_D: 1.3828 loss_G: 0.6948 +2018-11-15 03:50:43,101 | epoch: [9/30] iter: [282/391] loss_D: 1.3833 loss_G: 0.6933 +2018-11-15 03:50:47,127 | epoch: [9/30] iter: [283/391] loss_D: 1.3819 loss_G: 0.6942 +2018-11-15 03:50:51,251 | epoch: [9/30] iter: [284/391] loss_D: 1.3850 loss_G: 0.6923 +2018-11-15 03:50:55,416 | epoch: [9/30] iter: [285/391] loss_D: 1.3814 loss_G: 0.6931 +2018-11-15 03:50:59,382 | epoch: [9/30] iter: [286/391] loss_D: 1.3830 loss_G: 0.6931 +2018-11-15 03:51:03,679 | epoch: [9/30] iter: [287/391] loss_D: 1.3794 loss_G: 0.6939 +2018-11-15 03:51:07,665 | epoch: [9/30] iter: [288/391] loss_D: 1.3801 loss_G: 0.6938 +2018-11-15 03:51:11,936 | epoch: [9/30] iter: [289/391] loss_D: 1.3807 loss_G: 0.6937 +2018-11-15 03:51:19,032 | epoch: [9/30] iter: [290/391] loss_D: 1.3758 loss_G: 0.6933 +2018-11-15 03:51:26,057 | epoch: [9/30] iter: [291/391] loss_D: 1.3786 loss_G: 0.6923 +2018-11-15 03:51:33,190 | epoch: [9/30] iter: [292/391] loss_D: 1.3798 loss_G: 0.6897 +2018-11-15 03:51:40,338 | epoch: [9/30] iter: [293/391] loss_D: 1.3831 loss_G: 0.6849 +2018-11-15 03:51:47,179 | epoch: [9/30] iter: [294/391] loss_D: 1.3911 loss_G: 0.6813 +2018-11-15 03:51:53,832 | epoch: [9/30] iter: [295/391] loss_D: 1.3981 loss_G: 0.6867 +2018-11-15 03:52:00,873 | epoch: [9/30] iter: [296/391] loss_D: 1.4066 loss_G: 0.6982 +2018-11-15 03:52:07,968 | epoch: [9/30] iter: [297/391] loss_D: 1.4020 loss_G: 0.7060 +2018-11-15 03:52:15,075 | epoch: [9/30] iter: [298/391] loss_D: 1.3903 loss_G: 0.7087 +2018-11-15 03:52:21,820 | epoch: [9/30] iter: [299/391] loss_D: 1.3894 loss_G: 0.7103 +2018-11-15 03:52:28,616 | epoch: [9/30] iter: [300/391] loss_D: 1.3861 loss_G: 0.7105 +2018-11-15 03:52:32,620 | epoch: [9/30] iter: [301/391] loss_D: 1.3836 loss_G: 0.7120 +2018-11-15 03:52:36,632 | epoch: [9/30] iter: [302/391] loss_D: 1.3798 loss_G: 0.7101 +2018-11-15 03:52:40,785 | epoch: [9/30] iter: [303/391] loss_D: 1.3789 loss_G: 0.7117 +2018-11-15 03:52:44,902 | epoch: [9/30] iter: [304/391] loss_D: 1.3850 loss_G: 0.7063 +2018-11-15 03:52:48,851 | epoch: [9/30] iter: [305/391] loss_D: 1.3796 loss_G: 0.7152 +2018-11-15 03:52:52,769 | epoch: [9/30] iter: [306/391] loss_D: 1.3753 loss_G: 0.7271 +2018-11-15 03:52:56,982 | epoch: [9/30] iter: [307/391] loss_D: 1.3747 loss_G: 0.7284 +2018-11-15 03:53:02,091 | epoch: [9/30] iter: [308/391] loss_D: 1.3795 loss_G: 0.7134 +2018-11-15 03:53:08,917 | epoch: [9/30] iter: [309/391] loss_D: 1.3924 loss_G: 0.7056 +2018-11-15 03:53:16,041 | epoch: [9/30] iter: [310/391] loss_D: 1.3968 loss_G: 0.6955 +2018-11-15 03:53:23,127 | epoch: [9/30] iter: [311/391] loss_D: 1.3960 loss_G: 0.6909 +2018-11-15 03:53:29,820 | epoch: [9/30] iter: [312/391] loss_D: 1.3998 loss_G: 0.6837 +2018-11-15 03:53:36,839 | epoch: [9/30] iter: [313/391] loss_D: 1.3978 loss_G: 0.6832 +2018-11-15 03:53:44,106 | epoch: [9/30] iter: [314/391] loss_D: 1.4002 loss_G: 0.6800 +2018-11-15 03:53:51,275 | epoch: [9/30] iter: [315/391] loss_D: 1.3920 loss_G: 0.6819 +2018-11-15 03:53:58,693 | epoch: [9/30] iter: [316/391] loss_D: 1.3906 loss_G: 0.6836 +2018-11-15 03:54:05,455 | epoch: [9/30] iter: [317/391] loss_D: 1.3884 loss_G: 0.6868 +2018-11-15 03:54:12,777 | epoch: [9/30] iter: [318/391] loss_D: 1.3872 loss_G: 0.6897 +2018-11-15 03:54:19,622 | epoch: [9/30] iter: [319/391] loss_D: 1.3856 loss_G: 0.6917 +2018-11-15 03:54:26,961 | epoch: [9/30] iter: [320/391] loss_D: 1.3849 loss_G: 0.6926 +2018-11-15 03:54:31,248 | epoch: [9/30] iter: [321/391] loss_D: 1.3853 loss_G: 0.6932 +2018-11-15 03:54:35,132 | epoch: [9/30] iter: [322/391] loss_D: 1.3838 loss_G: 0.6937 +2018-11-15 03:54:39,223 | epoch: [9/30] iter: [323/391] loss_D: 1.3849 loss_G: 0.6936 +2018-11-15 03:54:43,224 | epoch: [9/30] iter: [324/391] loss_D: 1.3827 loss_G: 0.6957 +2018-11-15 03:54:47,164 | epoch: [9/30] iter: [325/391] loss_D: 1.3819 loss_G: 0.6943 +2018-11-15 03:54:51,299 | epoch: [9/30] iter: [326/391] loss_D: 1.3840 loss_G: 0.6931 +2018-11-15 03:54:55,327 | epoch: [9/30] iter: [327/391] loss_D: 1.3863 loss_G: 0.6922 +2018-11-15 03:56:38,676 | epoch: [9/30] iter: [328/391] loss_D: 1.3876 loss_G: 0.6918 +2018-11-15 03:56:42,774 | epoch: [9/30] iter: [329/391] loss_D: 1.3870 loss_G: 0.6941 +2018-11-15 03:56:47,013 | epoch: [9/30] iter: [330/391] loss_D: 1.3873 loss_G: 0.6944 +2018-11-15 03:56:53,217 | epoch: [9/30] iter: [331/391] loss_D: 1.3814 loss_G: 0.7025 +2018-11-15 03:57:00,079 | epoch: [9/30] iter: [332/391] loss_D: 1.3801 loss_G: 0.7048 +2018-11-15 03:57:06,951 | epoch: [9/30] iter: [333/391] loss_D: 1.3804 loss_G: 0.7017 +2018-11-15 03:57:14,079 | epoch: [9/30] iter: [334/391] loss_D: 1.3836 loss_G: 0.6984 +2018-11-15 03:57:20,838 | epoch: [9/30] iter: [335/391] loss_D: 1.3825 loss_G: 0.6925 +2018-11-15 03:57:28,076 | epoch: [9/30] iter: [336/391] loss_D: 1.3852 loss_G: 0.6941 +2018-11-15 03:57:35,136 | epoch: [9/30] iter: [337/391] loss_D: 1.3880 loss_G: 0.6930 +2018-11-15 03:57:42,516 | epoch: [9/30] iter: [338/391] loss_D: 1.3852 loss_G: 0.6930 +2018-11-15 03:57:49,798 | epoch: [9/30] iter: [339/391] loss_D: 1.3867 loss_G: 0.6940 +2018-11-15 03:57:56,797 | epoch: [9/30] iter: [340/391] loss_D: 1.3840 loss_G: 0.6950 +2018-11-15 03:58:03,922 | epoch: [9/30] iter: [341/391] loss_D: 1.3826 loss_G: 0.6949 +2018-11-15 03:58:10,909 | epoch: [9/30] iter: [342/391] loss_D: 1.3804 loss_G: 0.6959 +2018-11-15 03:58:18,275 | epoch: [9/30] iter: [343/391] loss_D: 1.3830 loss_G: 0.6963 +2018-11-15 03:58:25,091 | epoch: [9/30] iter: [344/391] loss_D: 1.3808 loss_G: 0.6954 +2018-11-15 03:58:32,152 | epoch: [9/30] iter: [345/391] loss_D: 1.3814 loss_G: 0.6952 +2018-11-15 03:58:39,524 | epoch: [9/30] iter: [346/391] loss_D: 1.3847 loss_G: 0.6963 +2018-11-15 03:58:47,031 | epoch: [9/30] iter: [347/391] loss_D: 1.3867 loss_G: 0.6957 +2018-11-15 03:58:54,118 | epoch: [9/30] iter: [348/391] loss_D: 1.3831 loss_G: 0.6941 +2018-11-15 03:58:59,128 | epoch: [9/30] iter: [349/391] loss_D: 1.3815 loss_G: 0.6953 +2018-11-15 03:59:03,191 | epoch: [9/30] iter: [350/391] loss_D: 1.3776 loss_G: 0.6940 +2018-11-15 03:59:07,210 | epoch: [9/30] iter: [351/391] loss_D: 1.3859 loss_G: 0.6914 +2018-11-15 03:59:11,292 | epoch: [9/30] iter: [352/391] loss_D: 1.3862 loss_G: 0.6875 +2018-11-15 03:59:15,225 | epoch: [9/30] iter: [353/391] loss_D: 1.3911 loss_G: 0.6882 +2018-11-15 03:59:19,201 | epoch: [9/30] iter: [354/391] loss_D: 1.3930 loss_G: 0.6851 +2018-11-15 03:59:23,296 | epoch: [9/30] iter: [355/391] loss_D: 1.3939 loss_G: 0.6889 +2018-11-15 03:59:29,347 | epoch: [9/30] iter: [356/391] loss_D: 1.3869 loss_G: 0.6976 +2018-11-15 03:59:33,654 | epoch: [9/30] iter: [357/391] loss_D: 1.3858 loss_G: 0.7008 +2018-11-15 03:59:37,811 | epoch: [9/30] iter: [358/391] loss_D: 1.3839 loss_G: 0.7022 +2018-11-15 03:59:44,016 | epoch: [9/30] iter: [359/391] loss_D: 1.3812 loss_G: 0.7038 +2018-11-15 03:59:50,183 | epoch: [9/30] iter: [360/391] loss_D: 1.3867 loss_G: 0.6987 +2018-11-15 03:59:56,333 | epoch: [9/30] iter: [361/391] loss_D: 1.3843 loss_G: 0.6966 +2018-11-15 04:00:01,017 | epoch: [9/30] iter: [362/391] loss_D: 1.3872 loss_G: 0.6963 +2018-11-15 04:00:05,313 | epoch: [9/30] iter: [363/391] loss_D: 1.3874 loss_G: 0.6938 +2018-11-15 04:00:09,589 | epoch: [9/30] iter: [364/391] loss_D: 1.3868 loss_G: 0.6948 +2018-11-15 04:00:14,920 | epoch: [9/30] iter: [365/391] loss_D: 1.3879 loss_G: 0.6942 +2018-11-15 04:00:19,816 | epoch: [9/30] iter: [366/391] loss_D: 1.3853 loss_G: 0.6929 +2018-11-15 04:00:24,182 | epoch: [9/30] iter: [367/391] loss_D: 1.3838 loss_G: 0.6946 +2018-11-15 04:00:28,830 | epoch: [9/30] iter: [368/391] loss_D: 1.3848 loss_G: 0.6933 +2018-11-15 04:00:36,282 | epoch: [9/30] iter: [369/391] loss_D: 1.3850 loss_G: 0.6935 +2018-11-15 04:00:41,066 | epoch: [9/30] iter: [370/391] loss_D: 1.3853 loss_G: 0.6926 +2018-11-15 04:00:47,091 | epoch: [9/30] iter: [371/391] loss_D: 1.3832 loss_G: 0.6918 +2018-11-15 04:00:51,500 | epoch: [9/30] iter: [372/391] loss_D: 1.3875 loss_G: 0.6916 +2018-11-15 04:00:56,224 | epoch: [9/30] iter: [373/391] loss_D: 1.3876 loss_G: 0.6918 +2018-11-15 04:01:03,626 | epoch: [9/30] iter: [374/391] loss_D: 1.3906 loss_G: 0.6915 +2018-11-15 04:01:08,662 | epoch: [9/30] iter: [375/391] loss_D: 1.3886 loss_G: 0.6929 +2018-11-15 04:01:13,135 | epoch: [9/30] iter: [376/391] loss_D: 1.3884 loss_G: 0.6922 +2018-11-15 04:01:19,185 | epoch: [9/30] iter: [377/391] loss_D: 1.3872 loss_G: 0.6920 +2018-11-15 04:01:25,983 | epoch: [9/30] iter: [378/391] loss_D: 1.3867 loss_G: 0.6967 +2018-11-15 04:01:30,615 | epoch: [9/30] iter: [379/391] loss_D: 1.3891 loss_G: 0.6955 +2018-11-15 04:01:35,055 | epoch: [9/30] iter: [380/391] loss_D: 1.3887 loss_G: 0.6959 +2018-11-15 04:01:41,678 | epoch: [9/30] iter: [381/391] loss_D: 1.3891 loss_G: 0.6972 +2018-11-15 04:01:47,202 | epoch: [9/30] iter: [382/391] loss_D: 1.3868 loss_G: 0.6959 +2018-11-15 04:01:51,589 | epoch: [9/30] iter: [383/391] loss_D: 1.3869 loss_G: 0.6954 +2018-11-15 04:01:55,704 | epoch: [9/30] iter: [384/391] loss_D: 1.3867 loss_G: 0.6938 +2018-11-15 04:01:59,638 | epoch: [9/30] iter: [385/391] loss_D: 1.3848 loss_G: 0.6972 +2018-11-15 04:02:03,920 | epoch: [9/30] iter: [386/391] loss_D: 1.3869 loss_G: 0.6929 +2018-11-15 04:02:08,170 | epoch: [9/30] iter: [387/391] loss_D: 1.3857 loss_G: 0.6924 +2018-11-15 04:02:14,211 | epoch: [9/30] iter: [388/391] loss_D: 1.3861 loss_G: 0.6933 +2018-11-15 04:02:20,218 | epoch: [9/30] iter: [389/391] loss_D: 1.3884 loss_G: 0.6931 +2018-11-15 04:02:23,288 | epoch: [9/30] iter: [390/391] loss_D: 1.3893 loss_G: 0.6946 +2018-11-15 04:02:28,141 | epoch: [10/30] iter: [0/391] loss_D: 1.3865 loss_G: 0.6949 +2018-11-15 04:02:32,764 | epoch: [10/30] iter: [1/391] loss_D: 1.3850 loss_G: 0.6961 +2018-11-15 04:02:37,060 | epoch: [10/30] iter: [2/391] loss_D: 1.3843 loss_G: 0.6957 +2018-11-15 04:02:42,226 | epoch: [10/30] iter: [3/391] loss_D: 1.3829 loss_G: 0.6947 +2018-11-15 04:02:49,330 | epoch: [10/30] iter: [4/391] loss_D: 1.3850 loss_G: 0.6950 +2018-11-15 04:02:53,984 | epoch: [10/30] iter: [5/391] loss_D: 1.3862 loss_G: 0.6945 +2018-11-15 04:02:58,644 | epoch: [10/30] iter: [6/391] loss_D: 1.3852 loss_G: 0.6945 +2018-11-15 04:03:05,530 | epoch: [10/30] iter: [7/391] loss_D: 1.3840 loss_G: 0.6935 +2018-11-15 04:03:11,306 | epoch: [10/30] iter: [8/391] loss_D: 1.3849 loss_G: 0.6909 +2018-11-15 04:03:17,325 | epoch: [10/30] iter: [9/391] loss_D: 1.3847 loss_G: 0.6925 +2018-11-15 04:03:22,249 | epoch: [10/30] iter: [10/391] loss_D: 1.3873 loss_G: 0.6938 +2018-11-15 04:03:27,749 | epoch: [10/30] iter: [11/391] loss_D: 1.3887 loss_G: 0.6931 +2018-11-15 04:03:31,975 | epoch: [10/30] iter: [12/391] loss_D: 1.3891 loss_G: 0.6946 +2018-11-15 04:03:36,055 | epoch: [10/30] iter: [13/391] loss_D: 1.3890 loss_G: 0.6933 +2018-11-15 04:03:40,309 | epoch: [10/30] iter: [14/391] loss_D: 1.3898 loss_G: 0.6940 +2018-11-15 04:03:46,332 | epoch: [10/30] iter: [15/391] loss_D: 1.3869 loss_G: 0.6949 +2018-11-15 04:03:52,200 | epoch: [10/30] iter: [16/391] loss_D: 1.3890 loss_G: 0.6948 +2018-11-15 04:03:57,084 | epoch: [10/30] iter: [17/391] loss_D: 1.3882 loss_G: 0.6957 +2018-11-15 04:04:02,987 | epoch: [10/30] iter: [18/391] loss_D: 1.3869 loss_G: 0.6954 +2018-11-15 04:04:07,335 | epoch: [10/30] iter: [19/391] loss_D: 1.3850 loss_G: 0.6973 +2018-11-15 04:04:11,830 | epoch: [10/30] iter: [20/391] loss_D: 1.3841 loss_G: 0.6977 +2018-11-15 04:04:15,943 | epoch: [10/30] iter: [21/391] loss_D: 1.3872 loss_G: 0.6974 +2018-11-15 04:04:20,516 | epoch: [10/30] iter: [22/391] loss_D: 1.3842 loss_G: 0.6959 +2018-11-15 04:04:24,704 | epoch: [10/30] iter: [23/391] loss_D: 1.3843 loss_G: 0.6957 +2018-11-15 04:04:29,914 | epoch: [10/30] iter: [24/391] loss_D: 1.3855 loss_G: 0.6942 +2018-11-15 04:04:37,201 | epoch: [10/30] iter: [25/391] loss_D: 1.3858 loss_G: 0.6936 +2018-11-15 04:04:42,185 | epoch: [10/30] iter: [26/391] loss_D: 1.3828 loss_G: 0.6937 +2018-11-15 04:04:47,814 | epoch: [10/30] iter: [27/391] loss_D: 1.3880 loss_G: 0.6931 +2018-11-15 04:04:52,128 | epoch: [10/30] iter: [28/391] loss_D: 1.3955 loss_G: 0.6877 +2018-11-15 04:04:56,541 | epoch: [10/30] iter: [29/391] loss_D: 1.3903 loss_G: 0.6895 +2018-11-15 04:05:04,354 | epoch: [10/30] iter: [30/391] loss_D: 1.3899 loss_G: 0.6910 +2018-11-15 04:05:09,135 | epoch: [10/30] iter: [31/391] loss_D: 1.3902 loss_G: 0.6913 +2018-11-15 04:05:14,939 | epoch: [10/30] iter: [32/391] loss_D: 1.3868 loss_G: 0.6947 +2018-11-15 04:05:19,326 | epoch: [10/30] iter: [33/391] loss_D: 1.3877 loss_G: 0.6939 +2018-11-15 04:05:23,792 | epoch: [10/30] iter: [34/391] loss_D: 1.3892 loss_G: 0.6938 +2018-11-15 04:05:28,161 | epoch: [10/30] iter: [35/391] loss_D: 1.3885 loss_G: 0.6937 +2018-11-15 04:05:32,149 | epoch: [10/30] iter: [36/391] loss_D: 1.3860 loss_G: 0.6951 +2018-11-15 04:07:26,235 | epoch: [10/30] iter: [37/391] loss_D: 1.3855 loss_G: 0.6953 +2018-11-15 04:07:30,376 | epoch: [10/30] iter: [38/391] loss_D: 1.3858 loss_G: 0.6948 +2018-11-15 04:07:35,867 | epoch: [10/30] iter: [39/391] loss_D: 1.3859 loss_G: 0.6942 +2018-11-15 04:07:42,720 | epoch: [10/30] iter: [40/391] loss_D: 1.3877 loss_G: 0.6938 +2018-11-15 04:07:49,671 | epoch: [10/30] iter: [41/391] loss_D: 1.3867 loss_G: 0.6946 +2018-11-15 04:07:57,042 | epoch: [10/30] iter: [42/391] loss_D: 1.3881 loss_G: 0.6920 +2018-11-15 04:08:04,226 | epoch: [10/30] iter: [43/391] loss_D: 1.3850 loss_G: 0.6930 +2018-11-15 04:08:11,102 | epoch: [10/30] iter: [44/391] loss_D: 1.3887 loss_G: 0.6926 +2018-11-15 04:08:18,222 | epoch: [10/30] iter: [45/391] loss_D: 1.3892 loss_G: 0.6932 +2018-11-15 04:08:24,840 | epoch: [10/30] iter: [46/391] loss_D: 1.3859 loss_G: 0.6935 +2018-11-15 04:08:31,789 | epoch: [10/30] iter: [47/391] loss_D: 1.3872 loss_G: 0.6946 +2018-11-15 04:08:38,849 | epoch: [10/30] iter: [48/391] loss_D: 1.3850 loss_G: 0.6949 +2018-11-15 04:08:46,018 | epoch: [10/30] iter: [49/391] loss_D: 1.3857 loss_G: 0.6944 +2018-11-15 04:08:52,865 | epoch: [10/30] iter: [50/391] loss_D: 1.3872 loss_G: 0.6942 +2018-11-15 04:08:59,815 | epoch: [10/30] iter: [51/391] loss_D: 1.3860 loss_G: 0.6960 +2018-11-15 04:09:06,776 | epoch: [10/30] iter: [52/391] loss_D: 1.3867 loss_G: 0.6935 +2018-11-15 04:09:14,283 | epoch: [10/30] iter: [53/391] loss_D: 1.3847 loss_G: 0.6936 +2018-11-15 04:09:21,462 | epoch: [10/30] iter: [54/391] loss_D: 1.3845 loss_G: 0.6944 +2018-11-15 04:09:28,073 | epoch: [10/30] iter: [55/391] loss_D: 1.3862 loss_G: 0.6931 +2018-11-15 04:09:35,276 | epoch: [10/30] iter: [56/391] loss_D: 1.3863 loss_G: 0.6924 +2018-11-15 04:09:40,329 | epoch: [10/30] iter: [57/391] loss_D: 1.3881 loss_G: 0.6915 +2018-11-15 04:09:44,389 | epoch: [10/30] iter: [58/391] loss_D: 1.3865 loss_G: 0.6931 +2018-11-15 04:09:48,414 | epoch: [10/30] iter: [59/391] loss_D: 1.3879 loss_G: 0.6915 +2018-11-15 04:09:52,451 | epoch: [10/30] iter: [60/391] loss_D: 1.3918 loss_G: 0.6916 +2018-11-15 04:09:56,506 | epoch: [10/30] iter: [61/391] loss_D: 1.3889 loss_G: 0.6926 +2018-11-15 04:10:00,785 | epoch: [10/30] iter: [62/391] loss_D: 1.3935 loss_G: 0.6938 +2018-11-15 04:10:04,702 | epoch: [10/30] iter: [63/391] loss_D: 1.3881 loss_G: 0.6956 +2018-11-15 04:10:09,010 | epoch: [10/30] iter: [64/391] loss_D: 1.3889 loss_G: 0.6956 +2018-11-15 04:10:16,236 | epoch: [10/30] iter: [65/391] loss_D: 1.3864 loss_G: 0.6962 +2018-11-15 04:10:23,256 | epoch: [10/30] iter: [66/391] loss_D: 1.3861 loss_G: 0.6956 +2018-11-15 04:10:30,402 | epoch: [10/30] iter: [67/391] loss_D: 1.3879 loss_G: 0.6948 +2018-11-15 04:10:36,940 | epoch: [10/30] iter: [68/391] loss_D: 1.3873 loss_G: 0.6933 +2018-11-15 04:10:43,845 | epoch: [10/30] iter: [69/391] loss_D: 1.3863 loss_G: 0.6940 +2018-11-15 04:10:50,649 | epoch: [10/30] iter: [70/391] loss_D: 1.3853 loss_G: 0.6945 +2018-11-15 04:10:56,975 | epoch: [10/30] iter: [71/391] loss_D: 1.3876 loss_G: 0.6939 +2018-11-15 04:11:04,248 | epoch: [10/30] iter: [72/391] loss_D: 1.3876 loss_G: 0.6937 +2018-11-15 04:11:10,991 | epoch: [10/30] iter: [73/391] loss_D: 1.3866 loss_G: 0.6951 +2018-11-15 04:11:17,614 | epoch: [10/30] iter: [74/391] loss_D: 1.3865 loss_G: 0.6939 +2018-11-15 04:11:24,401 | epoch: [10/30] iter: [75/391] loss_D: 1.3846 loss_G: 0.6929 +2018-11-15 04:11:31,154 | epoch: [10/30] iter: [76/391] loss_D: 1.3883 loss_G: 0.6915 +2018-11-15 04:11:37,744 | epoch: [10/30] iter: [77/391] loss_D: 1.3905 loss_G: 0.6911 +2018-11-15 04:11:41,696 | epoch: [10/30] iter: [78/391] loss_D: 1.3872 loss_G: 0.6915 +2018-11-15 04:11:45,879 | epoch: [10/30] iter: [79/391] loss_D: 1.3871 loss_G: 0.6912 +2018-11-15 04:11:49,872 | epoch: [10/30] iter: [80/391] loss_D: 1.3894 loss_G: 0.6895 +2018-11-15 04:11:53,827 | epoch: [10/30] iter: [81/391] loss_D: 1.3878 loss_G: 0.6909 +2018-11-15 04:11:57,790 | epoch: [10/30] iter: [82/391] loss_D: 1.3874 loss_G: 0.6910 +2018-11-15 04:12:02,156 | epoch: [10/30] iter: [83/391] loss_D: 1.3865 loss_G: 0.6919 +2018-11-15 04:12:06,315 | epoch: [10/30] iter: [84/391] loss_D: 1.3886 loss_G: 0.6916 +2018-11-15 04:12:11,413 | epoch: [10/30] iter: [85/391] loss_D: 1.3892 loss_G: 0.6916 +2018-11-15 04:12:18,047 | epoch: [10/30] iter: [86/391] loss_D: 1.3887 loss_G: 0.6931 +2018-11-15 04:12:25,110 | epoch: [10/30] iter: [87/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 04:12:32,512 | epoch: [10/30] iter: [88/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 04:12:39,468 | epoch: [10/30] iter: [89/391] loss_D: 1.3860 loss_G: 0.6943 +2018-11-15 04:12:46,329 | epoch: [10/30] iter: [90/391] loss_D: 1.3873 loss_G: 0.6945 +2018-11-15 04:12:53,006 | epoch: [10/30] iter: [91/391] loss_D: 1.3868 loss_G: 0.6953 +2018-11-15 04:12:59,611 | epoch: [10/30] iter: [92/391] loss_D: 1.3878 loss_G: 0.6939 +2018-11-15 04:13:06,816 | epoch: [10/30] iter: [93/391] loss_D: 1.3847 loss_G: 0.6942 +2018-11-15 04:13:13,711 | epoch: [10/30] iter: [94/391] loss_D: 1.3861 loss_G: 0.6942 +2018-11-15 04:13:20,850 | epoch: [10/30] iter: [95/391] loss_D: 1.3860 loss_G: 0.6941 +2018-11-15 04:13:27,811 | epoch: [10/30] iter: [96/391] loss_D: 1.3854 loss_G: 0.6952 +2018-11-15 04:13:34,456 | epoch: [10/30] iter: [97/391] loss_D: 1.3856 loss_G: 0.6959 +2018-11-15 04:13:41,752 | epoch: [10/30] iter: [98/391] loss_D: 1.3854 loss_G: 0.6954 +2018-11-15 04:13:49,089 | epoch: [10/30] iter: [99/391] loss_D: 1.3859 loss_G: 0.6944 +2018-11-15 04:13:56,014 | epoch: [10/30] iter: [100/391] loss_D: 1.3854 loss_G: 0.6941 +2018-11-15 04:14:00,479 | epoch: [10/30] iter: [101/391] loss_D: 1.3868 loss_G: 0.6933 +2018-11-15 04:14:04,392 | epoch: [10/30] iter: [102/391] loss_D: 1.3852 loss_G: 0.6940 +2018-11-15 04:14:08,438 | epoch: [10/30] iter: [103/391] loss_D: 1.3853 loss_G: 0.6940 +2018-11-15 04:14:12,521 | epoch: [10/30] iter: [104/391] loss_D: 1.3856 loss_G: 0.6941 +2018-11-15 04:14:16,437 | epoch: [10/30] iter: [105/391] loss_D: 1.3874 loss_G: 0.6922 +2018-11-15 04:14:20,611 | epoch: [10/30] iter: [106/391] loss_D: 1.3868 loss_G: 0.6927 +2018-11-15 04:14:24,665 | epoch: [10/30] iter: [107/391] loss_D: 1.3856 loss_G: 0.6933 +2018-11-15 04:14:28,670 | epoch: [10/30] iter: [108/391] loss_D: 1.3872 loss_G: 0.6927 +2018-11-15 04:14:32,726 | epoch: [10/30] iter: [109/391] loss_D: 1.3854 loss_G: 0.6925 +2018-11-15 04:14:36,964 | epoch: [10/30] iter: [110/391] loss_D: 1.3871 loss_G: 0.6931 +2018-11-15 04:14:41,254 | epoch: [10/30] iter: [111/391] loss_D: 1.3870 loss_G: 0.6940 +2018-11-15 04:14:48,275 | epoch: [10/30] iter: [112/391] loss_D: 1.3859 loss_G: 0.6942 +2018-11-15 04:14:55,538 | epoch: [10/30] iter: [113/391] loss_D: 1.3868 loss_G: 0.6923 +2018-11-15 04:15:02,290 | epoch: [10/30] iter: [114/391] loss_D: 1.3860 loss_G: 0.6936 +2018-11-15 04:15:09,283 | epoch: [10/30] iter: [115/391] loss_D: 1.3881 loss_G: 0.6923 +2018-11-15 04:15:16,450 | epoch: [10/30] iter: [116/391] loss_D: 1.3881 loss_G: 0.6946 +2018-11-15 04:15:23,617 | epoch: [10/30] iter: [117/391] loss_D: 1.3864 loss_G: 0.6946 +2018-11-15 04:15:30,459 | epoch: [10/30] iter: [118/391] loss_D: 1.3873 loss_G: 0.6931 +2018-11-15 04:15:37,642 | epoch: [10/30] iter: [119/391] loss_D: 1.3894 loss_G: 0.6936 +2018-11-15 04:15:44,710 | epoch: [10/30] iter: [120/391] loss_D: 1.3879 loss_G: 0.6947 +2018-11-15 04:15:51,638 | epoch: [10/30] iter: [121/391] loss_D: 1.3881 loss_G: 0.6936 +2018-11-15 04:15:58,802 | epoch: [10/30] iter: [122/391] loss_D: 1.3869 loss_G: 0.6944 +2018-11-15 04:16:04,301 | epoch: [10/30] iter: [123/391] loss_D: 1.3866 loss_G: 0.6952 +2018-11-15 04:16:08,311 | epoch: [10/30] iter: [124/391] loss_D: 1.3879 loss_G: 0.6936 +2018-11-15 04:16:12,410 | epoch: [10/30] iter: [125/391] loss_D: 1.3871 loss_G: 0.6933 +2018-11-15 04:16:16,677 | epoch: [10/30] iter: [126/391] loss_D: 1.3868 loss_G: 0.6934 +2018-11-15 04:16:20,780 | epoch: [10/30] iter: [127/391] loss_D: 1.3880 loss_G: 0.6938 +2018-11-15 04:16:25,029 | epoch: [10/30] iter: [128/391] loss_D: 1.3886 loss_G: 0.6922 +2018-11-15 04:16:29,085 | epoch: [10/30] iter: [129/391] loss_D: 1.3888 loss_G: 0.6929 +2018-11-15 04:16:33,281 | epoch: [10/30] iter: [130/391] loss_D: 1.3880 loss_G: 0.6920 +2018-11-15 04:16:38,130 | epoch: [10/30] iter: [131/391] loss_D: 1.3889 loss_G: 0.6925 +2018-11-15 04:16:45,411 | epoch: [10/30] iter: [132/391] loss_D: 1.3896 loss_G: 0.6928 +2018-11-15 04:16:52,199 | epoch: [10/30] iter: [133/391] loss_D: 1.3869 loss_G: 0.6915 +2018-11-15 04:16:59,297 | epoch: [10/30] iter: [134/391] loss_D: 1.3874 loss_G: 0.6921 +2018-11-15 04:17:06,336 | epoch: [10/30] iter: [135/391] loss_D: 1.3875 loss_G: 0.6927 +2018-11-15 04:17:13,314 | epoch: [10/30] iter: [136/391] loss_D: 1.3880 loss_G: 0.6927 +2018-11-15 04:19:09,010 | epoch: [10/30] iter: [137/391] loss_D: 1.3865 loss_G: 0.6926 +2018-11-15 04:19:12,859 | epoch: [10/30] iter: [138/391] loss_D: 1.3864 loss_G: 0.6928 +2018-11-15 04:19:16,932 | epoch: [10/30] iter: [139/391] loss_D: 1.3858 loss_G: 0.6929 +2018-11-15 04:19:21,037 | epoch: [10/30] iter: [140/391] loss_D: 1.3872 loss_G: 0.6921 +2018-11-15 04:19:25,328 | epoch: [10/30] iter: [141/391] loss_D: 1.3887 loss_G: 0.6928 +2018-11-15 04:19:32,294 | epoch: [10/30] iter: [142/391] loss_D: 1.3874 loss_G: 0.6915 +2018-11-15 04:19:39,064 | epoch: [10/30] iter: [143/391] loss_D: 1.3855 loss_G: 0.6929 +2018-11-15 04:19:45,947 | epoch: [10/30] iter: [144/391] loss_D: 1.3860 loss_G: 0.6923 +2018-11-15 04:19:52,950 | epoch: [10/30] iter: [145/391] loss_D: 1.3852 loss_G: 0.6928 +2018-11-15 04:19:59,731 | epoch: [10/30] iter: [146/391] loss_D: 1.3853 loss_G: 0.6930 +2018-11-15 04:20:06,982 | epoch: [10/30] iter: [147/391] loss_D: 1.3868 loss_G: 0.6937 +2018-11-15 04:20:14,082 | epoch: [10/30] iter: [148/391] loss_D: 1.3856 loss_G: 0.6943 +2018-11-15 04:20:21,356 | epoch: [10/30] iter: [149/391] loss_D: 1.3871 loss_G: 0.6931 +2018-11-15 04:20:28,414 | epoch: [10/30] iter: [150/391] loss_D: 1.3847 loss_G: 0.6937 +2018-11-15 04:20:35,411 | epoch: [10/30] iter: [151/391] loss_D: 1.3858 loss_G: 0.6935 +2018-11-15 04:20:42,109 | epoch: [10/30] iter: [152/391] loss_D: 1.3849 loss_G: 0.6946 +2018-11-15 04:20:49,529 | epoch: [10/30] iter: [153/391] loss_D: 1.3869 loss_G: 0.6937 +2018-11-15 04:20:56,785 | epoch: [10/30] iter: [154/391] loss_D: 1.3858 loss_G: 0.6943 +2018-11-15 04:21:03,712 | epoch: [10/30] iter: [155/391] loss_D: 1.3856 loss_G: 0.6944 +2018-11-15 04:21:11,090 | epoch: [10/30] iter: [156/391] loss_D: 1.3858 loss_G: 0.6932 +2018-11-15 04:21:18,132 | epoch: [10/30] iter: [157/391] loss_D: 1.3854 loss_G: 0.6944 +2018-11-15 04:21:25,423 | epoch: [10/30] iter: [158/391] loss_D: 1.3857 loss_G: 0.6937 +2018-11-15 04:21:32,055 | epoch: [10/30] iter: [159/391] loss_D: 1.3840 loss_G: 0.6937 +2018-11-15 04:21:36,791 | epoch: [10/30] iter: [160/391] loss_D: 1.3860 loss_G: 0.6945 +2018-11-15 04:21:40,738 | epoch: [10/30] iter: [161/391] loss_D: 1.3868 loss_G: 0.6948 +2018-11-15 04:21:44,607 | epoch: [10/30] iter: [162/391] loss_D: 1.3852 loss_G: 0.6953 +2018-11-15 04:21:48,774 | epoch: [10/30] iter: [163/391] loss_D: 1.3851 loss_G: 0.6947 +2018-11-15 04:21:52,850 | epoch: [10/30] iter: [164/391] loss_D: 1.3837 loss_G: 0.6943 +2018-11-15 04:21:56,993 | epoch: [10/30] iter: [165/391] loss_D: 1.3848 loss_G: 0.6939 +2018-11-15 04:22:00,911 | epoch: [10/30] iter: [166/391] loss_D: 1.3855 loss_G: 0.6962 +2018-11-15 04:22:05,134 | epoch: [10/30] iter: [167/391] loss_D: 1.3861 loss_G: 0.6957 +2018-11-15 04:22:09,197 | epoch: [10/30] iter: [168/391] loss_D: 1.3862 loss_G: 0.6952 +2018-11-15 04:22:13,388 | epoch: [10/30] iter: [169/391] loss_D: 1.3841 loss_G: 0.6962 +2018-11-15 04:22:17,715 | epoch: [10/30] iter: [170/391] loss_D: 1.3868 loss_G: 0.6943 +2018-11-15 04:22:24,640 | epoch: [10/30] iter: [171/391] loss_D: 1.3862 loss_G: 0.6952 +2018-11-15 04:22:31,848 | epoch: [10/30] iter: [172/391] loss_D: 1.3860 loss_G: 0.6949 +2018-11-15 04:22:38,806 | epoch: [10/30] iter: [173/391] loss_D: 1.3846 loss_G: 0.6955 +2018-11-15 04:22:45,760 | epoch: [10/30] iter: [174/391] loss_D: 1.3860 loss_G: 0.6939 +2018-11-15 04:22:52,935 | epoch: [10/30] iter: [175/391] loss_D: 1.3861 loss_G: 0.6944 +2018-11-15 04:23:00,172 | epoch: [10/30] iter: [176/391] loss_D: 1.3864 loss_G: 0.6926 +2018-11-15 04:23:07,358 | epoch: [10/30] iter: [177/391] loss_D: 1.3860 loss_G: 0.6924 +2018-11-15 04:23:14,449 | epoch: [10/30] iter: [178/391] loss_D: 1.3879 loss_G: 0.6932 +2018-11-15 04:23:21,434 | epoch: [10/30] iter: [179/391] loss_D: 1.3868 loss_G: 0.6932 +2018-11-15 04:23:28,313 | epoch: [10/30] iter: [180/391] loss_D: 1.3869 loss_G: 0.6931 +2018-11-15 04:23:35,471 | epoch: [10/30] iter: [181/391] loss_D: 1.3865 loss_G: 0.6936 +2018-11-15 04:23:40,456 | epoch: [10/30] iter: [182/391] loss_D: 1.3864 loss_G: 0.6925 +2018-11-15 04:23:44,381 | epoch: [10/30] iter: [183/391] loss_D: 1.3867 loss_G: 0.6946 +2018-11-15 04:23:48,597 | epoch: [10/30] iter: [184/391] loss_D: 1.3869 loss_G: 0.6928 +2018-11-15 04:23:52,454 | epoch: [10/30] iter: [185/391] loss_D: 1.3872 loss_G: 0.6935 +2018-11-15 04:23:56,685 | epoch: [10/30] iter: [186/391] loss_D: 1.3873 loss_G: 0.6937 +2018-11-15 04:24:00,913 | epoch: [10/30] iter: [187/391] loss_D: 1.3858 loss_G: 0.6933 +2018-11-15 04:24:05,112 | epoch: [10/30] iter: [188/391] loss_D: 1.3874 loss_G: 0.6942 +2018-11-15 04:24:09,262 | epoch: [10/30] iter: [189/391] loss_D: 1.3851 loss_G: 0.6938 +2018-11-15 04:24:15,175 | epoch: [10/30] iter: [190/391] loss_D: 1.3869 loss_G: 0.6928 +2018-11-15 04:24:19,608 | epoch: [10/30] iter: [191/391] loss_D: 1.3863 loss_G: 0.6916 +2018-11-15 04:24:23,987 | epoch: [10/30] iter: [192/391] loss_D: 1.3866 loss_G: 0.6923 +2018-11-15 04:24:30,810 | epoch: [10/30] iter: [193/391] loss_D: 1.3872 loss_G: 0.6921 +2018-11-15 04:24:36,520 | epoch: [10/30] iter: [194/391] loss_D: 1.3866 loss_G: 0.6940 +2018-11-15 04:24:40,947 | epoch: [10/30] iter: [195/391] loss_D: 1.3884 loss_G: 0.6933 +2018-11-15 04:24:45,134 | epoch: [10/30] iter: [196/391] loss_D: 1.3868 loss_G: 0.6932 +2018-11-15 04:24:49,256 | epoch: [10/30] iter: [197/391] loss_D: 1.3876 loss_G: 0.6943 +2018-11-15 04:24:53,587 | epoch: [10/30] iter: [198/391] loss_D: 1.3879 loss_G: 0.6939 +2018-11-15 04:25:00,388 | epoch: [10/30] iter: [199/391] loss_D: 1.3868 loss_G: 0.6942 +2018-11-15 04:25:07,379 | epoch: [10/30] iter: [200/391] loss_D: 1.3873 loss_G: 0.6942 +2018-11-15 04:25:14,365 | epoch: [10/30] iter: [201/391] loss_D: 1.3864 loss_G: 0.6937 +2018-11-15 04:25:21,657 | epoch: [10/30] iter: [202/391] loss_D: 1.3868 loss_G: 0.6951 +2018-11-15 04:25:29,066 | epoch: [10/30] iter: [203/391] loss_D: 1.3869 loss_G: 0.6946 +2018-11-15 04:25:36,105 | epoch: [10/30] iter: [204/391] loss_D: 1.3876 loss_G: 0.6936 +2018-11-15 04:25:42,916 | epoch: [10/30] iter: [205/391] loss_D: 1.3871 loss_G: 0.6953 +2018-11-15 04:25:50,122 | epoch: [10/30] iter: [206/391] loss_D: 1.3865 loss_G: 0.6952 +2018-11-15 04:25:57,076 | epoch: [10/30] iter: [207/391] loss_D: 1.3862 loss_G: 0.6933 +2018-11-15 04:26:04,066 | epoch: [10/30] iter: [208/391] loss_D: 1.3873 loss_G: 0.6929 +2018-11-15 04:26:10,682 | epoch: [10/30] iter: [209/391] loss_D: 1.3873 loss_G: 0.6930 +2018-11-15 04:26:17,679 | epoch: [10/30] iter: [210/391] loss_D: 1.3867 loss_G: 0.6938 +2018-11-15 04:26:24,771 | epoch: [10/30] iter: [211/391] loss_D: 1.3865 loss_G: 0.6945 +2018-11-15 04:26:31,878 | epoch: [10/30] iter: [212/391] loss_D: 1.3844 loss_G: 0.6933 +2018-11-15 04:26:36,692 | epoch: [10/30] iter: [213/391] loss_D: 1.3862 loss_G: 0.6930 +2018-11-15 04:26:40,536 | epoch: [10/30] iter: [214/391] loss_D: 1.3864 loss_G: 0.6938 +2018-11-15 04:26:44,505 | epoch: [10/30] iter: [215/391] loss_D: 1.3874 loss_G: 0.6929 +2018-11-15 04:26:48,580 | epoch: [10/30] iter: [216/391] loss_D: 1.3871 loss_G: 0.6929 +2018-11-15 04:26:52,864 | epoch: [10/30] iter: [217/391] loss_D: 1.3855 loss_G: 0.6929 +2018-11-15 04:26:56,869 | epoch: [10/30] iter: [218/391] loss_D: 1.3859 loss_G: 0.6917 +2018-11-15 04:27:00,996 | epoch: [10/30] iter: [219/391] loss_D: 1.3878 loss_G: 0.6917 +2018-11-15 04:27:07,514 | epoch: [10/30] iter: [220/391] loss_D: 1.3884 loss_G: 0.6927 +2018-11-15 04:27:14,854 | epoch: [10/30] iter: [221/391] loss_D: 1.3867 loss_G: 0.6916 +2018-11-15 04:27:21,437 | epoch: [10/30] iter: [222/391] loss_D: 1.3874 loss_G: 0.6923 +2018-11-15 04:27:28,610 | epoch: [10/30] iter: [223/391] loss_D: 1.3876 loss_G: 0.6923 +2018-11-15 04:27:34,987 | epoch: [10/30] iter: [224/391] loss_D: 1.3867 loss_G: 0.6905 +2018-11-15 04:27:42,232 | epoch: [10/30] iter: [225/391] loss_D: 1.3888 loss_G: 0.6923 +2018-11-15 04:27:49,574 | epoch: [10/30] iter: [226/391] loss_D: 1.3882 loss_G: 0.6925 +2018-11-15 04:27:56,477 | epoch: [10/30] iter: [227/391] loss_D: 1.3874 loss_G: 0.6920 +2018-11-15 04:28:03,533 | epoch: [10/30] iter: [228/391] loss_D: 1.3876 loss_G: 0.6938 +2018-11-15 04:28:08,934 | epoch: [10/30] iter: [229/391] loss_D: 1.3875 loss_G: 0.6930 +2018-11-15 04:28:13,061 | epoch: [10/30] iter: [230/391] loss_D: 1.3852 loss_G: 0.6940 +2018-11-15 04:28:17,081 | epoch: [10/30] iter: [231/391] loss_D: 1.3869 loss_G: 0.6950 +2018-11-15 04:28:21,184 | epoch: [10/30] iter: [232/391] loss_D: 1.3855 loss_G: 0.6954 +2018-11-15 04:28:25,216 | epoch: [10/30] iter: [233/391] loss_D: 1.3853 loss_G: 0.6939 +2018-11-15 04:28:29,354 | epoch: [10/30] iter: [234/391] loss_D: 1.3881 loss_G: 0.6948 +2018-11-15 04:28:33,559 | epoch: [10/30] iter: [235/391] loss_D: 1.3865 loss_G: 0.6933 +2018-11-15 04:28:37,712 | epoch: [10/30] iter: [236/391] loss_D: 1.3864 loss_G: 0.6942 +2018-11-15 04:30:42,314 | epoch: [10/30] iter: [237/391] loss_D: 1.3842 loss_G: 0.6932 +2018-11-15 04:30:46,402 | epoch: [10/30] iter: [238/391] loss_D: 1.3874 loss_G: 0.6930 +2018-11-15 04:30:50,650 | epoch: [10/30] iter: [239/391] loss_D: 1.3862 loss_G: 0.6928 +2018-11-15 04:30:54,921 | epoch: [10/30] iter: [240/391] loss_D: 1.3873 loss_G: 0.6932 +2018-11-15 04:30:59,013 | epoch: [10/30] iter: [241/391] loss_D: 1.3863 loss_G: 0.6925 +2018-11-15 04:31:03,913 | epoch: [10/30] iter: [242/391] loss_D: 1.3878 loss_G: 0.6927 +2018-11-15 04:31:09,137 | epoch: [10/30] iter: [243/391] loss_D: 1.3860 loss_G: 0.6914 +2018-11-15 04:31:13,550 | epoch: [10/30] iter: [244/391] loss_D: 1.3864 loss_G: 0.6917 +2018-11-15 04:31:18,531 | epoch: [10/30] iter: [245/391] loss_D: 1.3853 loss_G: 0.6926 +2018-11-15 04:31:25,645 | epoch: [10/30] iter: [246/391] loss_D: 1.3855 loss_G: 0.6928 +2018-11-15 04:31:30,630 | epoch: [10/30] iter: [247/391] loss_D: 1.3845 loss_G: 0.6928 +2018-11-15 04:31:36,406 | epoch: [10/30] iter: [248/391] loss_D: 1.3847 loss_G: 0.6922 +2018-11-15 04:31:40,903 | epoch: [10/30] iter: [249/391] loss_D: 1.3850 loss_G: 0.6922 +2018-11-15 04:31:45,583 | epoch: [10/30] iter: [250/391] loss_D: 1.3855 loss_G: 0.6930 +2018-11-15 04:31:49,836 | epoch: [10/30] iter: [251/391] loss_D: 1.3844 loss_G: 0.6930 +2018-11-15 04:31:54,942 | epoch: [10/30] iter: [252/391] loss_D: 1.3832 loss_G: 0.6927 +2018-11-15 04:32:02,385 | epoch: [10/30] iter: [253/391] loss_D: 1.3826 loss_G: 0.6928 +2018-11-15 04:32:06,927 | epoch: [10/30] iter: [254/391] loss_D: 1.3826 loss_G: 0.6931 +2018-11-15 04:32:11,001 | epoch: [10/30] iter: [255/391] loss_D: 1.3829 loss_G: 0.6917 +2018-11-15 04:32:15,527 | epoch: [10/30] iter: [256/391] loss_D: 1.3843 loss_G: 0.6921 +2018-11-15 04:32:20,015 | epoch: [10/30] iter: [257/391] loss_D: 1.3844 loss_G: 0.6919 +2018-11-15 04:32:26,174 | epoch: [10/30] iter: [258/391] loss_D: 1.3838 loss_G: 0.6919 +2018-11-15 04:32:32,190 | epoch: [10/30] iter: [259/391] loss_D: 1.3855 loss_G: 0.6916 +2018-11-15 04:32:38,034 | epoch: [10/30] iter: [260/391] loss_D: 1.3873 loss_G: 0.6920 +2018-11-15 04:32:42,667 | epoch: [10/30] iter: [261/391] loss_D: 1.3856 loss_G: 0.6939 +2018-11-15 04:32:47,029 | epoch: [10/30] iter: [262/391] loss_D: 1.3863 loss_G: 0.6927 +2018-11-15 04:32:51,226 | epoch: [10/30] iter: [263/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 04:32:56,081 | epoch: [10/30] iter: [264/391] loss_D: 1.3858 loss_G: 0.6968 +2018-11-15 04:33:01,630 | epoch: [10/30] iter: [265/391] loss_D: 1.3880 loss_G: 0.6954 +2018-11-15 04:33:06,080 | epoch: [10/30] iter: [266/391] loss_D: 1.3876 loss_G: 0.6958 +2018-11-15 04:33:10,748 | epoch: [10/30] iter: [267/391] loss_D: 1.3864 loss_G: 0.6952 +2018-11-15 04:33:17,808 | epoch: [10/30] iter: [268/391] loss_D: 1.3876 loss_G: 0.6958 +2018-11-15 04:33:22,496 | epoch: [10/30] iter: [269/391] loss_D: 1.3903 loss_G: 0.6950 +2018-11-15 04:33:26,756 | epoch: [10/30] iter: [270/391] loss_D: 1.3887 loss_G: 0.6956 +2018-11-15 04:33:32,080 | epoch: [10/30] iter: [271/391] loss_D: 1.3881 loss_G: 0.6966 +2018-11-15 04:33:38,857 | epoch: [10/30] iter: [272/391] loss_D: 1.3902 loss_G: 0.6938 +2018-11-15 04:33:44,243 | epoch: [10/30] iter: [273/391] loss_D: 1.3880 loss_G: 0.6943 +2018-11-15 04:33:49,656 | epoch: [10/30] iter: [274/391] loss_D: 1.3873 loss_G: 0.6943 +2018-11-15 04:33:53,929 | epoch: [10/30] iter: [275/391] loss_D: 1.3878 loss_G: 0.6944 +2018-11-15 04:33:58,586 | epoch: [10/30] iter: [276/391] loss_D: 1.3867 loss_G: 0.6940 +2018-11-15 04:34:06,478 | epoch: [10/30] iter: [277/391] loss_D: 1.3850 loss_G: 0.6951 +2018-11-15 04:34:11,052 | epoch: [10/30] iter: [278/391] loss_D: 1.3877 loss_G: 0.6948 +2018-11-15 04:34:15,580 | epoch: [10/30] iter: [279/391] loss_D: 1.3859 loss_G: 0.6953 +2018-11-15 04:34:20,086 | epoch: [10/30] iter: [280/391] loss_D: 1.3830 loss_G: 0.6943 +2018-11-15 04:34:24,465 | epoch: [10/30] iter: [281/391] loss_D: 1.3868 loss_G: 0.6928 +2018-11-15 04:34:30,980 | epoch: [10/30] iter: [282/391] loss_D: 1.3864 loss_G: 0.6912 +2018-11-15 04:34:36,674 | epoch: [10/30] iter: [283/391] loss_D: 1.3897 loss_G: 0.6926 +2018-11-15 04:34:40,994 | epoch: [10/30] iter: [284/391] loss_D: 1.3865 loss_G: 0.6920 +2018-11-15 04:34:45,202 | epoch: [10/30] iter: [285/391] loss_D: 1.3857 loss_G: 0.6912 +2018-11-15 04:34:49,409 | epoch: [10/30] iter: [286/391] loss_D: 1.3863 loss_G: 0.6909 +2018-11-15 04:34:55,313 | epoch: [10/30] iter: [287/391] loss_D: 1.3856 loss_G: 0.6897 +2018-11-15 04:35:00,740 | epoch: [10/30] iter: [288/391] loss_D: 1.3856 loss_G: 0.6916 +2018-11-15 04:35:05,957 | epoch: [10/30] iter: [289/391] loss_D: 1.3862 loss_G: 0.6901 +2018-11-15 04:35:11,933 | epoch: [10/30] iter: [290/391] loss_D: 1.3902 loss_G: 0.6895 +2018-11-15 04:35:16,590 | epoch: [10/30] iter: [291/391] loss_D: 1.3876 loss_G: 0.6899 +2018-11-15 04:35:20,888 | epoch: [10/30] iter: [292/391] loss_D: 1.3892 loss_G: 0.6915 +2018-11-15 04:35:25,062 | epoch: [10/30] iter: [293/391] loss_D: 1.3887 loss_G: 0.6910 +2018-11-15 04:35:29,702 | epoch: [10/30] iter: [294/391] loss_D: 1.3888 loss_G: 0.6920 +2018-11-15 04:35:34,117 | epoch: [10/30] iter: [295/391] loss_D: 1.3902 loss_G: 0.6927 +2018-11-15 04:35:38,781 | epoch: [10/30] iter: [296/391] loss_D: 1.3901 loss_G: 0.6929 +2018-11-15 04:35:46,401 | epoch: [10/30] iter: [297/391] loss_D: 1.3878 loss_G: 0.6951 +2018-11-15 04:35:51,055 | epoch: [10/30] iter: [298/391] loss_D: 1.3894 loss_G: 0.6941 +2018-11-15 04:35:55,512 | epoch: [10/30] iter: [299/391] loss_D: 1.3889 loss_G: 0.6944 +2018-11-15 04:35:59,974 | epoch: [10/30] iter: [300/391] loss_D: 1.3862 loss_G: 0.6961 +2018-11-15 04:36:04,513 | epoch: [10/30] iter: [301/391] loss_D: 1.3874 loss_G: 0.6968 +2018-11-15 04:36:11,024 | epoch: [10/30] iter: [302/391] loss_D: 1.3870 loss_G: 0.6981 +2018-11-15 04:36:16,761 | epoch: [10/30] iter: [303/391] loss_D: 1.3860 loss_G: 0.6961 +2018-11-15 04:36:23,085 | epoch: [10/30] iter: [304/391] loss_D: 1.3846 loss_G: 0.6970 +2018-11-15 04:36:28,408 | epoch: [10/30] iter: [305/391] loss_D: 1.3853 loss_G: 0.6960 +2018-11-15 04:36:34,079 | epoch: [10/30] iter: [306/391] loss_D: 1.3834 loss_G: 0.6968 +2018-11-15 04:36:39,892 | epoch: [10/30] iter: [307/391] loss_D: 1.3842 loss_G: 0.6952 +2018-11-15 04:36:45,793 | epoch: [10/30] iter: [308/391] loss_D: 1.3843 loss_G: 0.6967 +2018-11-15 04:36:50,464 | epoch: [10/30] iter: [309/391] loss_D: 1.3833 loss_G: 0.6950 +2018-11-15 04:36:54,922 | epoch: [10/30] iter: [310/391] loss_D: 1.3851 loss_G: 0.6933 +2018-11-15 04:37:00,592 | epoch: [10/30] iter: [311/391] loss_D: 1.3838 loss_G: 0.6938 +2018-11-15 04:37:07,518 | epoch: [10/30] iter: [312/391] loss_D: 1.3862 loss_G: 0.6939 +2018-11-15 04:37:12,962 | epoch: [10/30] iter: [313/391] loss_D: 1.3861 loss_G: 0.6944 +2018-11-15 04:37:18,039 | epoch: [10/30] iter: [314/391] loss_D: 1.3878 loss_G: 0.6929 +2018-11-15 04:37:22,469 | epoch: [10/30] iter: [315/391] loss_D: 1.3880 loss_G: 0.6942 +2018-11-15 04:37:27,128 | epoch: [10/30] iter: [316/391] loss_D: 1.3874 loss_G: 0.6922 +2018-11-15 04:37:31,659 | epoch: [10/30] iter: [317/391] loss_D: 1.3879 loss_G: 0.6924 +2018-11-15 04:37:36,232 | epoch: [10/30] iter: [318/391] loss_D: 1.3871 loss_G: 0.6925 +2018-11-15 04:37:40,844 | epoch: [10/30] iter: [319/391] loss_D: 1.3878 loss_G: 0.6924 +2018-11-15 04:37:47,652 | epoch: [10/30] iter: [320/391] loss_D: 1.3873 loss_G: 0.6924 +2018-11-15 04:37:53,567 | epoch: [10/30] iter: [321/391] loss_D: 1.3879 loss_G: 0.6935 +2018-11-15 04:37:57,912 | epoch: [10/30] iter: [322/391] loss_D: 1.3867 loss_G: 0.6942 +2018-11-15 04:38:02,027 | epoch: [10/30] iter: [323/391] loss_D: 1.3861 loss_G: 0.6949 +2018-11-15 04:38:06,288 | epoch: [10/30] iter: [324/391] loss_D: 1.3862 loss_G: 0.6939 +2018-11-15 04:38:12,309 | epoch: [10/30] iter: [325/391] loss_D: 1.3853 loss_G: 0.6941 +2018-11-15 04:38:18,268 | epoch: [10/30] iter: [326/391] loss_D: 1.3849 loss_G: 0.6947 +2018-11-15 04:38:23,033 | epoch: [10/30] iter: [327/391] loss_D: 1.3848 loss_G: 0.6950 +2018-11-15 04:38:27,166 | epoch: [10/30] iter: [328/391] loss_D: 1.3847 loss_G: 0.6953 +2018-11-15 04:38:31,410 | epoch: [10/30] iter: [329/391] loss_D: 1.3837 loss_G: 0.6946 +2018-11-15 04:38:36,224 | epoch: [10/30] iter: [330/391] loss_D: 1.3842 loss_G: 0.6935 +2018-11-15 04:38:41,641 | epoch: [10/30] iter: [331/391] loss_D: 1.3839 loss_G: 0.6943 +2018-11-15 04:38:45,807 | epoch: [10/30] iter: [332/391] loss_D: 1.3832 loss_G: 0.6938 +2018-11-15 04:38:50,315 | epoch: [10/30] iter: [333/391] loss_D: 1.3853 loss_G: 0.6935 +2018-11-15 04:38:57,816 | epoch: [10/30] iter: [334/391] loss_D: 1.3867 loss_G: 0.6927 +2018-11-15 04:39:02,908 | epoch: [10/30] iter: [335/391] loss_D: 1.3850 loss_G: 0.6919 +2018-11-15 04:39:07,258 | epoch: [10/30] iter: [336/391] loss_D: 1.3843 loss_G: 0.6935 +2018-11-15 04:40:58,950 | epoch: [10/30] iter: [337/391] loss_D: 1.3842 loss_G: 0.6934 +2018-11-15 04:41:03,136 | epoch: [10/30] iter: [338/391] loss_D: 1.3842 loss_G: 0.6914 +2018-11-15 04:41:07,677 | epoch: [10/30] iter: [339/391] loss_D: 1.3859 loss_G: 0.6911 +2018-11-15 04:41:15,070 | epoch: [10/30] iter: [340/391] loss_D: 1.3864 loss_G: 0.6934 +2018-11-15 04:41:21,510 | epoch: [10/30] iter: [341/391] loss_D: 1.3874 loss_G: 0.6920 +2018-11-15 04:41:28,929 | epoch: [10/30] iter: [342/391] loss_D: 1.3871 loss_G: 0.6947 +2018-11-15 04:41:36,381 | epoch: [10/30] iter: [343/391] loss_D: 1.3863 loss_G: 0.6961 +2018-11-15 04:41:43,157 | epoch: [10/30] iter: [344/391] loss_D: 1.3867 loss_G: 0.6984 +2018-11-15 04:41:50,108 | epoch: [10/30] iter: [345/391] loss_D: 1.3834 loss_G: 0.7016 +2018-11-15 04:41:57,238 | epoch: [10/30] iter: [346/391] loss_D: 1.3822 loss_G: 0.7037 +2018-11-15 04:42:04,271 | epoch: [10/30] iter: [347/391] loss_D: 1.3817 loss_G: 0.7048 +2018-11-15 04:42:11,003 | epoch: [10/30] iter: [348/391] loss_D: 1.3810 loss_G: 0.7057 +2018-11-15 04:42:17,902 | epoch: [10/30] iter: [349/391] loss_D: 1.3903 loss_G: 0.7013 +2018-11-15 04:42:24,821 | epoch: [10/30] iter: [350/391] loss_D: 1.3875 loss_G: 0.6947 +2018-11-15 04:42:31,921 | epoch: [10/30] iter: [351/391] loss_D: 1.3887 loss_G: 0.6921 +2018-11-15 04:42:39,222 | epoch: [10/30] iter: [352/391] loss_D: 1.3909 loss_G: 0.6925 +2018-11-15 04:42:46,013 | epoch: [10/30] iter: [353/391] loss_D: 1.3872 loss_G: 0.6905 +2018-11-15 04:42:53,233 | epoch: [10/30] iter: [354/391] loss_D: 1.3863 loss_G: 0.6915 +2018-11-15 04:43:00,182 | epoch: [10/30] iter: [355/391] loss_D: 1.3859 loss_G: 0.6920 +2018-11-15 04:43:07,428 | epoch: [10/30] iter: [356/391] loss_D: 1.3872 loss_G: 0.6924 +2018-11-15 04:43:14,577 | epoch: [10/30] iter: [357/391] loss_D: 1.3870 loss_G: 0.6917 +2018-11-15 04:43:21,390 | epoch: [10/30] iter: [358/391] loss_D: 1.3875 loss_G: 0.6910 +2018-11-15 04:43:26,337 | epoch: [10/30] iter: [359/391] loss_D: 1.3876 loss_G: 0.6925 +2018-11-15 04:43:30,471 | epoch: [10/30] iter: [360/391] loss_D: 1.3887 loss_G: 0.6938 +2018-11-15 04:43:34,530 | epoch: [10/30] iter: [361/391] loss_D: 1.3905 loss_G: 0.6920 +2018-11-15 04:43:38,430 | epoch: [10/30] iter: [362/391] loss_D: 1.3875 loss_G: 0.6933 +2018-11-15 04:43:42,262 | epoch: [10/30] iter: [363/391] loss_D: 1.3903 loss_G: 0.6926 +2018-11-15 04:43:46,370 | epoch: [10/30] iter: [364/391] loss_D: 1.3896 loss_G: 0.6925 +2018-11-15 04:43:52,884 | epoch: [10/30] iter: [365/391] loss_D: 1.3885 loss_G: 0.6947 +2018-11-15 04:43:59,721 | epoch: [10/30] iter: [366/391] loss_D: 1.3872 loss_G: 0.6950 +2018-11-15 04:44:06,422 | epoch: [10/30] iter: [367/391] loss_D: 1.3856 loss_G: 0.6941 +2018-11-15 04:44:13,352 | epoch: [10/30] iter: [368/391] loss_D: 1.3872 loss_G: 0.6950 +2018-11-15 04:44:20,440 | epoch: [10/30] iter: [369/391] loss_D: 1.3866 loss_G: 0.6951 +2018-11-15 04:44:27,610 | epoch: [10/30] iter: [370/391] loss_D: 1.3866 loss_G: 0.6956 +2018-11-15 04:44:34,397 | epoch: [10/30] iter: [371/391] loss_D: 1.3855 loss_G: 0.6949 +2018-11-15 04:44:41,674 | epoch: [10/30] iter: [372/391] loss_D: 1.3852 loss_G: 0.6940 +2018-11-15 04:44:48,690 | epoch: [10/30] iter: [373/391] loss_D: 1.3842 loss_G: 0.6956 +2018-11-15 04:44:55,536 | epoch: [10/30] iter: [374/391] loss_D: 1.3848 loss_G: 0.6952 +2018-11-15 04:44:59,626 | epoch: [10/30] iter: [375/391] loss_D: 1.3849 loss_G: 0.6951 +2018-11-15 04:45:03,911 | epoch: [10/30] iter: [376/391] loss_D: 1.3855 loss_G: 0.6938 +2018-11-15 04:45:07,951 | epoch: [10/30] iter: [377/391] loss_D: 1.3841 loss_G: 0.6966 +2018-11-15 04:45:12,155 | epoch: [10/30] iter: [378/391] loss_D: 1.3854 loss_G: 0.6941 +2018-11-15 04:45:16,361 | epoch: [10/30] iter: [379/391] loss_D: 1.3840 loss_G: 0.6940 +2018-11-15 04:45:21,718 | epoch: [10/30] iter: [380/391] loss_D: 1.3866 loss_G: 0.6948 +2018-11-15 04:45:28,839 | epoch: [10/30] iter: [381/391] loss_D: 1.3849 loss_G: 0.6935 +2018-11-15 04:45:36,075 | epoch: [10/30] iter: [382/391] loss_D: 1.3870 loss_G: 0.6924 +2018-11-15 04:45:43,033 | epoch: [10/30] iter: [383/391] loss_D: 1.3872 loss_G: 0.6918 +2018-11-15 04:45:49,851 | epoch: [10/30] iter: [384/391] loss_D: 1.3876 loss_G: 0.6916 +2018-11-15 04:45:56,966 | epoch: [10/30] iter: [385/391] loss_D: 1.3881 loss_G: 0.6914 +2018-11-15 04:46:03,874 | epoch: [10/30] iter: [386/391] loss_D: 1.3888 loss_G: 0.6917 +2018-11-15 04:46:10,842 | epoch: [10/30] iter: [387/391] loss_D: 1.3890 loss_G: 0.6916 +2018-11-15 04:46:18,304 | epoch: [10/30] iter: [388/391] loss_D: 1.3874 loss_G: 0.6922 +2018-11-15 04:46:25,314 | epoch: [10/30] iter: [389/391] loss_D: 1.3887 loss_G: 0.6922 +2018-11-15 04:46:29,856 | epoch: [10/30] iter: [390/391] loss_D: 1.3882 loss_G: 0.6935 +2018-11-15 04:46:37,276 | epoch: [11/30] iter: [0/391] loss_D: 1.3873 loss_G: 0.6930 +2018-11-15 04:46:43,917 | epoch: [11/30] iter: [1/391] loss_D: 1.3869 loss_G: 0.6939 +2018-11-15 04:46:47,928 | epoch: [11/30] iter: [2/391] loss_D: 1.3878 loss_G: 0.6930 +2018-11-15 04:46:52,166 | epoch: [11/30] iter: [3/391] loss_D: 1.3865 loss_G: 0.6952 +2018-11-15 04:46:56,122 | epoch: [11/30] iter: [4/391] loss_D: 1.3872 loss_G: 0.6953 +2018-11-15 04:47:00,373 | epoch: [11/30] iter: [5/391] loss_D: 1.3872 loss_G: 0.6939 +2018-11-15 04:47:04,631 | epoch: [11/30] iter: [6/391] loss_D: 1.3875 loss_G: 0.6957 +2018-11-15 04:47:08,838 | epoch: [11/30] iter: [7/391] loss_D: 1.3859 loss_G: 0.6954 +2018-11-15 04:47:14,510 | epoch: [11/30] iter: [8/391] loss_D: 1.3858 loss_G: 0.6944 +2018-11-15 04:47:21,803 | epoch: [11/30] iter: [9/391] loss_D: 1.3867 loss_G: 0.6949 +2018-11-15 04:47:29,056 | epoch: [11/30] iter: [10/391] loss_D: 1.3860 loss_G: 0.6948 +2018-11-15 04:47:35,983 | epoch: [11/30] iter: [11/391] loss_D: 1.3862 loss_G: 0.6931 +2018-11-15 04:47:43,002 | epoch: [11/30] iter: [12/391] loss_D: 1.3861 loss_G: 0.6937 +2018-11-15 04:47:49,885 | epoch: [11/30] iter: [13/391] loss_D: 1.3861 loss_G: 0.6936 +2018-11-15 04:47:56,953 | epoch: [11/30] iter: [14/391] loss_D: 1.3851 loss_G: 0.6944 +2018-11-15 04:48:04,082 | epoch: [11/30] iter: [15/391] loss_D: 1.3848 loss_G: 0.6942 +2018-11-15 04:48:10,946 | epoch: [11/30] iter: [16/391] loss_D: 1.3854 loss_G: 0.6939 +2018-11-15 04:48:17,541 | epoch: [11/30] iter: [17/391] loss_D: 1.3853 loss_G: 0.6944 +2018-11-15 04:48:22,102 | epoch: [11/30] iter: [18/391] loss_D: 1.3849 loss_G: 0.6944 +2018-11-15 04:48:26,296 | epoch: [11/30] iter: [19/391] loss_D: 1.3854 loss_G: 0.6942 +2018-11-15 04:48:30,300 | epoch: [11/30] iter: [20/391] loss_D: 1.3860 loss_G: 0.6928 +2018-11-15 04:48:34,517 | epoch: [11/30] iter: [21/391] loss_D: 1.3853 loss_G: 0.6931 +2018-11-15 04:48:38,685 | epoch: [11/30] iter: [22/391] loss_D: 1.3869 loss_G: 0.6924 +2018-11-15 04:48:42,996 | epoch: [11/30] iter: [23/391] loss_D: 1.3874 loss_G: 0.6917 +2018-11-15 04:48:47,144 | epoch: [11/30] iter: [24/391] loss_D: 1.3889 loss_G: 0.6928 +2018-11-15 04:48:51,281 | epoch: [11/30] iter: [25/391] loss_D: 1.3879 loss_G: 0.6925 +2018-11-15 04:48:55,769 | epoch: [11/30] iter: [26/391] loss_D: 1.3867 loss_G: 0.6928 +2018-11-15 04:49:02,887 | epoch: [11/30] iter: [27/391] loss_D: 1.3871 loss_G: 0.6927 +2018-11-15 04:49:09,871 | epoch: [11/30] iter: [28/391] loss_D: 1.3866 loss_G: 0.6921 +2018-11-15 04:49:16,940 | epoch: [11/30] iter: [29/391] loss_D: 1.3860 loss_G: 0.6927 +2018-11-15 04:49:23,834 | epoch: [11/30] iter: [30/391] loss_D: 1.3866 loss_G: 0.6914 +2018-11-15 04:49:31,129 | epoch: [11/30] iter: [31/391] loss_D: 1.3878 loss_G: 0.6921 +2018-11-15 04:49:38,063 | epoch: [11/30] iter: [32/391] loss_D: 1.3877 loss_G: 0.6916 +2018-11-15 04:49:45,031 | epoch: [11/30] iter: [33/391] loss_D: 1.3864 loss_G: 0.6920 +2018-11-15 04:49:52,162 | epoch: [11/30] iter: [34/391] loss_D: 1.3871 loss_G: 0.6920 +2018-11-15 04:49:59,519 | epoch: [11/30] iter: [35/391] loss_D: 1.3864 loss_G: 0.6918 +2018-11-15 04:50:06,351 | epoch: [11/30] iter: [36/391] loss_D: 1.3881 loss_G: 0.6915 +2018-11-15 04:50:13,159 | epoch: [11/30] iter: [37/391] loss_D: 1.3865 loss_G: 0.6929 +2018-11-15 04:50:20,120 | epoch: [11/30] iter: [38/391] loss_D: 1.3873 loss_G: 0.6921 +2018-11-15 04:50:27,411 | epoch: [11/30] iter: [39/391] loss_D: 1.3874 loss_G: 0.6917 +2018-11-15 04:50:34,661 | epoch: [11/30] iter: [40/391] loss_D: 1.3870 loss_G: 0.6920 +2018-11-15 04:50:41,638 | epoch: [11/30] iter: [41/391] loss_D: 1.3870 loss_G: 0.6924 +2018-11-15 04:50:48,022 | epoch: [11/30] iter: [42/391] loss_D: 1.3859 loss_G: 0.6931 +2018-11-15 04:50:52,123 | epoch: [11/30] iter: [43/391] loss_D: 1.3863 loss_G: 0.6926 +2018-11-15 04:50:56,179 | epoch: [11/30] iter: [44/391] loss_D: 1.3869 loss_G: 0.6922 +2018-11-15 04:51:00,309 | epoch: [11/30] iter: [45/391] loss_D: 1.3866 loss_G: 0.6925 +2018-11-15 04:53:04,908 | epoch: [11/30] iter: [46/391] loss_D: 1.3863 loss_G: 0.6928 +2018-11-15 04:53:08,850 | epoch: [11/30] iter: [47/391] loss_D: 1.3859 loss_G: 0.6931 +2018-11-15 04:53:12,921 | epoch: [11/30] iter: [48/391] loss_D: 1.3861 loss_G: 0.6933 +2018-11-15 04:53:16,875 | epoch: [11/30] iter: [49/391] loss_D: 1.3864 loss_G: 0.6935 +2018-11-15 04:53:22,197 | epoch: [11/30] iter: [50/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 04:53:29,506 | epoch: [11/30] iter: [51/391] loss_D: 1.3852 loss_G: 0.6934 +2018-11-15 04:53:36,351 | epoch: [11/30] iter: [52/391] loss_D: 1.3862 loss_G: 0.6934 +2018-11-15 04:53:43,338 | epoch: [11/30] iter: [53/391] loss_D: 1.3848 loss_G: 0.6936 +2018-11-15 04:53:49,986 | epoch: [11/30] iter: [54/391] loss_D: 1.3852 loss_G: 0.6934 +2018-11-15 04:53:57,049 | epoch: [11/30] iter: [55/391] loss_D: 1.3860 loss_G: 0.6929 +2018-11-15 04:54:03,681 | epoch: [11/30] iter: [56/391] loss_D: 1.3854 loss_G: 0.6933 +2018-11-15 04:54:10,968 | epoch: [11/30] iter: [57/391] loss_D: 1.3846 loss_G: 0.6945 +2018-11-15 04:54:17,901 | epoch: [11/30] iter: [58/391] loss_D: 1.3859 loss_G: 0.6936 +2018-11-15 04:54:24,904 | epoch: [11/30] iter: [59/391] loss_D: 1.3848 loss_G: 0.6936 +2018-11-15 04:54:31,538 | epoch: [11/30] iter: [60/391] loss_D: 1.3858 loss_G: 0.6929 +2018-11-15 04:54:38,822 | epoch: [11/30] iter: [61/391] loss_D: 1.3848 loss_G: 0.6934 +2018-11-15 04:54:45,030 | epoch: [11/30] iter: [62/391] loss_D: 1.3867 loss_G: 0.6927 +2018-11-15 04:54:49,156 | epoch: [11/30] iter: [63/391] loss_D: 1.3859 loss_G: 0.6940 +2018-11-15 04:54:53,022 | epoch: [11/30] iter: [64/391] loss_D: 1.3860 loss_G: 0.6932 +2018-11-15 04:54:57,004 | epoch: [11/30] iter: [65/391] loss_D: 1.3856 loss_G: 0.6925 +2018-11-15 04:55:00,886 | epoch: [11/30] iter: [66/391] loss_D: 1.3881 loss_G: 0.6922 +2018-11-15 04:55:05,075 | epoch: [11/30] iter: [67/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 04:55:10,494 | epoch: [11/30] iter: [68/391] loss_D: 1.3877 loss_G: 0.6920 +2018-11-15 04:55:17,256 | epoch: [11/30] iter: [69/391] loss_D: 1.3847 loss_G: 0.6929 +2018-11-15 04:55:24,258 | epoch: [11/30] iter: [70/391] loss_D: 1.3880 loss_G: 0.6934 +2018-11-15 04:55:30,990 | epoch: [11/30] iter: [71/391] loss_D: 1.3867 loss_G: 0.6932 +2018-11-15 04:55:38,219 | epoch: [11/30] iter: [72/391] loss_D: 1.3868 loss_G: 0.6934 +2018-11-15 04:55:44,874 | epoch: [11/30] iter: [73/391] loss_D: 1.3866 loss_G: 0.6940 +2018-11-15 04:55:52,064 | epoch: [11/30] iter: [74/391] loss_D: 1.3854 loss_G: 0.6948 +2018-11-15 04:55:59,074 | epoch: [11/30] iter: [75/391] loss_D: 1.3870 loss_G: 0.6942 +2018-11-15 04:56:06,371 | epoch: [11/30] iter: [76/391] loss_D: 1.3854 loss_G: 0.6946 +2018-11-15 04:56:13,274 | epoch: [11/30] iter: [77/391] loss_D: 1.3853 loss_G: 0.6941 +2018-11-15 04:56:18,496 | epoch: [11/30] iter: [78/391] loss_D: 1.3860 loss_G: 0.6938 +2018-11-15 04:56:22,617 | epoch: [11/30] iter: [79/391] loss_D: 1.3867 loss_G: 0.6933 +2018-11-15 04:56:26,473 | epoch: [11/30] iter: [80/391] loss_D: 1.3864 loss_G: 0.6934 +2018-11-15 04:56:30,352 | epoch: [11/30] iter: [81/391] loss_D: 1.3869 loss_G: 0.6937 +2018-11-15 04:56:34,358 | epoch: [11/30] iter: [82/391] loss_D: 1.3880 loss_G: 0.6941 +2018-11-15 04:56:38,495 | epoch: [11/30] iter: [83/391] loss_D: 1.3883 loss_G: 0.6934 +2018-11-15 04:56:42,714 | epoch: [11/30] iter: [84/391] loss_D: 1.3879 loss_G: 0.6932 +2018-11-15 04:56:49,040 | epoch: [11/30] iter: [85/391] loss_D: 1.3883 loss_G: 0.6926 +2018-11-15 04:56:55,931 | epoch: [11/30] iter: [86/391] loss_D: 1.3883 loss_G: 0.6933 +2018-11-15 04:57:02,703 | epoch: [11/30] iter: [87/391] loss_D: 1.3873 loss_G: 0.6931 +2018-11-15 04:57:10,095 | epoch: [11/30] iter: [88/391] loss_D: 1.3876 loss_G: 0.6932 +2018-11-15 04:57:17,220 | epoch: [11/30] iter: [89/391] loss_D: 1.3872 loss_G: 0.6936 +2018-11-15 04:57:23,947 | epoch: [11/30] iter: [90/391] loss_D: 1.3864 loss_G: 0.6939 +2018-11-15 04:57:31,031 | epoch: [11/30] iter: [91/391] loss_D: 1.3871 loss_G: 0.6942 +2018-11-15 04:57:37,786 | epoch: [11/30] iter: [92/391] loss_D: 1.3862 loss_G: 0.6950 +2018-11-15 04:57:44,415 | epoch: [11/30] iter: [93/391] loss_D: 1.3865 loss_G: 0.6950 +2018-11-15 04:57:48,502 | epoch: [11/30] iter: [94/391] loss_D: 1.3864 loss_G: 0.6941 +2018-11-15 04:57:52,576 | epoch: [11/30] iter: [95/391] loss_D: 1.3861 loss_G: 0.6946 +2018-11-15 04:57:56,582 | epoch: [11/30] iter: [96/391] loss_D: 1.3860 loss_G: 0.6940 +2018-11-15 04:58:00,538 | epoch: [11/30] iter: [97/391] loss_D: 1.3861 loss_G: 0.6938 +2018-11-15 04:58:04,559 | epoch: [11/30] iter: [98/391] loss_D: 1.3868 loss_G: 0.6934 +2018-11-15 04:58:09,830 | epoch: [11/30] iter: [99/391] loss_D: 1.3863 loss_G: 0.6926 +2018-11-15 04:58:17,110 | epoch: [11/30] iter: [100/391] loss_D: 1.3867 loss_G: 0.6929 +2018-11-15 04:58:24,024 | epoch: [11/30] iter: [101/391] loss_D: 1.3867 loss_G: 0.6930 +2018-11-15 04:58:31,146 | epoch: [11/30] iter: [102/391] loss_D: 1.3876 loss_G: 0.6926 +2018-11-15 04:58:37,757 | epoch: [11/30] iter: [103/391] loss_D: 1.3877 loss_G: 0.6933 +2018-11-15 04:58:44,518 | epoch: [11/30] iter: [104/391] loss_D: 1.3861 loss_G: 0.6928 +2018-11-15 04:58:51,447 | epoch: [11/30] iter: [105/391] loss_D: 1.3880 loss_G: 0.6937 +2018-11-15 04:58:58,273 | epoch: [11/30] iter: [106/391] loss_D: 1.3866 loss_G: 0.6920 +2018-11-15 04:59:05,303 | epoch: [11/30] iter: [107/391] loss_D: 1.3870 loss_G: 0.6941 +2018-11-15 04:59:12,324 | epoch: [11/30] iter: [108/391] loss_D: 1.3858 loss_G: 0.6940 +2018-11-15 04:59:19,038 | epoch: [11/30] iter: [109/391] loss_D: 1.3865 loss_G: 0.6946 +2018-11-15 04:59:25,815 | epoch: [11/30] iter: [110/391] loss_D: 1.3869 loss_G: 0.6937 +2018-11-15 04:59:33,213 | epoch: [11/30] iter: [111/391] loss_D: 1.3866 loss_G: 0.6939 +2018-11-15 04:59:38,359 | epoch: [11/30] iter: [112/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 04:59:42,530 | epoch: [11/30] iter: [113/391] loss_D: 1.3862 loss_G: 0.6934 +2018-11-15 04:59:46,374 | epoch: [11/30] iter: [114/391] loss_D: 1.3855 loss_G: 0.6938 +2018-11-15 04:59:50,524 | epoch: [11/30] iter: [115/391] loss_D: 1.3864 loss_G: 0.6938 +2018-11-15 04:59:54,620 | epoch: [11/30] iter: [116/391] loss_D: 1.3866 loss_G: 0.6943 +2018-11-15 04:59:58,466 | epoch: [11/30] iter: [117/391] loss_D: 1.3860 loss_G: 0.6938 +2018-11-15 05:00:02,593 | epoch: [11/30] iter: [118/391] loss_D: 1.3864 loss_G: 0.6942 +2018-11-15 05:00:08,822 | epoch: [11/30] iter: [119/391] loss_D: 1.3862 loss_G: 0.6945 +2018-11-15 05:00:16,058 | epoch: [11/30] iter: [120/391] loss_D: 1.3876 loss_G: 0.6940 +2018-11-15 05:00:23,061 | epoch: [11/30] iter: [121/391] loss_D: 1.3855 loss_G: 0.6941 +2018-11-15 05:00:30,163 | epoch: [11/30] iter: [122/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 05:00:36,807 | epoch: [11/30] iter: [123/391] loss_D: 1.3868 loss_G: 0.6933 +2018-11-15 05:00:43,813 | epoch: [11/30] iter: [124/391] loss_D: 1.3862 loss_G: 0.6938 +2018-11-15 05:00:50,777 | epoch: [11/30] iter: [125/391] loss_D: 1.3868 loss_G: 0.6934 +2018-11-15 05:00:57,687 | epoch: [11/30] iter: [126/391] loss_D: 1.3863 loss_G: 0.6937 +2018-11-15 05:01:04,933 | epoch: [11/30] iter: [127/391] loss_D: 1.3871 loss_G: 0.6929 +2018-11-15 05:01:11,829 | epoch: [11/30] iter: [128/391] loss_D: 1.3866 loss_G: 0.6929 +2018-11-15 05:01:18,564 | epoch: [11/30] iter: [129/391] loss_D: 1.3866 loss_G: 0.6929 +2018-11-15 05:01:23,214 | epoch: [11/30] iter: [130/391] loss_D: 1.3866 loss_G: 0.6937 +2018-11-15 05:01:27,260 | epoch: [11/30] iter: [131/391] loss_D: 1.3874 loss_G: 0.6925 +2018-11-15 05:01:31,325 | epoch: [11/30] iter: [132/391] loss_D: 1.3872 loss_G: 0.6931 +2018-11-15 05:01:35,431 | epoch: [11/30] iter: [133/391] loss_D: 1.3862 loss_G: 0.6923 +2018-11-15 05:01:39,442 | epoch: [11/30] iter: [134/391] loss_D: 1.3867 loss_G: 0.6930 +2018-11-15 05:01:43,529 | epoch: [11/30] iter: [135/391] loss_D: 1.3861 loss_G: 0.6926 +2018-11-15 05:01:47,615 | epoch: [11/30] iter: [136/391] loss_D: 1.3867 loss_G: 0.6927 +2018-11-15 05:01:51,877 | epoch: [11/30] iter: [137/391] loss_D: 1.3861 loss_G: 0.6930 +2018-11-15 05:01:56,558 | epoch: [11/30] iter: [138/391] loss_D: 1.3870 loss_G: 0.6927 +2018-11-15 05:02:03,561 | epoch: [11/30] iter: [139/391] loss_D: 1.3862 loss_G: 0.6920 +2018-11-15 05:02:10,659 | epoch: [11/30] iter: [140/391] loss_D: 1.3874 loss_G: 0.6922 +2018-11-15 05:02:17,284 | epoch: [11/30] iter: [141/391] loss_D: 1.3866 loss_G: 0.6930 +2018-11-15 05:02:23,925 | epoch: [11/30] iter: [142/391] loss_D: 1.3858 loss_G: 0.6932 +2018-11-15 05:02:30,996 | epoch: [11/30] iter: [143/391] loss_D: 1.3864 loss_G: 0.6933 +2018-11-15 05:02:38,202 | epoch: [11/30] iter: [144/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 05:02:45,292 | epoch: [11/30] iter: [145/391] loss_D: 1.3865 loss_G: 0.6933 +2018-11-15 05:04:44,708 | epoch: [11/30] iter: [146/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-15 05:04:48,868 | epoch: [11/30] iter: [147/391] loss_D: 1.3867 loss_G: 0.6938 +2018-11-15 05:04:53,091 | epoch: [11/30] iter: [148/391] loss_D: 1.3857 loss_G: 0.6943 +2018-11-15 05:04:57,199 | epoch: [11/30] iter: [149/391] loss_D: 1.3858 loss_G: 0.6931 +2018-11-15 05:05:01,418 | epoch: [11/30] iter: [150/391] loss_D: 1.3867 loss_G: 0.6940 +2018-11-15 05:05:05,512 | epoch: [11/30] iter: [151/391] loss_D: 1.3860 loss_G: 0.6931 +2018-11-15 05:05:10,791 | epoch: [11/30] iter: [152/391] loss_D: 1.3865 loss_G: 0.6932 +2018-11-15 05:05:17,686 | epoch: [11/30] iter: [153/391] loss_D: 1.3866 loss_G: 0.6920 +2018-11-15 05:05:24,868 | epoch: [11/30] iter: [154/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 05:05:32,178 | epoch: [11/30] iter: [155/391] loss_D: 1.3866 loss_G: 0.6926 +2018-11-15 05:05:38,890 | epoch: [11/30] iter: [156/391] loss_D: 1.3869 loss_G: 0.6930 +2018-11-15 05:05:45,922 | epoch: [11/30] iter: [157/391] loss_D: 1.3878 loss_G: 0.6922 +2018-11-15 05:05:53,477 | epoch: [11/30] iter: [158/391] loss_D: 1.3866 loss_G: 0.6919 +2018-11-15 05:06:00,761 | epoch: [11/30] iter: [159/391] loss_D: 1.3864 loss_G: 0.6926 +2018-11-15 05:06:07,594 | epoch: [11/30] iter: [160/391] loss_D: 1.3873 loss_G: 0.6932 +2018-11-15 05:06:14,978 | epoch: [11/30] iter: [161/391] loss_D: 1.3864 loss_G: 0.6933 +2018-11-15 05:06:22,408 | epoch: [11/30] iter: [162/391] loss_D: 1.3873 loss_G: 0.6928 +2018-11-15 05:06:29,096 | epoch: [11/30] iter: [163/391] loss_D: 1.3858 loss_G: 0.6937 +2018-11-15 05:06:36,372 | epoch: [11/30] iter: [164/391] loss_D: 1.3861 loss_G: 0.6938 +2018-11-15 05:06:43,789 | epoch: [11/30] iter: [165/391] loss_D: 1.3877 loss_G: 0.6941 +2018-11-15 05:06:51,050 | epoch: [11/30] iter: [166/391] loss_D: 1.3859 loss_G: 0.6946 +2018-11-15 05:06:55,641 | epoch: [11/30] iter: [167/391] loss_D: 1.3862 loss_G: 0.6934 +2018-11-15 05:06:59,761 | epoch: [11/30] iter: [168/391] loss_D: 1.3860 loss_G: 0.6942 +2018-11-15 05:07:03,813 | epoch: [11/30] iter: [169/391] loss_D: 1.3859 loss_G: 0.6931 +2018-11-15 05:07:07,850 | epoch: [11/30] iter: [170/391] loss_D: 1.3874 loss_G: 0.6929 +2018-11-15 05:07:12,137 | epoch: [11/30] iter: [171/391] loss_D: 1.3878 loss_G: 0.6929 +2018-11-15 05:07:16,230 | epoch: [11/30] iter: [172/391] loss_D: 1.3868 loss_G: 0.6938 +2018-11-15 05:07:20,354 | epoch: [11/30] iter: [173/391] loss_D: 1.3873 loss_G: 0.6927 +2018-11-15 05:07:27,095 | epoch: [11/30] iter: [174/391] loss_D: 1.3875 loss_G: 0.6925 +2018-11-15 05:07:33,877 | epoch: [11/30] iter: [175/391] loss_D: 1.3875 loss_G: 0.6933 +2018-11-15 05:07:41,049 | epoch: [11/30] iter: [176/391] loss_D: 1.3871 loss_G: 0.6931 +2018-11-15 05:07:48,254 | epoch: [11/30] iter: [177/391] loss_D: 1.3869 loss_G: 0.6928 +2018-11-15 05:07:55,232 | epoch: [11/30] iter: [178/391] loss_D: 1.3870 loss_G: 0.6932 +2018-11-15 05:08:02,327 | epoch: [11/30] iter: [179/391] loss_D: 1.3866 loss_G: 0.6930 +2018-11-15 05:08:08,973 | epoch: [11/30] iter: [180/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 05:08:15,641 | epoch: [11/30] iter: [181/391] loss_D: 1.3867 loss_G: 0.6935 +2018-11-15 05:08:22,172 | epoch: [11/30] iter: [182/391] loss_D: 1.3873 loss_G: 0.6938 +2018-11-15 05:08:29,438 | epoch: [11/30] iter: [183/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 05:08:36,464 | epoch: [11/30] iter: [184/391] loss_D: 1.3865 loss_G: 0.6937 +2018-11-15 05:08:43,151 | epoch: [11/30] iter: [185/391] loss_D: 1.3868 loss_G: 0.6941 +2018-11-15 05:08:47,867 | epoch: [11/30] iter: [186/391] loss_D: 1.3863 loss_G: 0.6939 +2018-11-15 05:08:52,061 | epoch: [11/30] iter: [187/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 05:08:56,254 | epoch: [11/30] iter: [188/391] loss_D: 1.3859 loss_G: 0.6940 +2018-11-15 05:09:00,257 | epoch: [11/30] iter: [189/391] loss_D: 1.3865 loss_G: 0.6938 +2018-11-15 05:09:04,393 | epoch: [11/30] iter: [190/391] loss_D: 1.3852 loss_G: 0.6938 +2018-11-15 05:09:08,986 | epoch: [11/30] iter: [191/391] loss_D: 1.3862 loss_G: 0.6939 +2018-11-15 05:09:16,148 | epoch: [11/30] iter: [192/391] loss_D: 1.3862 loss_G: 0.6935 +2018-11-15 05:09:22,998 | epoch: [11/30] iter: [193/391] loss_D: 1.3856 loss_G: 0.6940 +2018-11-15 05:09:29,946 | epoch: [11/30] iter: [194/391] loss_D: 1.3857 loss_G: 0.6935 +2018-11-15 05:09:37,298 | epoch: [11/30] iter: [195/391] loss_D: 1.3851 loss_G: 0.6930 +2018-11-15 05:09:44,318 | epoch: [11/30] iter: [196/391] loss_D: 1.3859 loss_G: 0.6936 +2018-11-15 05:09:51,097 | epoch: [11/30] iter: [197/391] loss_D: 1.3860 loss_G: 0.6931 +2018-11-15 05:09:55,798 | epoch: [11/30] iter: [198/391] loss_D: 1.3864 loss_G: 0.6938 +2018-11-15 05:09:59,734 | epoch: [11/30] iter: [199/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-15 05:10:03,814 | epoch: [11/30] iter: [200/391] loss_D: 1.3859 loss_G: 0.6939 +2018-11-15 05:10:07,753 | epoch: [11/30] iter: [201/391] loss_D: 1.3854 loss_G: 0.6939 +2018-11-15 05:10:11,704 | epoch: [11/30] iter: [202/391] loss_D: 1.3854 loss_G: 0.6933 +2018-11-15 05:10:16,026 | epoch: [11/30] iter: [203/391] loss_D: 1.3856 loss_G: 0.6937 +2018-11-15 05:10:20,186 | epoch: [11/30] iter: [204/391] loss_D: 1.3854 loss_G: 0.6935 +2018-11-15 05:10:24,400 | epoch: [11/30] iter: [205/391] loss_D: 1.3864 loss_G: 0.6940 +2018-11-15 05:10:28,416 | epoch: [11/30] iter: [206/391] loss_D: 1.3849 loss_G: 0.6938 +2018-11-15 05:10:32,454 | epoch: [11/30] iter: [207/391] loss_D: 1.3858 loss_G: 0.6937 +2018-11-15 05:10:36,884 | epoch: [11/30] iter: [208/391] loss_D: 1.3845 loss_G: 0.6936 +2018-11-15 05:10:43,650 | epoch: [11/30] iter: [209/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 05:10:50,566 | epoch: [11/30] iter: [210/391] loss_D: 1.3852 loss_G: 0.6929 +2018-11-15 05:10:57,822 | epoch: [11/30] iter: [211/391] loss_D: 1.3860 loss_G: 0.6931 +2018-11-15 05:11:05,118 | epoch: [11/30] iter: [212/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 05:11:12,458 | epoch: [11/30] iter: [213/391] loss_D: 1.3857 loss_G: 0.6940 +2018-11-15 05:11:19,391 | epoch: [11/30] iter: [214/391] loss_D: 1.3855 loss_G: 0.6929 +2018-11-15 05:11:26,348 | epoch: [11/30] iter: [215/391] loss_D: 1.3849 loss_G: 0.6934 +2018-11-15 05:11:33,191 | epoch: [11/30] iter: [216/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-15 05:11:40,331 | epoch: [11/30] iter: [217/391] loss_D: 1.3864 loss_G: 0.6929 +2018-11-15 05:11:47,066 | epoch: [11/30] iter: [218/391] loss_D: 1.3851 loss_G: 0.6926 +2018-11-15 05:11:54,270 | epoch: [11/30] iter: [219/391] loss_D: 1.3854 loss_G: 0.6935 +2018-11-15 05:12:01,191 | epoch: [11/30] iter: [220/391] loss_D: 1.3853 loss_G: 0.6935 +2018-11-15 05:12:05,238 | epoch: [11/30] iter: [221/391] loss_D: 1.3855 loss_G: 0.6930 +2018-11-15 05:12:09,423 | epoch: [11/30] iter: [222/391] loss_D: 1.3860 loss_G: 0.6931 +2018-11-15 05:12:13,601 | epoch: [11/30] iter: [223/391] loss_D: 1.3856 loss_G: 0.6929 +2018-11-15 05:12:17,538 | epoch: [11/30] iter: [224/391] loss_D: 1.3868 loss_G: 0.6927 +2018-11-15 05:12:21,827 | epoch: [11/30] iter: [225/391] loss_D: 1.3875 loss_G: 0.6923 +2018-11-15 05:12:25,976 | epoch: [11/30] iter: [226/391] loss_D: 1.3850 loss_G: 0.6942 +2018-11-15 05:12:31,142 | epoch: [11/30] iter: [227/391] loss_D: 1.3864 loss_G: 0.6936 +2018-11-15 05:12:38,272 | epoch: [11/30] iter: [228/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 05:12:45,366 | epoch: [11/30] iter: [229/391] loss_D: 1.3849 loss_G: 0.6931 +2018-11-15 05:12:52,721 | epoch: [11/30] iter: [230/391] loss_D: 1.3864 loss_G: 0.6937 +2018-11-15 05:12:59,422 | epoch: [11/30] iter: [231/391] loss_D: 1.3860 loss_G: 0.6930 +2018-11-15 05:13:06,459 | epoch: [11/30] iter: [232/391] loss_D: 1.3863 loss_G: 0.6937 +2018-11-15 05:13:13,064 | epoch: [11/30] iter: [233/391] loss_D: 1.3858 loss_G: 0.6931 +2018-11-15 05:13:20,110 | epoch: [11/30] iter: [234/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 05:13:27,085 | epoch: [11/30] iter: [235/391] loss_D: 1.3861 loss_G: 0.6943 +2018-11-15 05:13:34,434 | epoch: [11/30] iter: [236/391] loss_D: 1.3866 loss_G: 0.6936 +2018-11-15 05:13:41,594 | epoch: [11/30] iter: [237/391] loss_D: 1.3863 loss_G: 0.6937 +2018-11-15 05:13:48,665 | epoch: [11/30] iter: [238/391] loss_D: 1.3873 loss_G: 0.6938 +2018-11-15 05:13:55,742 | epoch: [11/30] iter: [239/391] loss_D: 1.3859 loss_G: 0.6938 +2018-11-15 05:14:03,053 | epoch: [11/30] iter: [240/391] loss_D: 1.3860 loss_G: 0.6939 +2018-11-15 05:14:10,191 | epoch: [11/30] iter: [241/391] loss_D: 1.3856 loss_G: 0.6931 +2018-11-15 05:14:17,258 | epoch: [11/30] iter: [242/391] loss_D: 1.3862 loss_G: 0.6927 +2018-11-15 05:14:21,259 | epoch: [11/30] iter: [243/391] loss_D: 1.3864 loss_G: 0.6928 +2018-11-15 05:14:25,260 | epoch: [11/30] iter: [244/391] loss_D: 1.3859 loss_G: 0.6924 +2018-11-15 05:14:29,384 | epoch: [11/30] iter: [245/391] loss_D: 1.3863 loss_G: 0.6925 +2018-11-15 05:16:16,667 | epoch: [11/30] iter: [246/391] loss_D: 1.3871 loss_G: 0.6928 +2018-11-15 05:16:20,815 | epoch: [11/30] iter: [247/391] loss_D: 1.3869 loss_G: 0.6931 +2018-11-15 05:16:24,852 | epoch: [11/30] iter: [248/391] loss_D: 1.3861 loss_G: 0.6926 +2018-11-15 05:16:29,319 | epoch: [11/30] iter: [249/391] loss_D: 1.3865 loss_G: 0.6940 +2018-11-15 05:16:36,206 | epoch: [11/30] iter: [250/391] loss_D: 1.3871 loss_G: 0.6937 +2018-11-15 05:16:43,375 | epoch: [11/30] iter: [251/391] loss_D: 1.3865 loss_G: 0.6941 +2018-11-15 05:16:50,523 | epoch: [11/30] iter: [252/391] loss_D: 1.3869 loss_G: 0.6932 +2018-11-15 05:16:57,421 | epoch: [11/30] iter: [253/391] loss_D: 1.3861 loss_G: 0.6936 +2018-11-15 05:17:04,461 | epoch: [11/30] iter: [254/391] loss_D: 1.3849 loss_G: 0.6931 +2018-11-15 05:17:11,279 | epoch: [11/30] iter: [255/391] loss_D: 1.3858 loss_G: 0.6933 +2018-11-15 05:17:18,559 | epoch: [11/30] iter: [256/391] loss_D: 1.3854 loss_G: 0.6933 +2018-11-15 05:17:25,763 | epoch: [11/30] iter: [257/391] loss_D: 1.3868 loss_G: 0.6927 +2018-11-15 05:17:32,871 | epoch: [11/30] iter: [258/391] loss_D: 1.3865 loss_G: 0.6935 +2018-11-15 05:17:40,251 | epoch: [11/30] iter: [259/391] loss_D: 1.3848 loss_G: 0.6938 +2018-11-15 05:17:47,387 | epoch: [11/30] iter: [260/391] loss_D: 1.3858 loss_G: 0.6939 +2018-11-15 05:17:54,399 | epoch: [11/30] iter: [261/391] loss_D: 1.3868 loss_G: 0.6925 +2018-11-15 05:18:01,386 | epoch: [11/30] iter: [262/391] loss_D: 1.3861 loss_G: 0.6929 +2018-11-15 05:18:08,236 | epoch: [11/30] iter: [263/391] loss_D: 1.3876 loss_G: 0.6930 +2018-11-15 05:18:15,217 | epoch: [11/30] iter: [264/391] loss_D: 1.3861 loss_G: 0.6932 +2018-11-15 05:18:19,815 | epoch: [11/30] iter: [265/391] loss_D: 1.3864 loss_G: 0.6933 +2018-11-15 05:18:24,025 | epoch: [11/30] iter: [266/391] loss_D: 1.3872 loss_G: 0.6931 +2018-11-15 05:18:27,977 | epoch: [11/30] iter: [267/391] loss_D: 1.3871 loss_G: 0.6935 +2018-11-15 05:18:32,165 | epoch: [11/30] iter: [268/391] loss_D: 1.3872 loss_G: 0.6935 +2018-11-15 05:18:36,310 | epoch: [11/30] iter: [269/391] loss_D: 1.3863 loss_G: 0.6932 +2018-11-15 05:18:40,355 | epoch: [11/30] iter: [270/391] loss_D: 1.3873 loss_G: 0.6935 +2018-11-15 05:18:44,301 | epoch: [11/30] iter: [271/391] loss_D: 1.3860 loss_G: 0.6929 +2018-11-15 05:18:48,248 | epoch: [11/30] iter: [272/391] loss_D: 1.3869 loss_G: 0.6933 +2018-11-15 05:18:52,401 | epoch: [11/30] iter: [273/391] loss_D: 1.3868 loss_G: 0.6927 +2018-11-15 05:18:56,342 | epoch: [11/30] iter: [274/391] loss_D: 1.3871 loss_G: 0.6935 +2018-11-15 05:19:00,356 | epoch: [11/30] iter: [275/391] loss_D: 1.3866 loss_G: 0.6929 +2018-11-15 05:19:04,589 | epoch: [11/30] iter: [276/391] loss_D: 1.3882 loss_G: 0.6932 +2018-11-15 05:19:11,698 | epoch: [11/30] iter: [277/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 05:19:18,850 | epoch: [11/30] iter: [278/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-15 05:19:26,466 | epoch: [11/30] iter: [279/391] loss_D: 1.3867 loss_G: 0.6931 +2018-11-15 05:19:33,389 | epoch: [11/30] iter: [280/391] loss_D: 1.3863 loss_G: 0.6922 +2018-11-15 05:19:40,745 | epoch: [11/30] iter: [281/391] loss_D: 1.3868 loss_G: 0.6937 +2018-11-15 05:19:48,031 | epoch: [11/30] iter: [282/391] loss_D: 1.3868 loss_G: 0.6937 +2018-11-15 05:19:54,983 | epoch: [11/30] iter: [283/391] loss_D: 1.3871 loss_G: 0.6935 +2018-11-15 05:20:01,918 | epoch: [11/30] iter: [284/391] loss_D: 1.3858 loss_G: 0.6935 +2018-11-15 05:20:09,136 | epoch: [11/30] iter: [285/391] loss_D: 1.3865 loss_G: 0.6941 +2018-11-15 05:20:16,053 | epoch: [11/30] iter: [286/391] loss_D: 1.3863 loss_G: 0.6947 +2018-11-15 05:20:22,662 | epoch: [11/30] iter: [287/391] loss_D: 1.3868 loss_G: 0.6935 +2018-11-15 05:20:29,828 | epoch: [11/30] iter: [288/391] loss_D: 1.3855 loss_G: 0.6944 +2018-11-15 05:20:37,200 | epoch: [11/30] iter: [289/391] loss_D: 1.3867 loss_G: 0.6946 +2018-11-15 05:20:44,603 | epoch: [11/30] iter: [290/391] loss_D: 1.3867 loss_G: 0.6942 +2018-11-15 05:20:52,114 | epoch: [11/30] iter: [291/391] loss_D: 1.3876 loss_G: 0.6941 +2018-11-15 05:20:59,140 | epoch: [11/30] iter: [292/391] loss_D: 1.3865 loss_G: 0.6936 +2018-11-15 05:21:05,785 | epoch: [11/30] iter: [293/391] loss_D: 1.3871 loss_G: 0.6938 +2018-11-15 05:21:13,039 | epoch: [11/30] iter: [294/391] loss_D: 1.3860 loss_G: 0.6937 +2018-11-15 05:21:16,989 | epoch: [11/30] iter: [295/391] loss_D: 1.3855 loss_G: 0.6934 +2018-11-15 05:21:21,153 | epoch: [11/30] iter: [296/391] loss_D: 1.3866 loss_G: 0.6934 +2018-11-15 05:21:25,171 | epoch: [11/30] iter: [297/391] loss_D: 1.3861 loss_G: 0.6938 +2018-11-15 05:21:29,112 | epoch: [11/30] iter: [298/391] loss_D: 1.3854 loss_G: 0.6940 +2018-11-15 05:21:33,172 | epoch: [11/30] iter: [299/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 05:21:37,413 | epoch: [11/30] iter: [300/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 05:21:44,808 | epoch: [11/30] iter: [301/391] loss_D: 1.3860 loss_G: 0.6933 +2018-11-15 05:21:51,943 | epoch: [11/30] iter: [302/391] loss_D: 1.3861 loss_G: 0.6941 +2018-11-15 05:21:59,109 | epoch: [11/30] iter: [303/391] loss_D: 1.3869 loss_G: 0.6933 +2018-11-15 05:22:06,124 | epoch: [11/30] iter: [304/391] loss_D: 1.3864 loss_G: 0.6934 +2018-11-15 05:22:13,009 | epoch: [11/30] iter: [305/391] loss_D: 1.3862 loss_G: 0.6938 +2018-11-15 05:22:20,082 | epoch: [11/30] iter: [306/391] loss_D: 1.3855 loss_G: 0.6938 +2018-11-15 05:22:27,587 | epoch: [11/30] iter: [307/391] loss_D: 1.3856 loss_G: 0.6934 +2018-11-15 05:22:34,518 | epoch: [11/30] iter: [308/391] loss_D: 1.3850 loss_G: 0.6933 +2018-11-15 05:22:41,341 | epoch: [11/30] iter: [309/391] loss_D: 1.3853 loss_G: 0.6936 +2018-11-15 05:22:47,457 | epoch: [11/30] iter: [310/391] loss_D: 1.3856 loss_G: 0.6932 +2018-11-15 05:22:51,302 | epoch: [11/30] iter: [311/391] loss_D: 1.3860 loss_G: 0.6933 +2018-11-15 05:22:55,379 | epoch: [11/30] iter: [312/391] loss_D: 1.3850 loss_G: 0.6938 +2018-11-15 05:22:59,613 | epoch: [11/30] iter: [313/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 05:23:03,844 | epoch: [11/30] iter: [314/391] loss_D: 1.3861 loss_G: 0.6933 +2018-11-15 05:23:08,060 | epoch: [11/30] iter: [315/391] loss_D: 1.3870 loss_G: 0.6930 +2018-11-15 05:23:12,217 | epoch: [11/30] iter: [316/391] loss_D: 1.3862 loss_G: 0.6942 +2018-11-15 05:23:16,331 | epoch: [11/30] iter: [317/391] loss_D: 1.3866 loss_G: 0.6934 +2018-11-15 05:23:23,154 | epoch: [11/30] iter: [318/391] loss_D: 1.3865 loss_G: 0.6941 +2018-11-15 05:23:29,940 | epoch: [11/30] iter: [319/391] loss_D: 1.3858 loss_G: 0.6935 +2018-11-15 05:23:37,511 | epoch: [11/30] iter: [320/391] loss_D: 1.3865 loss_G: 0.6937 +2018-11-15 05:23:44,792 | epoch: [11/30] iter: [321/391] loss_D: 1.3871 loss_G: 0.6935 +2018-11-15 05:23:51,878 | epoch: [11/30] iter: [322/391] loss_D: 1.3862 loss_G: 0.6933 +2018-11-15 05:23:58,730 | epoch: [11/30] iter: [323/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 05:24:05,793 | epoch: [11/30] iter: [324/391] loss_D: 1.3873 loss_G: 0.6937 +2018-11-15 05:24:13,057 | epoch: [11/30] iter: [325/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-15 05:24:20,233 | epoch: [11/30] iter: [326/391] loss_D: 1.3870 loss_G: 0.6938 +2018-11-15 05:24:27,666 | epoch: [11/30] iter: [327/391] loss_D: 1.3874 loss_G: 0.6931 +2018-11-15 05:24:34,784 | epoch: [11/30] iter: [328/391] loss_D: 1.3871 loss_G: 0.6938 +2018-11-15 05:24:41,713 | epoch: [11/30] iter: [329/391] loss_D: 1.3860 loss_G: 0.6942 +2018-11-15 05:24:48,752 | epoch: [11/30] iter: [330/391] loss_D: 1.3849 loss_G: 0.6949 +2018-11-15 05:24:55,885 | epoch: [11/30] iter: [331/391] loss_D: 1.3866 loss_G: 0.6936 +2018-11-15 05:25:00,676 | epoch: [11/30] iter: [332/391] loss_D: 1.3869 loss_G: 0.6932 +2018-11-15 05:25:04,867 | epoch: [11/30] iter: [333/391] loss_D: 1.3862 loss_G: 0.6939 +2018-11-15 05:25:09,042 | epoch: [11/30] iter: [334/391] loss_D: 1.3868 loss_G: 0.6937 +2018-11-15 05:25:13,125 | epoch: [11/30] iter: [335/391] loss_D: 1.3857 loss_G: 0.6942 +2018-11-15 05:25:17,100 | epoch: [11/30] iter: [336/391] loss_D: 1.3864 loss_G: 0.6943 +2018-11-15 05:25:21,411 | epoch: [11/30] iter: [337/391] loss_D: 1.3854 loss_G: 0.6940 +2018-11-15 05:25:28,500 | epoch: [11/30] iter: [338/391] loss_D: 1.3858 loss_G: 0.6945 +2018-11-15 05:25:35,574 | epoch: [11/30] iter: [339/391] loss_D: 1.3856 loss_G: 0.6941 +2018-11-15 05:25:42,973 | epoch: [11/30] iter: [340/391] loss_D: 1.3860 loss_G: 0.6939 +2018-11-15 05:25:50,542 | epoch: [11/30] iter: [341/391] loss_D: 1.3857 loss_G: 0.6926 +2018-11-15 05:25:57,187 | epoch: [11/30] iter: [342/391] loss_D: 1.3858 loss_G: 0.6939 +2018-11-15 05:26:04,159 | epoch: [11/30] iter: [343/391] loss_D: 1.3858 loss_G: 0.6929 +2018-11-15 05:26:11,090 | epoch: [11/30] iter: [344/391] loss_D: 1.3859 loss_G: 0.6942 +2018-11-15 05:26:17,837 | epoch: [11/30] iter: [345/391] loss_D: 1.3858 loss_G: 0.6942 +2018-11-15 05:28:10,698 | epoch: [11/30] iter: [346/391] loss_D: 1.3866 loss_G: 0.6933 +2018-11-15 05:28:14,901 | epoch: [11/30] iter: [347/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 05:28:19,035 | epoch: [11/30] iter: [348/391] loss_D: 1.3856 loss_G: 0.6936 +2018-11-15 05:28:24,473 | epoch: [11/30] iter: [349/391] loss_D: 1.3866 loss_G: 0.6927 +2018-11-15 05:28:31,679 | epoch: [11/30] iter: [350/391] loss_D: 1.3876 loss_G: 0.6929 +2018-11-15 05:28:38,523 | epoch: [11/30] iter: [351/391] loss_D: 1.3859 loss_G: 0.6920 +2018-11-15 05:28:45,362 | epoch: [11/30] iter: [352/391] loss_D: 1.3858 loss_G: 0.6917 +2018-11-15 05:28:52,381 | epoch: [11/30] iter: [353/391] loss_D: 1.3863 loss_G: 0.6924 +2018-11-15 05:28:59,250 | epoch: [11/30] iter: [354/391] loss_D: 1.3859 loss_G: 0.6929 +2018-11-15 05:29:06,239 | epoch: [11/30] iter: [355/391] loss_D: 1.3854 loss_G: 0.6929 +2018-11-15 05:29:13,295 | epoch: [11/30] iter: [356/391] loss_D: 1.3871 loss_G: 0.6937 +2018-11-15 05:29:20,585 | epoch: [11/30] iter: [357/391] loss_D: 1.3867 loss_G: 0.6935 +2018-11-15 05:29:27,569 | epoch: [11/30] iter: [358/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 05:29:34,252 | epoch: [11/30] iter: [359/391] loss_D: 1.3859 loss_G: 0.6941 +2018-11-15 05:29:41,326 | epoch: [11/30] iter: [360/391] loss_D: 1.3871 loss_G: 0.6933 +2018-11-15 05:29:48,261 | epoch: [11/30] iter: [361/391] loss_D: 1.3860 loss_G: 0.6932 +2018-11-15 05:29:53,122 | epoch: [11/30] iter: [362/391] loss_D: 1.3850 loss_G: 0.6932 +2018-11-15 05:29:57,194 | epoch: [11/30] iter: [363/391] loss_D: 1.3856 loss_G: 0.6931 +2018-11-15 05:30:01,342 | epoch: [11/30] iter: [364/391] loss_D: 1.3860 loss_G: 0.6924 +2018-11-15 05:30:05,524 | epoch: [11/30] iter: [365/391] loss_D: 1.3853 loss_G: 0.6936 +2018-11-15 05:30:09,652 | epoch: [11/30] iter: [366/391] loss_D: 1.3853 loss_G: 0.6921 +2018-11-15 05:30:13,884 | epoch: [11/30] iter: [367/391] loss_D: 1.3860 loss_G: 0.6924 +2018-11-15 05:30:21,235 | epoch: [11/30] iter: [368/391] loss_D: 1.3869 loss_G: 0.6926 +2018-11-15 05:30:27,993 | epoch: [11/30] iter: [369/391] loss_D: 1.3868 loss_G: 0.6924 +2018-11-15 05:30:34,896 | epoch: [11/30] iter: [370/391] loss_D: 1.3870 loss_G: 0.6929 +2018-11-15 05:30:41,751 | epoch: [11/30] iter: [371/391] loss_D: 1.3862 loss_G: 0.6926 +2018-11-15 05:30:48,990 | epoch: [11/30] iter: [372/391] loss_D: 1.3873 loss_G: 0.6925 +2018-11-15 05:30:56,348 | epoch: [11/30] iter: [373/391] loss_D: 1.3874 loss_G: 0.6937 +2018-11-15 05:31:03,040 | epoch: [11/30] iter: [374/391] loss_D: 1.3865 loss_G: 0.6934 +2018-11-15 05:31:10,325 | epoch: [11/30] iter: [375/391] loss_D: 1.3865 loss_G: 0.6942 +2018-11-15 05:31:17,197 | epoch: [11/30] iter: [376/391] loss_D: 1.3874 loss_G: 0.6934 +2018-11-15 05:31:23,847 | epoch: [11/30] iter: [377/391] loss_D: 1.3869 loss_G: 0.6950 +2018-11-15 05:31:31,262 | epoch: [11/30] iter: [378/391] loss_D: 1.3862 loss_G: 0.6934 +2018-11-15 05:31:38,312 | epoch: [11/30] iter: [379/391] loss_D: 1.3867 loss_G: 0.6939 +2018-11-15 05:31:45,790 | epoch: [11/30] iter: [380/391] loss_D: 1.3865 loss_G: 0.6937 +2018-11-15 05:31:52,666 | epoch: [11/30] iter: [381/391] loss_D: 1.3867 loss_G: 0.6938 +2018-11-15 05:31:59,192 | epoch: [11/30] iter: [382/391] loss_D: 1.3866 loss_G: 0.6931 +2018-11-15 05:32:03,217 | epoch: [11/30] iter: [383/391] loss_D: 1.3872 loss_G: 0.6928 +2018-11-15 05:32:07,277 | epoch: [11/30] iter: [384/391] loss_D: 1.3866 loss_G: 0.6929 +2018-11-15 05:32:11,461 | epoch: [11/30] iter: [385/391] loss_D: 1.3866 loss_G: 0.6932 +2018-11-15 05:32:15,636 | epoch: [11/30] iter: [386/391] loss_D: 1.3873 loss_G: 0.6928 +2018-11-15 05:32:19,739 | epoch: [11/30] iter: [387/391] loss_D: 1.3860 loss_G: 0.6930 +2018-11-15 05:32:25,546 | epoch: [11/30] iter: [388/391] loss_D: 1.3871 loss_G: 0.6929 +2018-11-15 05:32:32,812 | epoch: [11/30] iter: [389/391] loss_D: 1.3870 loss_G: 0.6924 +2018-11-15 05:32:37,171 | epoch: [11/30] iter: [390/391] loss_D: 1.3876 loss_G: 0.6921 +2018-11-15 05:32:44,440 | epoch: [12/30] iter: [0/391] loss_D: 1.3869 loss_G: 0.6926 +2018-11-15 05:32:51,614 | epoch: [12/30] iter: [1/391] loss_D: 1.3865 loss_G: 0.6930 +2018-11-15 05:32:58,511 | epoch: [12/30] iter: [2/391] loss_D: 1.3857 loss_G: 0.6928 +2018-11-15 05:33:05,523 | epoch: [12/30] iter: [3/391] loss_D: 1.3862 loss_G: 0.6928 +2018-11-15 05:33:12,507 | epoch: [12/30] iter: [4/391] loss_D: 1.3870 loss_G: 0.6932 +2018-11-15 05:33:17,282 | epoch: [12/30] iter: [5/391] loss_D: 1.3862 loss_G: 0.6935 +2018-11-15 05:33:21,324 | epoch: [12/30] iter: [6/391] loss_D: 1.3868 loss_G: 0.6928 +2018-11-15 05:33:25,425 | epoch: [12/30] iter: [7/391] loss_D: 1.3861 loss_G: 0.6931 +2018-11-15 05:33:29,371 | epoch: [12/30] iter: [8/391] loss_D: 1.3866 loss_G: 0.6932 +2018-11-15 05:33:33,501 | epoch: [12/30] iter: [9/391] loss_D: 1.3864 loss_G: 0.6931 +2018-11-15 05:33:37,615 | epoch: [12/30] iter: [10/391] loss_D: 1.3868 loss_G: 0.6928 +2018-11-15 05:33:44,790 | epoch: [12/30] iter: [11/391] loss_D: 1.3866 loss_G: 0.6933 +2018-11-15 05:33:51,793 | epoch: [12/30] iter: [12/391] loss_D: 1.3870 loss_G: 0.6932 +2018-11-15 05:33:58,878 | epoch: [12/30] iter: [13/391] loss_D: 1.3871 loss_G: 0.6928 +2018-11-15 05:34:06,251 | epoch: [12/30] iter: [14/391] loss_D: 1.3861 loss_G: 0.6940 +2018-11-15 05:34:13,321 | epoch: [12/30] iter: [15/391] loss_D: 1.3863 loss_G: 0.6934 +2018-11-15 05:34:20,410 | epoch: [12/30] iter: [16/391] loss_D: 1.3864 loss_G: 0.6941 +2018-11-15 05:34:27,325 | epoch: [12/30] iter: [17/391] loss_D: 1.3862 loss_G: 0.6936 +2018-11-15 05:34:34,511 | epoch: [12/30] iter: [18/391] loss_D: 1.3866 loss_G: 0.6931 +2018-11-15 05:34:41,569 | epoch: [12/30] iter: [19/391] loss_D: 1.3867 loss_G: 0.6935 +2018-11-15 05:34:48,781 | epoch: [12/30] iter: [20/391] loss_D: 1.3864 loss_G: 0.6927 +2018-11-15 05:34:55,953 | epoch: [12/30] iter: [21/391] loss_D: 1.3865 loss_G: 0.6931 +2018-11-15 05:35:02,927 | epoch: [12/30] iter: [22/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 05:35:09,544 | epoch: [12/30] iter: [23/391] loss_D: 1.3858 loss_G: 0.6932 +2018-11-15 05:35:16,931 | epoch: [12/30] iter: [24/391] loss_D: 1.3866 loss_G: 0.6930 +2018-11-15 05:35:23,651 | epoch: [12/30] iter: [25/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 05:35:30,625 | epoch: [12/30] iter: [26/391] loss_D: 1.3866 loss_G: 0.6936 +2018-11-15 05:35:34,687 | epoch: [12/30] iter: [27/391] loss_D: 1.3874 loss_G: 0.6942 +2018-11-15 05:35:38,622 | epoch: [12/30] iter: [28/391] loss_D: 1.3856 loss_G: 0.6942 +2018-11-15 05:35:42,844 | epoch: [12/30] iter: [29/391] loss_D: 1.3860 loss_G: 0.6934 +2018-11-15 05:35:47,119 | epoch: [12/30] iter: [30/391] loss_D: 1.3862 loss_G: 0.6936 +2018-11-15 05:35:51,333 | epoch: [12/30] iter: [31/391] loss_D: 1.3860 loss_G: 0.6936 +2018-11-15 05:35:55,546 | epoch: [12/30] iter: [32/391] loss_D: 1.3865 loss_G: 0.6939 +2018-11-15 05:36:00,963 | epoch: [12/30] iter: [33/391] loss_D: 1.3863 loss_G: 0.6930 +2018-11-15 05:36:08,146 | epoch: [12/30] iter: [34/391] loss_D: 1.3865 loss_G: 0.6938 +2018-11-15 05:36:15,178 | epoch: [12/30] iter: [35/391] loss_D: 1.3872 loss_G: 0.6928 +2018-11-15 05:36:22,151 | epoch: [12/30] iter: [36/391] loss_D: 1.3869 loss_G: 0.6931 +2018-11-15 05:36:29,403 | epoch: [12/30] iter: [37/391] loss_D: 1.3862 loss_G: 0.6937 +2018-11-15 05:36:36,520 | epoch: [12/30] iter: [38/391] loss_D: 1.3866 loss_G: 0.6933 +2018-11-15 05:36:43,911 | epoch: [12/30] iter: [39/391] loss_D: 1.3872 loss_G: 0.6924 +2018-11-15 05:36:50,815 | epoch: [12/30] iter: [40/391] loss_D: 1.3871 loss_G: 0.6933 +2018-11-15 05:36:57,598 | epoch: [12/30] iter: [41/391] loss_D: 1.3853 loss_G: 0.6938 +2018-11-15 05:37:04,852 | epoch: [12/30] iter: [42/391] loss_D: 1.3862 loss_G: 0.6938 +2018-11-15 05:37:12,543 | epoch: [12/30] iter: [43/391] loss_D: 1.3860 loss_G: 0.6939 +2018-11-15 05:37:19,581 | epoch: [12/30] iter: [44/391] loss_D: 1.3864 loss_G: 0.6940 +2018-11-15 05:37:26,246 | epoch: [12/30] iter: [45/391] loss_D: 1.3853 loss_G: 0.6937 +2018-11-15 05:37:33,535 | epoch: [12/30] iter: [46/391] loss_D: 1.3859 loss_G: 0.6945 +2018-11-15 05:37:40,361 | epoch: [12/30] iter: [47/391] loss_D: 1.3858 loss_G: 0.6942 +2018-11-15 05:37:47,659 | epoch: [12/30] iter: [48/391] loss_D: 1.3850 loss_G: 0.6943 +2018-11-15 05:37:54,314 | epoch: [12/30] iter: [49/391] loss_D: 1.3848 loss_G: 0.6942 +2018-11-15 05:38:00,898 | epoch: [12/30] iter: [50/391] loss_D: 1.3868 loss_G: 0.6937 +2018-11-15 05:38:07,923 | epoch: [12/30] iter: [51/391] loss_D: 1.3856 loss_G: 0.6937 +2018-11-15 05:38:13,118 | epoch: [12/30] iter: [52/391] loss_D: 1.3861 loss_G: 0.6939 +2018-11-15 05:38:17,148 | epoch: [12/30] iter: [53/391] loss_D: 1.3858 loss_G: 0.6941 +2018-11-15 05:38:21,269 | epoch: [12/30] iter: [54/391] loss_D: 1.3856 loss_G: 0.6937 +2018-11-15 05:40:11,180 | epoch: [12/30] iter: [55/391] loss_D: 1.3853 loss_G: 0.6936 +2018-11-15 05:40:15,295 | epoch: [12/30] iter: [56/391] loss_D: 1.3863 loss_G: 0.6934 +2018-11-15 05:40:19,353 | epoch: [12/30] iter: [57/391] loss_D: 1.3854 loss_G: 0.6932 +2018-11-15 05:40:23,523 | epoch: [12/30] iter: [58/391] loss_D: 1.3863 loss_G: 0.6932 +2018-11-15 05:40:28,820 | epoch: [12/30] iter: [59/391] loss_D: 1.3847 loss_G: 0.6932 +2018-11-15 05:40:35,628 | epoch: [12/30] iter: [60/391] loss_D: 1.3858 loss_G: 0.6929 +2018-11-15 05:40:42,668 | epoch: [12/30] iter: [61/391] loss_D: 1.3873 loss_G: 0.6940 +2018-11-15 05:40:49,344 | epoch: [12/30] iter: [62/391] loss_D: 1.3866 loss_G: 0.6938 +2018-11-15 05:40:56,231 | epoch: [12/30] iter: [63/391] loss_D: 1.3848 loss_G: 0.6939 +2018-11-15 05:41:03,462 | epoch: [12/30] iter: [64/391] loss_D: 1.3859 loss_G: 0.6949 +2018-11-15 05:41:10,428 | epoch: [12/30] iter: [65/391] loss_D: 1.3866 loss_G: 0.6943 +2018-11-15 05:41:17,262 | epoch: [12/30] iter: [66/391] loss_D: 1.3857 loss_G: 0.6944 +2018-11-15 05:41:23,830 | epoch: [12/30] iter: [67/391] loss_D: 1.3865 loss_G: 0.6947 +2018-11-15 05:41:30,783 | epoch: [12/30] iter: [68/391] loss_D: 1.3854 loss_G: 0.6939 +2018-11-15 05:41:37,418 | epoch: [12/30] iter: [69/391] loss_D: 1.3862 loss_G: 0.6955 +2018-11-15 05:41:44,386 | epoch: [12/30] iter: [70/391] loss_D: 1.3858 loss_G: 0.6955 +2018-11-15 05:41:51,335 | epoch: [12/30] iter: [71/391] loss_D: 1.3874 loss_G: 0.6934 +2018-11-15 05:41:58,281 | epoch: [12/30] iter: [72/391] loss_D: 1.3858 loss_G: 0.6947 +2018-11-15 05:42:04,113 | epoch: [12/30] iter: [73/391] loss_D: 1.3858 loss_G: 0.6932 +2018-11-15 05:42:08,239 | epoch: [12/30] iter: [74/391] loss_D: 1.3859 loss_G: 0.6938 +2018-11-15 05:42:12,153 | epoch: [12/30] iter: [75/391] loss_D: 1.3865 loss_G: 0.6940 +2018-11-15 05:42:16,221 | epoch: [12/30] iter: [76/391] loss_D: 1.3872 loss_G: 0.6930 +2018-11-15 05:42:20,457 | epoch: [12/30] iter: [77/391] loss_D: 1.3865 loss_G: 0.6929 +2018-11-15 05:42:24,549 | epoch: [12/30] iter: [78/391] loss_D: 1.3855 loss_G: 0.6928 +2018-11-15 05:42:30,902 | epoch: [12/30] iter: [79/391] loss_D: 1.3864 loss_G: 0.6928 +2018-11-15 05:42:37,939 | epoch: [12/30] iter: [80/391] loss_D: 1.3860 loss_G: 0.6925 +2018-11-15 05:42:45,034 | epoch: [12/30] iter: [81/391] loss_D: 1.3853 loss_G: 0.6926 +2018-11-15 05:42:52,439 | epoch: [12/30] iter: [82/391] loss_D: 1.3854 loss_G: 0.6933 +2018-11-15 05:42:59,820 | epoch: [12/30] iter: [83/391] loss_D: 1.3855 loss_G: 0.6926 +2018-11-15 05:43:06,790 | epoch: [12/30] iter: [84/391] loss_D: 1.3855 loss_G: 0.6926 +2018-11-15 05:43:13,814 | epoch: [12/30] iter: [85/391] loss_D: 1.3845 loss_G: 0.6930 +2018-11-15 05:43:20,589 | epoch: [12/30] iter: [86/391] loss_D: 1.3851 loss_G: 0.6932 +2018-11-15 05:43:27,762 | epoch: [12/30] iter: [87/391] loss_D: 1.3840 loss_G: 0.6930 +2018-11-15 05:43:34,362 | epoch: [12/30] iter: [88/391] loss_D: 1.3844 loss_G: 0.6935 +2018-11-15 05:43:41,447 | epoch: [12/30] iter: [89/391] loss_D: 1.3852 loss_G: 0.6927 +2018-11-15 05:43:48,956 | epoch: [12/30] iter: [90/391] loss_D: 1.3837 loss_G: 0.6928 +2018-11-15 05:43:53,530 | epoch: [12/30] iter: [91/391] loss_D: 1.3852 loss_G: 0.6922 +2018-11-15 05:43:57,639 | epoch: [12/30] iter: [92/391] loss_D: 1.3852 loss_G: 0.6932 +2018-11-15 05:44:01,756 | epoch: [12/30] iter: [93/391] loss_D: 1.3860 loss_G: 0.6926 +2018-11-15 05:44:06,089 | epoch: [12/30] iter: [94/391] loss_D: 1.3861 loss_G: 0.6923 +2018-11-15 05:44:10,214 | epoch: [12/30] iter: [95/391] loss_D: 1.3866 loss_G: 0.6934 +2018-11-15 05:44:14,418 | epoch: [12/30] iter: [96/391] loss_D: 1.3859 loss_G: 0.6929 +2018-11-15 05:44:18,332 | epoch: [12/30] iter: [97/391] loss_D: 1.3856 loss_G: 0.6924 +2018-11-15 05:44:22,702 | epoch: [12/30] iter: [98/391] loss_D: 1.3875 loss_G: 0.6927 +2018-11-15 05:44:30,002 | epoch: [12/30] iter: [99/391] loss_D: 1.3866 loss_G: 0.6949 +2018-11-15 05:44:36,658 | epoch: [12/30] iter: [100/391] loss_D: 1.3856 loss_G: 0.6936 +2018-11-15 05:44:43,911 | epoch: [12/30] iter: [101/391] loss_D: 1.3883 loss_G: 0.6933 +2018-11-15 05:44:50,983 | epoch: [12/30] iter: [102/391] loss_D: 1.3888 loss_G: 0.6930 +2018-11-15 05:44:58,238 | epoch: [12/30] iter: [103/391] loss_D: 1.3886 loss_G: 0.6937 +2018-11-15 05:45:05,370 | epoch: [12/30] iter: [104/391] loss_D: 1.3884 loss_G: 0.6934 +2018-11-15 05:45:12,160 | epoch: [12/30] iter: [105/391] loss_D: 1.3874 loss_G: 0.6950 +2018-11-15 05:45:19,002 | epoch: [12/30] iter: [106/391] loss_D: 1.3868 loss_G: 0.6937 +2018-11-15 05:45:25,687 | epoch: [12/30] iter: [107/391] loss_D: 1.3861 loss_G: 0.6936 +2018-11-15 05:45:32,749 | epoch: [12/30] iter: [108/391] loss_D: 1.3872 loss_G: 0.6953 +2018-11-15 05:45:39,722 | epoch: [12/30] iter: [109/391] loss_D: 1.3867 loss_G: 0.6943 +2018-11-15 05:45:46,899 | epoch: [12/30] iter: [110/391] loss_D: 1.3882 loss_G: 0.6935 +2018-11-15 05:45:53,698 | epoch: [12/30] iter: [111/391] loss_D: 1.3868 loss_G: 0.6925 +2018-11-15 05:46:00,012 | epoch: [12/30] iter: [112/391] loss_D: 1.3882 loss_G: 0.6919 +2018-11-15 05:46:04,071 | epoch: [12/30] iter: [113/391] loss_D: 1.3880 loss_G: 0.6931 +2018-11-15 05:46:08,148 | epoch: [12/30] iter: [114/391] loss_D: 1.3868 loss_G: 0.6934 +2018-11-15 05:46:12,436 | epoch: [12/30] iter: [115/391] loss_D: 1.3866 loss_G: 0.6928 +2018-11-15 05:46:16,688 | epoch: [12/30] iter: [116/391] loss_D: 1.3872 loss_G: 0.6929 +2018-11-15 05:46:20,726 | epoch: [12/30] iter: [117/391] loss_D: 1.3872 loss_G: 0.6927 +2018-11-15 05:46:24,970 | epoch: [12/30] iter: [118/391] loss_D: 1.3865 loss_G: 0.6926 +2018-11-15 05:46:29,422 | epoch: [12/30] iter: [119/391] loss_D: 1.3871 loss_G: 0.6928 +2018-11-15 05:46:35,309 | epoch: [12/30] iter: [120/391] loss_D: 1.3861 loss_G: 0.6940 +2018-11-15 05:46:39,856 | epoch: [12/30] iter: [121/391] loss_D: 1.3860 loss_G: 0.6941 +2018-11-15 05:46:44,200 | epoch: [12/30] iter: [122/391] loss_D: 1.3859 loss_G: 0.6944 +2018-11-15 05:46:50,550 | epoch: [12/30] iter: [123/391] loss_D: 1.3853 loss_G: 0.6947 +2018-11-15 05:46:56,717 | epoch: [12/30] iter: [124/391] loss_D: 1.3856 loss_G: 0.6948 +2018-11-15 05:47:02,657 | epoch: [12/30] iter: [125/391] loss_D: 1.3857 loss_G: 0.6947 +2018-11-15 05:47:07,190 | epoch: [12/30] iter: [126/391] loss_D: 1.3855 loss_G: 0.6939 +2018-11-15 05:47:11,658 | epoch: [12/30] iter: [127/391] loss_D: 1.3836 loss_G: 0.6948 +2018-11-15 05:47:16,068 | epoch: [12/30] iter: [128/391] loss_D: 1.3858 loss_G: 0.6940 +2018-11-15 05:47:20,544 | epoch: [12/30] iter: [129/391] loss_D: 1.3855 loss_G: 0.6950 +2018-11-15 05:47:27,238 | epoch: [12/30] iter: [130/391] loss_D: 1.3846 loss_G: 0.6946 +2018-11-15 05:47:32,902 | epoch: [12/30] iter: [131/391] loss_D: 1.3855 loss_G: 0.6945 +2018-11-15 05:47:37,102 | epoch: [12/30] iter: [132/391] loss_D: 1.3859 loss_G: 0.6921 +2018-11-15 05:47:41,272 | epoch: [12/30] iter: [133/391] loss_D: 1.3858 loss_G: 0.6939 +2018-11-15 05:47:45,619 | epoch: [12/30] iter: [134/391] loss_D: 1.3855 loss_G: 0.6944 +2018-11-15 05:47:49,846 | epoch: [12/30] iter: [135/391] loss_D: 1.3843 loss_G: 0.6946 +2018-11-15 05:47:54,198 | epoch: [12/30] iter: [136/391] loss_D: 1.3868 loss_G: 0.6934 +2018-11-15 05:48:00,051 | epoch: [12/30] iter: [137/391] loss_D: 1.3879 loss_G: 0.6924 +2018-11-15 05:48:05,869 | epoch: [12/30] iter: [138/391] loss_D: 1.3867 loss_G: 0.6935 +2018-11-15 05:48:10,895 | epoch: [12/30] iter: [139/391] loss_D: 1.3842 loss_G: 0.6932 +2018-11-15 05:48:15,060 | epoch: [12/30] iter: [140/391] loss_D: 1.3858 loss_G: 0.6919 +2018-11-15 05:48:19,262 | epoch: [12/30] iter: [141/391] loss_D: 1.3877 loss_G: 0.6915 +2018-11-15 05:48:24,026 | epoch: [12/30] iter: [142/391] loss_D: 1.3884 loss_G: 0.6929 +2018-11-15 05:48:29,310 | epoch: [12/30] iter: [143/391] loss_D: 1.3873 loss_G: 0.6926 +2018-11-15 05:48:33,846 | epoch: [12/30] iter: [144/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 05:48:38,152 | epoch: [12/30] iter: [145/391] loss_D: 1.3884 loss_G: 0.6930 +2018-11-15 05:48:42,574 | epoch: [12/30] iter: [146/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 05:48:48,667 | epoch: [12/30] iter: [147/391] loss_D: 1.3874 loss_G: 0.6929 +2018-11-15 05:48:54,758 | epoch: [12/30] iter: [148/391] loss_D: 1.3868 loss_G: 0.6933 +2018-11-15 05:48:59,139 | epoch: [12/30] iter: [149/391] loss_D: 1.3860 loss_G: 0.6938 +2018-11-15 05:49:03,545 | epoch: [12/30] iter: [150/391] loss_D: 1.3868 loss_G: 0.6936 +2018-11-15 05:49:09,448 | epoch: [12/30] iter: [151/391] loss_D: 1.3854 loss_G: 0.6939 +2018-11-15 05:49:15,971 | epoch: [12/30] iter: [152/391] loss_D: 1.3855 loss_G: 0.6933 +2018-11-15 05:49:21,993 | epoch: [12/30] iter: [153/391] loss_D: 1.3842 loss_G: 0.6933 +2018-11-15 05:49:27,070 | epoch: [12/30] iter: [154/391] loss_D: 1.3837 loss_G: 0.6925 +2018-11-15 05:51:14,177 | epoch: [12/30] iter: [155/391] loss_D: 1.3848 loss_G: 0.6925 +2018-11-15 05:51:18,637 | epoch: [12/30] iter: [156/391] loss_D: 1.3839 loss_G: 0.6917 +2018-11-15 05:51:25,763 | epoch: [12/30] iter: [157/391] loss_D: 1.3866 loss_G: 0.6910 +2018-11-15 05:51:33,196 | epoch: [12/30] iter: [158/391] loss_D: 1.3847 loss_G: 0.6932 +2018-11-15 05:51:40,683 | epoch: [12/30] iter: [159/391] loss_D: 1.3855 loss_G: 0.6935 +2018-11-15 05:51:47,198 | epoch: [12/30] iter: [160/391] loss_D: 1.3856 loss_G: 0.6940 +2018-11-15 05:51:54,325 | epoch: [12/30] iter: [161/391] loss_D: 1.3859 loss_G: 0.6958 +2018-11-15 05:52:01,376 | epoch: [12/30] iter: [162/391] loss_D: 1.3841 loss_G: 0.6967 +2018-11-15 05:52:08,340 | epoch: [12/30] iter: [163/391] loss_D: 1.3817 loss_G: 0.6969 +2018-11-15 05:52:15,718 | epoch: [12/30] iter: [164/391] loss_D: 1.3825 loss_G: 0.6964 +2018-11-15 05:52:23,078 | epoch: [12/30] iter: [165/391] loss_D: 1.3853 loss_G: 0.6945 +2018-11-15 05:52:29,914 | epoch: [12/30] iter: [166/391] loss_D: 1.3845 loss_G: 0.6961 +2018-11-15 05:52:36,680 | epoch: [12/30] iter: [167/391] loss_D: 1.3857 loss_G: 0.6953 +2018-11-15 05:52:43,660 | epoch: [12/30] iter: [168/391] loss_D: 1.3850 loss_G: 0.6927 +2018-11-15 05:52:51,035 | epoch: [12/30] iter: [169/391] loss_D: 1.3882 loss_G: 0.6929 +2018-11-15 05:52:57,896 | epoch: [12/30] iter: [170/391] loss_D: 1.3883 loss_G: 0.6926 +2018-11-15 05:53:04,727 | epoch: [12/30] iter: [171/391] loss_D: 1.3861 loss_G: 0.6923 +2018-11-15 05:53:11,886 | epoch: [12/30] iter: [172/391] loss_D: 1.3886 loss_G: 0.6916 +2018-11-15 05:53:17,339 | epoch: [12/30] iter: [173/391] loss_D: 1.3886 loss_G: 0.6919 +2018-11-15 05:53:21,658 | epoch: [12/30] iter: [174/391] loss_D: 1.3890 loss_G: 0.6913 +2018-11-15 05:53:25,746 | epoch: [12/30] iter: [175/391] loss_D: 1.3891 loss_G: 0.6949 +2018-11-15 05:53:29,837 | epoch: [12/30] iter: [176/391] loss_D: 1.3881 loss_G: 0.6936 +2018-11-15 05:53:33,826 | epoch: [12/30] iter: [177/391] loss_D: 1.3871 loss_G: 0.6943 +2018-11-15 05:53:38,002 | epoch: [12/30] iter: [178/391] loss_D: 1.3855 loss_G: 0.6958 +2018-11-15 05:53:44,537 | epoch: [12/30] iter: [179/391] loss_D: 1.3867 loss_G: 0.6954 +2018-11-15 05:53:51,571 | epoch: [12/30] iter: [180/391] loss_D: 1.3863 loss_G: 0.6960 +2018-11-15 05:53:58,514 | epoch: [12/30] iter: [181/391] loss_D: 1.3883 loss_G: 0.6953 +2018-11-15 05:54:05,502 | epoch: [12/30] iter: [182/391] loss_D: 1.3864 loss_G: 0.6942 +2018-11-15 05:54:12,389 | epoch: [12/30] iter: [183/391] loss_D: 1.3859 loss_G: 0.6944 +2018-11-15 05:54:19,629 | epoch: [12/30] iter: [184/391] loss_D: 1.3850 loss_G: 0.6943 +2018-11-15 05:54:26,213 | epoch: [12/30] iter: [185/391] loss_D: 1.3860 loss_G: 0.6940 +2018-11-15 05:54:33,313 | epoch: [12/30] iter: [186/391] loss_D: 1.3866 loss_G: 0.6931 +2018-11-15 05:54:40,127 | epoch: [12/30] iter: [187/391] loss_D: 1.3859 loss_G: 0.6935 +2018-11-15 05:54:47,206 | epoch: [12/30] iter: [188/391] loss_D: 1.3856 loss_G: 0.6946 +2018-11-15 05:54:54,038 | epoch: [12/30] iter: [189/391] loss_D: 1.3883 loss_G: 0.6945 +2018-11-15 05:55:00,688 | epoch: [12/30] iter: [190/391] loss_D: 1.3872 loss_G: 0.6936 +2018-11-15 05:55:05,837 | epoch: [12/30] iter: [191/391] loss_D: 1.3880 loss_G: 0.6957 +2018-11-15 05:55:09,672 | epoch: [12/30] iter: [192/391] loss_D: 1.3876 loss_G: 0.6960 +2018-11-15 05:55:13,871 | epoch: [12/30] iter: [193/391] loss_D: 1.3861 loss_G: 0.6953 +2018-11-15 05:55:18,011 | epoch: [12/30] iter: [194/391] loss_D: 1.3871 loss_G: 0.6952 +2018-11-15 05:55:22,175 | epoch: [12/30] iter: [195/391] loss_D: 1.3860 loss_G: 0.6971 +2018-11-15 05:55:26,346 | epoch: [12/30] iter: [196/391] loss_D: 1.3879 loss_G: 0.6933 +2018-11-15 05:55:30,618 | epoch: [12/30] iter: [197/391] loss_D: 1.3901 loss_G: 0.6956 +2018-11-15 05:55:34,667 | epoch: [12/30] iter: [198/391] loss_D: 1.3912 loss_G: 0.6936 +2018-11-15 05:55:38,850 | epoch: [12/30] iter: [199/391] loss_D: 1.3910 loss_G: 0.6925 +2018-11-15 05:55:43,056 | epoch: [12/30] iter: [200/391] loss_D: 1.3891 loss_G: 0.6928 +2018-11-15 05:55:47,660 | epoch: [12/30] iter: [201/391] loss_D: 1.3869 loss_G: 0.6942 +2018-11-15 05:55:54,434 | epoch: [12/30] iter: [202/391] loss_D: 1.3851 loss_G: 0.6951 +2018-11-15 05:56:01,849 | epoch: [12/30] iter: [203/391] loss_D: 1.3853 loss_G: 0.6946 +2018-11-15 05:56:09,130 | epoch: [12/30] iter: [204/391] loss_D: 1.3854 loss_G: 0.6953 +2018-11-15 05:56:16,112 | epoch: [12/30] iter: [205/391] loss_D: 1.3866 loss_G: 0.6951 +2018-11-15 05:56:23,114 | epoch: [12/30] iter: [206/391] loss_D: 1.3841 loss_G: 0.6938 +2018-11-15 05:56:30,059 | epoch: [12/30] iter: [207/391] loss_D: 1.3855 loss_G: 0.6939 +2018-11-15 05:56:37,355 | epoch: [12/30] iter: [208/391] loss_D: 1.3848 loss_G: 0.6941 +2018-11-15 05:56:44,525 | epoch: [12/30] iter: [209/391] loss_D: 1.3868 loss_G: 0.6929 +2018-11-15 05:56:51,714 | epoch: [12/30] iter: [210/391] loss_D: 1.3863 loss_G: 0.6929 +2018-11-15 05:56:58,847 | epoch: [12/30] iter: [211/391] loss_D: 1.3859 loss_G: 0.6929 +2018-11-15 05:57:05,812 | epoch: [12/30] iter: [212/391] loss_D: 1.3863 loss_G: 0.6920 +2018-11-15 05:57:12,742 | epoch: [12/30] iter: [213/391] loss_D: 1.3848 loss_G: 0.6927 +2018-11-15 05:57:19,819 | epoch: [12/30] iter: [214/391] loss_D: 1.3859 loss_G: 0.6926 +2018-11-15 05:57:26,955 | epoch: [12/30] iter: [215/391] loss_D: 1.3842 loss_G: 0.6920 +2018-11-15 05:57:33,908 | epoch: [12/30] iter: [216/391] loss_D: 1.3849 loss_G: 0.6926 +2018-11-15 05:57:38,581 | epoch: [12/30] iter: [217/391] loss_D: 1.3843 loss_G: 0.6929 +2018-11-15 05:57:42,506 | epoch: [12/30] iter: [218/391] loss_D: 1.3858 loss_G: 0.6917 +2018-11-15 05:57:46,712 | epoch: [12/30] iter: [219/391] loss_D: 1.3862 loss_G: 0.6937 +2018-11-15 05:57:50,892 | epoch: [12/30] iter: [220/391] loss_D: 1.3849 loss_G: 0.6935 +2018-11-15 05:57:54,923 | epoch: [12/30] iter: [221/391] loss_D: 1.3853 loss_G: 0.6933 +2018-11-15 05:57:59,164 | epoch: [12/30] iter: [222/391] loss_D: 1.3843 loss_G: 0.6941 +2018-11-15 05:58:05,761 | epoch: [12/30] iter: [223/391] loss_D: 1.3848 loss_G: 0.6927 +2018-11-15 05:58:12,841 | epoch: [12/30] iter: [224/391] loss_D: 1.3829 loss_G: 0.6935 +2018-11-15 05:58:19,854 | epoch: [12/30] iter: [225/391] loss_D: 1.3885 loss_G: 0.6934 +2018-11-15 05:58:26,878 | epoch: [12/30] iter: [226/391] loss_D: 1.3844 loss_G: 0.6931 +2018-11-15 05:58:34,158 | epoch: [12/30] iter: [227/391] loss_D: 1.3876 loss_G: 0.6934 +2018-11-15 05:58:41,080 | epoch: [12/30] iter: [228/391] loss_D: 1.3871 loss_G: 0.6936 +2018-11-15 05:58:48,526 | epoch: [12/30] iter: [229/391] loss_D: 1.3868 loss_G: 0.6937 +2018-11-15 05:58:55,371 | epoch: [12/30] iter: [230/391] loss_D: 1.3870 loss_G: 0.6931 +2018-11-15 05:59:02,172 | epoch: [12/30] iter: [231/391] loss_D: 1.3864 loss_G: 0.6943 +2018-11-15 05:59:09,106 | epoch: [12/30] iter: [232/391] loss_D: 1.3859 loss_G: 0.6959 +2018-11-15 05:59:16,362 | epoch: [12/30] iter: [233/391] loss_D: 1.3867 loss_G: 0.6942 +2018-11-15 05:59:23,559 | epoch: [12/30] iter: [234/391] loss_D: 1.3864 loss_G: 0.6947 +2018-11-15 05:59:30,604 | epoch: [12/30] iter: [235/391] loss_D: 1.3880 loss_G: 0.6956 +2018-11-15 05:59:37,539 | epoch: [12/30] iter: [236/391] loss_D: 1.3859 loss_G: 0.6952 +2018-11-15 05:59:44,710 | epoch: [12/30] iter: [237/391] loss_D: 1.3870 loss_G: 0.6947 +2018-11-15 05:59:49,898 | epoch: [12/30] iter: [238/391] loss_D: 1.3862 loss_G: 0.6943 +2018-11-15 05:59:53,933 | epoch: [12/30] iter: [239/391] loss_D: 1.3830 loss_G: 0.6964 +2018-11-15 05:59:57,935 | epoch: [12/30] iter: [240/391] loss_D: 1.3839 loss_G: 0.6955 +2018-11-15 06:00:01,988 | epoch: [12/30] iter: [241/391] loss_D: 1.3868 loss_G: 0.6934 +2018-11-15 06:00:06,129 | epoch: [12/30] iter: [242/391] loss_D: 1.3834 loss_G: 0.6961 +2018-11-15 06:00:10,282 | epoch: [12/30] iter: [243/391] loss_D: 1.3830 loss_G: 0.6951 +2018-11-15 06:00:14,465 | epoch: [12/30] iter: [244/391] loss_D: 1.3845 loss_G: 0.6945 +2018-11-15 06:00:18,603 | epoch: [12/30] iter: [245/391] loss_D: 1.3862 loss_G: 0.6946 +2018-11-15 06:00:22,924 | epoch: [12/30] iter: [246/391] loss_D: 1.3858 loss_G: 0.6949 +2018-11-15 06:00:28,985 | epoch: [12/30] iter: [247/391] loss_D: 1.3837 loss_G: 0.6949 +2018-11-15 06:00:34,760 | epoch: [12/30] iter: [248/391] loss_D: 1.3845 loss_G: 0.6946 +2018-11-15 06:00:39,317 | epoch: [12/30] iter: [249/391] loss_D: 1.3869 loss_G: 0.6910 +2018-11-15 06:00:45,369 | epoch: [12/30] iter: [250/391] loss_D: 1.3868 loss_G: 0.6923 +2018-11-15 06:00:51,051 | epoch: [12/30] iter: [251/391] loss_D: 1.3892 loss_G: 0.6920 +2018-11-15 06:00:55,864 | epoch: [12/30] iter: [252/391] loss_D: 1.3908 loss_G: 0.6908 +2018-11-15 06:01:00,080 | epoch: [12/30] iter: [253/391] loss_D: 1.3904 loss_G: 0.6939 +2018-11-15 06:01:06,185 | epoch: [12/30] iter: [254/391] loss_D: 1.3889 loss_G: 0.6926 +2018-11-15 06:02:54,194 | epoch: [12/30] iter: [255/391] loss_D: 1.3886 loss_G: 0.6927 +2018-11-15 06:03:00,613 | epoch: [12/30] iter: [256/391] loss_D: 1.3890 loss_G: 0.6949 +2018-11-15 06:03:07,974 | epoch: [12/30] iter: [257/391] loss_D: 1.3860 loss_G: 0.6954 +2018-11-15 06:03:14,559 | epoch: [12/30] iter: [258/391] loss_D: 1.3879 loss_G: 0.6964 +2018-11-15 06:03:21,801 | epoch: [12/30] iter: [259/391] loss_D: 1.3844 loss_G: 0.6975 +2018-11-15 06:03:28,584 | epoch: [12/30] iter: [260/391] loss_D: 1.3856 loss_G: 0.6984 +2018-11-15 06:03:35,620 | epoch: [12/30] iter: [261/391] loss_D: 1.3857 loss_G: 0.6973 +2018-11-15 06:03:42,478 | epoch: [12/30] iter: [262/391] loss_D: 1.3870 loss_G: 0.6947 +2018-11-15 06:03:49,325 | epoch: [12/30] iter: [263/391] loss_D: 1.3855 loss_G: 0.6935 +2018-11-15 06:03:56,352 | epoch: [12/30] iter: [264/391] loss_D: 1.3872 loss_G: 0.6923 +2018-11-15 06:04:03,546 | epoch: [12/30] iter: [265/391] loss_D: 1.3882 loss_G: 0.6923 +2018-11-15 06:04:10,502 | epoch: [12/30] iter: [266/391] loss_D: 1.3870 loss_G: 0.6919 +2018-11-15 06:04:17,721 | epoch: [12/30] iter: [267/391] loss_D: 1.3873 loss_G: 0.6920 +2018-11-15 06:04:24,807 | epoch: [12/30] iter: [268/391] loss_D: 1.3859 loss_G: 0.6922 +2018-11-15 06:04:32,102 | epoch: [12/30] iter: [269/391] loss_D: 1.3857 loss_G: 0.6927 +2018-11-15 06:04:38,970 | epoch: [12/30] iter: [270/391] loss_D: 1.3857 loss_G: 0.6934 +2018-11-15 06:04:46,098 | epoch: [12/30] iter: [271/391] loss_D: 1.3857 loss_G: 0.6926 +2018-11-15 06:04:53,091 | epoch: [12/30] iter: [272/391] loss_D: 1.3872 loss_G: 0.6930 +2018-11-15 06:05:00,037 | epoch: [12/30] iter: [273/391] loss_D: 1.3872 loss_G: 0.6941 +2018-11-15 06:05:07,027 | epoch: [12/30] iter: [274/391] loss_D: 1.3880 loss_G: 0.6933 +2018-11-15 06:05:14,368 | epoch: [12/30] iter: [275/391] loss_D: 1.3875 loss_G: 0.6946 +2018-11-15 06:05:18,682 | epoch: [12/30] iter: [276/391] loss_D: 1.3863 loss_G: 0.6960 +2018-11-15 06:05:22,587 | epoch: [12/30] iter: [277/391] loss_D: 1.3844 loss_G: 0.6950 +2018-11-15 06:05:26,657 | epoch: [12/30] iter: [278/391] loss_D: 1.3850 loss_G: 0.6948 +2018-11-15 06:05:30,725 | epoch: [12/30] iter: [279/391] loss_D: 1.3859 loss_G: 0.6950 +2018-11-15 06:05:34,930 | epoch: [12/30] iter: [280/391] loss_D: 1.3862 loss_G: 0.6946 +2018-11-15 06:05:39,009 | epoch: [12/30] iter: [281/391] loss_D: 1.3857 loss_G: 0.6947 +2018-11-15 06:05:43,310 | epoch: [12/30] iter: [282/391] loss_D: 1.3871 loss_G: 0.6934 +2018-11-15 06:05:47,568 | epoch: [12/30] iter: [283/391] loss_D: 1.3874 loss_G: 0.6930 +2018-11-15 06:05:51,669 | epoch: [12/30] iter: [284/391] loss_D: 1.3875 loss_G: 0.6928 +2018-11-15 06:05:56,252 | epoch: [12/30] iter: [285/391] loss_D: 1.3877 loss_G: 0.6934 +2018-11-15 06:06:03,637 | epoch: [12/30] iter: [286/391] loss_D: 1.3880 loss_G: 0.6928 +2018-11-15 06:06:10,328 | epoch: [12/30] iter: [287/391] loss_D: 1.3884 loss_G: 0.6927 +2018-11-15 06:06:17,496 | epoch: [12/30] iter: [288/391] loss_D: 1.3881 loss_G: 0.6924 +2018-11-15 06:06:24,834 | epoch: [12/30] iter: [289/391] loss_D: 1.3859 loss_G: 0.6932 +2018-11-15 06:06:31,675 | epoch: [12/30] iter: [290/391] loss_D: 1.3869 loss_G: 0.6932 +2018-11-15 06:06:38,553 | epoch: [12/30] iter: [291/391] loss_D: 1.3863 loss_G: 0.6942 +2018-11-15 06:06:45,398 | epoch: [12/30] iter: [292/391] loss_D: 1.3864 loss_G: 0.6943 +2018-11-15 06:06:52,564 | epoch: [12/30] iter: [293/391] loss_D: 1.3859 loss_G: 0.6943 +2018-11-15 06:06:59,224 | epoch: [12/30] iter: [294/391] loss_D: 1.3871 loss_G: 0.6930 +2018-11-15 06:07:06,433 | epoch: [12/30] iter: [295/391] loss_D: 1.3865 loss_G: 0.6946 +2018-11-15 06:07:10,957 | epoch: [12/30] iter: [296/391] loss_D: 1.3871 loss_G: 0.6938 +2018-11-15 06:07:14,834 | epoch: [12/30] iter: [297/391] loss_D: 1.3868 loss_G: 0.6929 +2018-11-15 06:07:18,864 | epoch: [12/30] iter: [298/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 06:07:23,020 | epoch: [12/30] iter: [299/391] loss_D: 1.3875 loss_G: 0.6942 +2018-11-15 06:07:26,946 | epoch: [12/30] iter: [300/391] loss_D: 1.3885 loss_G: 0.6931 +2018-11-15 06:07:31,010 | epoch: [12/30] iter: [301/391] loss_D: 1.3877 loss_G: 0.6939 +2018-11-15 06:07:35,205 | epoch: [12/30] iter: [302/391] loss_D: 1.3864 loss_G: 0.6955 +2018-11-15 06:07:39,417 | epoch: [12/30] iter: [303/391] loss_D: 1.3846 loss_G: 0.6948 +2018-11-15 06:07:43,650 | epoch: [12/30] iter: [304/391] loss_D: 1.3847 loss_G: 0.6952 +2018-11-15 06:07:47,903 | epoch: [12/30] iter: [305/391] loss_D: 1.3846 loss_G: 0.6949 +2018-11-15 06:07:52,519 | epoch: [12/30] iter: [306/391] loss_D: 1.3860 loss_G: 0.6946 +2018-11-15 06:07:59,308 | epoch: [12/30] iter: [307/391] loss_D: 1.3871 loss_G: 0.6944 +2018-11-15 06:08:06,786 | epoch: [12/30] iter: [308/391] loss_D: 1.3843 loss_G: 0.6946 +2018-11-15 06:08:14,031 | epoch: [12/30] iter: [309/391] loss_D: 1.3851 loss_G: 0.6947 +2018-11-15 06:08:20,956 | epoch: [12/30] iter: [310/391] loss_D: 1.3854 loss_G: 0.6941 +2018-11-15 06:08:28,190 | epoch: [12/30] iter: [311/391] loss_D: 1.3846 loss_G: 0.6942 +2018-11-15 06:08:35,388 | epoch: [12/30] iter: [312/391] loss_D: 1.3869 loss_G: 0.6935 +2018-11-15 06:08:42,641 | epoch: [12/30] iter: [313/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 06:08:49,865 | epoch: [12/30] iter: [314/391] loss_D: 1.3844 loss_G: 0.6932 +2018-11-15 06:08:56,950 | epoch: [12/30] iter: [315/391] loss_D: 1.3856 loss_G: 0.6941 +2018-11-15 06:09:03,871 | epoch: [12/30] iter: [316/391] loss_D: 1.3858 loss_G: 0.6942 +2018-11-15 06:09:10,758 | epoch: [12/30] iter: [317/391] loss_D: 1.3848 loss_G: 0.6934 +2018-11-15 06:09:17,312 | epoch: [12/30] iter: [318/391] loss_D: 1.3844 loss_G: 0.6935 +2018-11-15 06:09:24,222 | epoch: [12/30] iter: [319/391] loss_D: 1.3883 loss_G: 0.6935 +2018-11-15 06:09:31,447 | epoch: [12/30] iter: [320/391] loss_D: 1.3875 loss_G: 0.6935 +2018-11-15 06:09:38,455 | epoch: [12/30] iter: [321/391] loss_D: 1.3894 loss_G: 0.6933 +2018-11-15 06:09:45,542 | epoch: [12/30] iter: [322/391] loss_D: 1.3884 loss_G: 0.6948 +2018-11-15 06:09:52,615 | epoch: [12/30] iter: [323/391] loss_D: 1.3873 loss_G: 0.6938 +2018-11-15 06:09:59,543 | epoch: [12/30] iter: [324/391] loss_D: 1.3849 loss_G: 0.6927 +2018-11-15 06:10:03,829 | epoch: [12/30] iter: [325/391] loss_D: 1.3886 loss_G: 0.6944 +2018-11-15 06:10:07,838 | epoch: [12/30] iter: [326/391] loss_D: 1.3864 loss_G: 0.6931 +2018-11-15 06:10:11,853 | epoch: [12/30] iter: [327/391] loss_D: 1.3872 loss_G: 0.6924 +2018-11-15 06:10:15,947 | epoch: [12/30] iter: [328/391] loss_D: 1.3867 loss_G: 0.6928 +2018-11-15 06:10:20,110 | epoch: [12/30] iter: [329/391] loss_D: 1.3862 loss_G: 0.6925 +2018-11-15 06:10:24,993 | epoch: [12/30] iter: [330/391] loss_D: 1.3850 loss_G: 0.6942 +2018-11-15 06:10:31,996 | epoch: [12/30] iter: [331/391] loss_D: 1.3863 loss_G: 0.6942 +2018-11-15 06:10:39,160 | epoch: [12/30] iter: [332/391] loss_D: 1.3866 loss_G: 0.6936 +2018-11-15 06:10:46,257 | epoch: [12/30] iter: [333/391] loss_D: 1.3862 loss_G: 0.6938 +2018-11-15 06:10:53,753 | epoch: [12/30] iter: [334/391] loss_D: 1.3860 loss_G: 0.6945 +2018-11-15 06:11:00,709 | epoch: [12/30] iter: [335/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 06:11:07,555 | epoch: [12/30] iter: [336/391] loss_D: 1.3856 loss_G: 0.6936 +2018-11-15 06:11:14,674 | epoch: [12/30] iter: [337/391] loss_D: 1.3848 loss_G: 0.6933 +2018-11-15 06:11:21,939 | epoch: [12/30] iter: [338/391] loss_D: 1.3869 loss_G: 0.6931 +2018-11-15 06:11:29,162 | epoch: [12/30] iter: [339/391] loss_D: 1.3877 loss_G: 0.6922 +2018-11-15 06:11:36,319 | epoch: [12/30] iter: [340/391] loss_D: 1.3855 loss_G: 0.6931 +2018-11-15 06:11:43,057 | epoch: [12/30] iter: [341/391] loss_D: 1.3873 loss_G: 0.6929 +2018-11-15 06:11:49,884 | epoch: [12/30] iter: [342/391] loss_D: 1.3865 loss_G: 0.6930 +2018-11-15 06:11:56,417 | epoch: [12/30] iter: [343/391] loss_D: 1.3862 loss_G: 0.6925 +2018-11-15 06:12:00,604 | epoch: [12/30] iter: [344/391] loss_D: 1.3868 loss_G: 0.6928 +2018-11-15 06:12:04,674 | epoch: [12/30] iter: [345/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 06:12:08,525 | epoch: [12/30] iter: [346/391] loss_D: 1.3860 loss_G: 0.6934 +2018-11-15 06:12:12,563 | epoch: [12/30] iter: [347/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 06:12:16,941 | epoch: [12/30] iter: [348/391] loss_D: 1.3879 loss_G: 0.6928 +2018-11-15 06:12:21,187 | epoch: [12/30] iter: [349/391] loss_D: 1.3869 loss_G: 0.6933 +2018-11-15 06:12:25,316 | epoch: [12/30] iter: [350/391] loss_D: 1.3875 loss_G: 0.6937 +2018-11-15 06:12:29,142 | epoch: [12/30] iter: [351/391] loss_D: 1.3864 loss_G: 0.6930 +2018-11-15 06:12:33,422 | epoch: [12/30] iter: [352/391] loss_D: 1.3864 loss_G: 0.6929 +2018-11-15 06:12:38,913 | epoch: [12/30] iter: [353/391] loss_D: 1.3875 loss_G: 0.6927 +2018-11-15 06:12:46,318 | epoch: [12/30] iter: [354/391] loss_D: 1.3863 loss_G: 0.6939 +2018-11-15 06:14:58,391 | epoch: [12/30] iter: [355/391] loss_D: 1.3860 loss_G: 0.6928 +2018-11-15 06:15:02,396 | epoch: [12/30] iter: [356/391] loss_D: 1.3866 loss_G: 0.6929 +2018-11-15 06:15:06,407 | epoch: [12/30] iter: [357/391] loss_D: 1.3867 loss_G: 0.6929 +2018-11-15 06:15:10,556 | epoch: [12/30] iter: [358/391] loss_D: 1.3869 loss_G: 0.6928 +2018-11-15 06:15:16,794 | epoch: [12/30] iter: [359/391] loss_D: 1.3863 loss_G: 0.6930 +2018-11-15 06:15:23,699 | epoch: [12/30] iter: [360/391] loss_D: 1.3864 loss_G: 0.6934 +2018-11-15 06:15:30,786 | epoch: [12/30] iter: [361/391] loss_D: 1.3877 loss_G: 0.6927 +2018-11-15 06:15:37,554 | epoch: [12/30] iter: [362/391] loss_D: 1.3885 loss_G: 0.6937 +2018-11-15 06:15:44,701 | epoch: [12/30] iter: [363/391] loss_D: 1.3877 loss_G: 0.6937 +2018-11-15 06:15:52,051 | epoch: [12/30] iter: [364/391] loss_D: 1.3863 loss_G: 0.6938 +2018-11-15 06:15:58,975 | epoch: [12/30] iter: [365/391] loss_D: 1.3863 loss_G: 0.6952 +2018-11-15 06:16:05,715 | epoch: [12/30] iter: [366/391] loss_D: 1.3854 loss_G: 0.6944 +2018-11-15 06:16:12,285 | epoch: [12/30] iter: [367/391] loss_D: 1.3867 loss_G: 0.6942 +2018-11-15 06:16:18,866 | epoch: [12/30] iter: [368/391] loss_D: 1.3860 loss_G: 0.6941 +2018-11-15 06:16:25,958 | epoch: [12/30] iter: [369/391] loss_D: 1.3870 loss_G: 0.6945 +2018-11-15 06:16:33,113 | epoch: [12/30] iter: [370/391] loss_D: 1.3865 loss_G: 0.6935 +2018-11-15 06:16:40,220 | epoch: [12/30] iter: [371/391] loss_D: 1.3867 loss_G: 0.6939 +2018-11-15 06:16:47,399 | epoch: [12/30] iter: [372/391] loss_D: 1.3871 loss_G: 0.6933 +2018-11-15 06:16:53,780 | epoch: [12/30] iter: [373/391] loss_D: 1.3865 loss_G: 0.6931 +2018-11-15 06:16:57,878 | epoch: [12/30] iter: [374/391] loss_D: 1.3873 loss_G: 0.6939 +2018-11-15 06:17:02,067 | epoch: [12/30] iter: [375/391] loss_D: 1.3875 loss_G: 0.6935 +2018-11-15 06:17:06,146 | epoch: [12/30] iter: [376/391] loss_D: 1.3858 loss_G: 0.6932 +2018-11-15 06:17:10,321 | epoch: [12/30] iter: [377/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 06:17:14,333 | epoch: [12/30] iter: [378/391] loss_D: 1.3864 loss_G: 0.6938 +2018-11-15 06:17:20,615 | epoch: [12/30] iter: [379/391] loss_D: 1.3849 loss_G: 0.6937 +2018-11-15 06:17:27,873 | epoch: [12/30] iter: [380/391] loss_D: 1.3861 loss_G: 0.6941 +2018-11-15 06:17:35,142 | epoch: [12/30] iter: [381/391] loss_D: 1.3855 loss_G: 0.6945 +2018-11-15 06:17:42,199 | epoch: [12/30] iter: [382/391] loss_D: 1.3868 loss_G: 0.6937 +2018-11-15 06:17:49,035 | epoch: [12/30] iter: [383/391] loss_D: 1.3848 loss_G: 0.6934 +2018-11-15 06:17:56,426 | epoch: [12/30] iter: [384/391] loss_D: 1.3856 loss_G: 0.6931 +2018-11-15 06:18:03,279 | epoch: [12/30] iter: [385/391] loss_D: 1.3853 loss_G: 0.6936 +2018-11-15 06:18:10,088 | epoch: [12/30] iter: [386/391] loss_D: 1.3850 loss_G: 0.6931 +2018-11-15 06:18:16,865 | epoch: [12/30] iter: [387/391] loss_D: 1.3860 loss_G: 0.6933 +2018-11-15 06:18:23,862 | epoch: [12/30] iter: [388/391] loss_D: 1.3866 loss_G: 0.6928 +2018-11-15 06:18:30,832 | epoch: [12/30] iter: [389/391] loss_D: 1.3867 loss_G: 0.6931 +2018-11-15 06:18:35,230 | epoch: [12/30] iter: [390/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 06:18:42,855 | epoch: [13/30] iter: [0/391] loss_D: 1.3886 loss_G: 0.6926 +2018-11-15 06:18:49,611 | epoch: [13/30] iter: [1/391] loss_D: 1.3892 loss_G: 0.6937 +2018-11-15 06:18:56,440 | epoch: [13/30] iter: [2/391] loss_D: 1.3858 loss_G: 0.6936 +2018-11-15 06:19:03,753 | epoch: [13/30] iter: [3/391] loss_D: 1.3872 loss_G: 0.6941 +2018-11-15 06:19:10,905 | epoch: [13/30] iter: [4/391] loss_D: 1.3880 loss_G: 0.6948 +2018-11-15 06:19:15,662 | epoch: [13/30] iter: [5/391] loss_D: 1.3853 loss_G: 0.6966 +2018-11-15 06:19:19,702 | epoch: [13/30] iter: [6/391] loss_D: 1.3852 loss_G: 0.6954 +2018-11-15 06:19:23,895 | epoch: [13/30] iter: [7/391] loss_D: 1.3856 loss_G: 0.6958 +2018-11-15 06:19:27,806 | epoch: [13/30] iter: [8/391] loss_D: 1.3852 loss_G: 0.6962 +2018-11-15 06:19:31,854 | epoch: [13/30] iter: [9/391] loss_D: 1.3863 loss_G: 0.6938 +2018-11-15 06:19:36,124 | epoch: [13/30] iter: [10/391] loss_D: 1.3865 loss_G: 0.6958 +2018-11-15 06:19:40,605 | epoch: [13/30] iter: [11/391] loss_D: 1.3843 loss_G: 0.6948 +2018-11-15 06:19:47,242 | epoch: [13/30] iter: [12/391] loss_D: 1.3851 loss_G: 0.6950 +2018-11-15 06:19:54,279 | epoch: [13/30] iter: [13/391] loss_D: 1.3874 loss_G: 0.6918 +2018-11-15 06:20:01,340 | epoch: [13/30] iter: [14/391] loss_D: 1.3885 loss_G: 0.6927 +2018-11-15 06:20:08,154 | epoch: [13/30] iter: [15/391] loss_D: 1.3881 loss_G: 0.6921 +2018-11-15 06:20:15,353 | epoch: [13/30] iter: [16/391] loss_D: 1.3868 loss_G: 0.6916 +2018-11-15 06:20:22,008 | epoch: [13/30] iter: [17/391] loss_D: 1.3868 loss_G: 0.6924 +2018-11-15 06:20:27,414 | epoch: [13/30] iter: [18/391] loss_D: 1.3875 loss_G: 0.6923 +2018-11-15 06:20:31,561 | epoch: [13/30] iter: [19/391] loss_D: 1.3864 loss_G: 0.6925 +2018-11-15 06:20:35,782 | epoch: [13/30] iter: [20/391] loss_D: 1.3871 loss_G: 0.6921 +2018-11-15 06:20:39,994 | epoch: [13/30] iter: [21/391] loss_D: 1.3868 loss_G: 0.6920 +2018-11-15 06:20:44,023 | epoch: [13/30] iter: [22/391] loss_D: 1.3862 loss_G: 0.6916 +2018-11-15 06:20:48,044 | epoch: [13/30] iter: [23/391] loss_D: 1.3867 loss_G: 0.6924 +2018-11-15 06:20:52,393 | epoch: [13/30] iter: [24/391] loss_D: 1.3857 loss_G: 0.6925 +2018-11-15 06:20:56,806 | epoch: [13/30] iter: [25/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 06:21:03,706 | epoch: [13/30] iter: [26/391] loss_D: 1.3869 loss_G: 0.6925 +2018-11-15 06:21:10,784 | epoch: [13/30] iter: [27/391] loss_D: 1.3848 loss_G: 0.6924 +2018-11-15 06:21:17,599 | epoch: [13/30] iter: [28/391] loss_D: 1.3861 loss_G: 0.6922 +2018-11-15 06:21:24,162 | epoch: [13/30] iter: [29/391] loss_D: 1.3856 loss_G: 0.6925 +2018-11-15 06:21:30,853 | epoch: [13/30] iter: [30/391] loss_D: 1.3859 loss_G: 0.6930 +2018-11-15 06:21:37,863 | epoch: [13/30] iter: [31/391] loss_D: 1.3861 loss_G: 0.6926 +2018-11-15 06:21:45,093 | epoch: [13/30] iter: [32/391] loss_D: 1.3861 loss_G: 0.6928 +2018-11-15 06:21:51,950 | epoch: [13/30] iter: [33/391] loss_D: 1.3865 loss_G: 0.6925 +2018-11-15 06:21:58,856 | epoch: [13/30] iter: [34/391] loss_D: 1.3866 loss_G: 0.6932 +2018-11-15 06:22:03,679 | epoch: [13/30] iter: [35/391] loss_D: 1.3874 loss_G: 0.6925 +2018-11-15 06:22:07,806 | epoch: [13/30] iter: [36/391] loss_D: 1.3868 loss_G: 0.6928 +2018-11-15 06:22:11,841 | epoch: [13/30] iter: [37/391] loss_D: 1.3873 loss_G: 0.6927 +2018-11-15 06:22:15,992 | epoch: [13/30] iter: [38/391] loss_D: 1.3864 loss_G: 0.6943 +2018-11-15 06:22:20,034 | epoch: [13/30] iter: [39/391] loss_D: 1.3867 loss_G: 0.6926 +2018-11-15 06:22:24,213 | epoch: [13/30] iter: [40/391] loss_D: 1.3869 loss_G: 0.6937 +2018-11-15 06:22:28,349 | epoch: [13/30] iter: [41/391] loss_D: 1.3863 loss_G: 0.6944 +2018-11-15 06:22:35,083 | epoch: [13/30] iter: [42/391] loss_D: 1.3870 loss_G: 0.6942 +2018-11-15 06:22:41,750 | epoch: [13/30] iter: [43/391] loss_D: 1.3862 loss_G: 0.6941 +2018-11-15 06:22:48,990 | epoch: [13/30] iter: [44/391] loss_D: 1.3868 loss_G: 0.6948 +2018-11-15 06:22:55,902 | epoch: [13/30] iter: [45/391] loss_D: 1.3861 loss_G: 0.6946 +2018-11-15 06:23:02,950 | epoch: [13/30] iter: [46/391] loss_D: 1.3864 loss_G: 0.6940 +2018-11-15 06:23:10,189 | epoch: [13/30] iter: [47/391] loss_D: 1.3860 loss_G: 0.6949 +2018-11-15 06:23:17,244 | epoch: [13/30] iter: [48/391] loss_D: 1.3870 loss_G: 0.6934 +2018-11-15 06:23:23,997 | epoch: [13/30] iter: [49/391] loss_D: 1.3873 loss_G: 0.6937 +2018-11-15 06:23:31,037 | epoch: [13/30] iter: [50/391] loss_D: 1.3871 loss_G: 0.6931 +2018-11-15 06:23:38,310 | epoch: [13/30] iter: [51/391] loss_D: 1.3868 loss_G: 0.6932 +2018-11-15 06:23:45,767 | epoch: [13/30] iter: [52/391] loss_D: 1.3883 loss_G: 0.6934 +2018-11-15 06:23:53,172 | epoch: [13/30] iter: [53/391] loss_D: 1.3883 loss_G: 0.6929 +2018-11-15 06:24:00,105 | epoch: [13/30] iter: [54/391] loss_D: 1.3881 loss_G: 0.6931 +2018-11-15 06:24:07,095 | epoch: [13/30] iter: [55/391] loss_D: 1.3868 loss_G: 0.6925 +2018-11-15 06:24:14,418 | epoch: [13/30] iter: [56/391] loss_D: 1.3872 loss_G: 0.6927 +2018-11-15 06:24:21,157 | epoch: [13/30] iter: [57/391] loss_D: 1.3870 loss_G: 0.6929 +2018-11-15 06:24:28,044 | epoch: [13/30] iter: [58/391] loss_D: 1.3875 loss_G: 0.6927 +2018-11-15 06:24:34,251 | epoch: [13/30] iter: [59/391] loss_D: 1.3874 loss_G: 0.6928 +2018-11-15 06:24:38,328 | epoch: [13/30] iter: [60/391] loss_D: 1.3875 loss_G: 0.6929 +2018-11-15 06:24:42,161 | epoch: [13/30] iter: [61/391] loss_D: 1.3875 loss_G: 0.6928 +2018-11-15 06:24:46,221 | epoch: [13/30] iter: [62/391] loss_D: 1.3865 loss_G: 0.6932 +2018-11-15 06:24:50,600 | epoch: [13/30] iter: [63/391] loss_D: 1.3869 loss_G: 0.6935 +2018-11-15 06:26:39,301 | epoch: [13/30] iter: [64/391] loss_D: 1.3868 loss_G: 0.6934 +2018-11-15 06:26:43,303 | epoch: [13/30] iter: [65/391] loss_D: 1.3869 loss_G: 0.6937 +2018-11-15 06:26:47,750 | epoch: [13/30] iter: [66/391] loss_D: 1.3859 loss_G: 0.6934 +2018-11-15 06:26:54,497 | epoch: [13/30] iter: [67/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 06:27:01,262 | epoch: [13/30] iter: [68/391] loss_D: 1.3859 loss_G: 0.6928 +2018-11-15 06:27:08,436 | epoch: [13/30] iter: [69/391] loss_D: 1.3854 loss_G: 0.6936 +2018-11-15 06:27:14,987 | epoch: [13/30] iter: [70/391] loss_D: 1.3855 loss_G: 0.6937 +2018-11-15 06:27:21,779 | epoch: [13/30] iter: [71/391] loss_D: 1.3866 loss_G: 0.6936 +2018-11-15 06:27:28,498 | epoch: [13/30] iter: [72/391] loss_D: 1.3855 loss_G: 0.6934 +2018-11-15 06:27:35,496 | epoch: [13/30] iter: [73/391] loss_D: 1.3854 loss_G: 0.6935 +2018-11-15 06:27:42,766 | epoch: [13/30] iter: [74/391] loss_D: 1.3868 loss_G: 0.6930 +2018-11-15 06:27:50,018 | epoch: [13/30] iter: [75/391] loss_D: 1.3863 loss_G: 0.6931 +2018-11-15 06:27:57,390 | epoch: [13/30] iter: [76/391] loss_D: 1.3872 loss_G: 0.6928 +2018-11-15 06:28:04,504 | epoch: [13/30] iter: [77/391] loss_D: 1.3856 loss_G: 0.6933 +2018-11-15 06:28:11,658 | epoch: [13/30] iter: [78/391] loss_D: 1.3858 loss_G: 0.6938 +2018-11-15 06:28:18,821 | epoch: [13/30] iter: [79/391] loss_D: 1.3862 loss_G: 0.6937 +2018-11-15 06:28:26,259 | epoch: [13/30] iter: [80/391] loss_D: 1.3871 loss_G: 0.6939 +2018-11-15 06:28:33,579 | epoch: [13/30] iter: [81/391] loss_D: 1.3862 loss_G: 0.6931 +2018-11-15 06:28:40,190 | epoch: [13/30] iter: [82/391] loss_D: 1.3865 loss_G: 0.6945 +2018-11-15 06:28:47,490 | epoch: [13/30] iter: [83/391] loss_D: 1.3883 loss_G: 0.6945 +2018-11-15 06:28:54,149 | epoch: [13/30] iter: [84/391] loss_D: 1.3856 loss_G: 0.6954 +2018-11-15 06:29:01,349 | epoch: [13/30] iter: [85/391] loss_D: 1.3864 loss_G: 0.6939 +2018-11-15 06:29:08,624 | epoch: [13/30] iter: [86/391] loss_D: 1.3862 loss_G: 0.6950 +2018-11-15 06:29:13,079 | epoch: [13/30] iter: [87/391] loss_D: 1.3860 loss_G: 0.6945 +2018-11-15 06:29:17,251 | epoch: [13/30] iter: [88/391] loss_D: 1.3858 loss_G: 0.6940 +2018-11-15 06:29:21,330 | epoch: [13/30] iter: [89/391] loss_D: 1.3858 loss_G: 0.6941 +2018-11-15 06:29:25,516 | epoch: [13/30] iter: [90/391] loss_D: 1.3856 loss_G: 0.6942 +2018-11-15 06:29:29,742 | epoch: [13/30] iter: [91/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 06:29:34,817 | epoch: [13/30] iter: [92/391] loss_D: 1.3867 loss_G: 0.6925 +2018-11-15 06:29:42,093 | epoch: [13/30] iter: [93/391] loss_D: 1.3868 loss_G: 0.6936 +2018-11-15 06:29:49,362 | epoch: [13/30] iter: [94/391] loss_D: 1.3876 loss_G: 0.6926 +2018-11-15 06:29:56,060 | epoch: [13/30] iter: [95/391] loss_D: 1.3863 loss_G: 0.6926 +2018-11-15 06:30:03,459 | epoch: [13/30] iter: [96/391] loss_D: 1.3870 loss_G: 0.6925 +2018-11-15 06:30:10,394 | epoch: [13/30] iter: [97/391] loss_D: 1.3863 loss_G: 0.6926 +2018-11-15 06:30:17,643 | epoch: [13/30] iter: [98/391] loss_D: 1.3877 loss_G: 0.6918 +2018-11-15 06:30:24,359 | epoch: [13/30] iter: [99/391] loss_D: 1.3868 loss_G: 0.6925 +2018-11-15 06:30:31,865 | epoch: [13/30] iter: [100/391] loss_D: 1.3878 loss_G: 0.6927 +2018-11-15 06:30:36,224 | epoch: [13/30] iter: [101/391] loss_D: 1.3867 loss_G: 0.6923 +2018-11-15 06:30:40,439 | epoch: [13/30] iter: [102/391] loss_D: 1.3868 loss_G: 0.6926 +2018-11-15 06:30:44,684 | epoch: [13/30] iter: [103/391] loss_D: 1.3859 loss_G: 0.6931 +2018-11-15 06:30:48,756 | epoch: [13/30] iter: [104/391] loss_D: 1.3873 loss_G: 0.6932 +2018-11-15 06:30:52,595 | epoch: [13/30] iter: [105/391] loss_D: 1.3865 loss_G: 0.6933 +2018-11-15 06:30:56,579 | epoch: [13/30] iter: [106/391] loss_D: 1.3868 loss_G: 0.6931 +2018-11-15 06:31:01,025 | epoch: [13/30] iter: [107/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 06:31:08,405 | epoch: [13/30] iter: [108/391] loss_D: 1.3863 loss_G: 0.6931 +2018-11-15 06:31:15,407 | epoch: [13/30] iter: [109/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 06:31:22,597 | epoch: [13/30] iter: [110/391] loss_D: 1.3861 loss_G: 0.6932 +2018-11-15 06:31:29,745 | epoch: [13/30] iter: [111/391] loss_D: 1.3856 loss_G: 0.6933 +2018-11-15 06:31:36,948 | epoch: [13/30] iter: [112/391] loss_D: 1.3862 loss_G: 0.6939 +2018-11-15 06:31:44,109 | epoch: [13/30] iter: [113/391] loss_D: 1.3864 loss_G: 0.6937 +2018-11-15 06:31:51,374 | epoch: [13/30] iter: [114/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 06:31:58,545 | epoch: [13/30] iter: [115/391] loss_D: 1.3857 loss_G: 0.6930 +2018-11-15 06:32:05,697 | epoch: [13/30] iter: [116/391] loss_D: 1.3853 loss_G: 0.6932 +2018-11-15 06:32:12,993 | epoch: [13/30] iter: [117/391] loss_D: 1.3857 loss_G: 0.6933 +2018-11-15 06:32:20,079 | epoch: [13/30] iter: [118/391] loss_D: 1.3860 loss_G: 0.6937 +2018-11-15 06:32:27,451 | epoch: [13/30] iter: [119/391] loss_D: 1.3859 loss_G: 0.6934 +2018-11-15 06:32:34,812 | epoch: [13/30] iter: [120/391] loss_D: 1.3865 loss_G: 0.6929 +2018-11-15 06:32:42,041 | epoch: [13/30] iter: [121/391] loss_D: 1.3853 loss_G: 0.6935 +2018-11-15 06:32:48,965 | epoch: [13/30] iter: [122/391] loss_D: 1.3856 loss_G: 0.6934 +2018-11-15 06:32:55,705 | epoch: [13/30] iter: [123/391] loss_D: 1.3857 loss_G: 0.6927 +2018-11-15 06:33:02,487 | epoch: [13/30] iter: [124/391] loss_D: 1.3857 loss_G: 0.6930 +2018-11-15 06:33:09,283 | epoch: [13/30] iter: [125/391] loss_D: 1.3867 loss_G: 0.6924 +2018-11-15 06:33:16,142 | epoch: [13/30] iter: [126/391] loss_D: 1.3865 loss_G: 0.6933 +2018-11-15 06:33:22,927 | epoch: [13/30] iter: [127/391] loss_D: 1.3856 loss_G: 0.6929 +2018-11-15 06:33:29,625 | epoch: [13/30] iter: [128/391] loss_D: 1.3862 loss_G: 0.6928 +2018-11-15 06:33:36,506 | epoch: [13/30] iter: [129/391] loss_D: 1.3872 loss_G: 0.6932 +2018-11-15 06:33:43,722 | epoch: [13/30] iter: [130/391] loss_D: 1.3858 loss_G: 0.6929 +2018-11-15 06:33:49,868 | epoch: [13/30] iter: [131/391] loss_D: 1.3865 loss_G: 0.6935 +2018-11-15 06:33:53,791 | epoch: [13/30] iter: [132/391] loss_D: 1.3855 loss_G: 0.6937 +2018-11-15 06:33:57,561 | epoch: [13/30] iter: [133/391] loss_D: 1.3862 loss_G: 0.6935 +2018-11-15 06:34:01,542 | epoch: [13/30] iter: [134/391] loss_D: 1.3865 loss_G: 0.6933 +2018-11-15 06:34:05,487 | epoch: [13/30] iter: [135/391] loss_D: 1.3870 loss_G: 0.6937 +2018-11-15 06:34:09,664 | epoch: [13/30] iter: [136/391] loss_D: 1.3870 loss_G: 0.6935 +2018-11-15 06:34:13,865 | epoch: [13/30] iter: [137/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 06:34:17,945 | epoch: [13/30] iter: [138/391] loss_D: 1.3862 loss_G: 0.6930 +2018-11-15 06:34:22,088 | epoch: [13/30] iter: [139/391] loss_D: 1.3856 loss_G: 0.6935 +2018-11-15 06:34:27,078 | epoch: [13/30] iter: [140/391] loss_D: 1.3862 loss_G: 0.6942 +2018-11-15 06:34:34,016 | epoch: [13/30] iter: [141/391] loss_D: 1.3866 loss_G: 0.6940 +2018-11-15 06:34:41,256 | epoch: [13/30] iter: [142/391] loss_D: 1.3852 loss_G: 0.6936 +2018-11-15 06:34:48,570 | epoch: [13/30] iter: [143/391] loss_D: 1.3855 loss_G: 0.6928 +2018-11-15 06:34:55,377 | epoch: [13/30] iter: [144/391] loss_D: 1.3861 loss_G: 0.6937 +2018-11-15 06:35:02,309 | epoch: [13/30] iter: [145/391] loss_D: 1.3849 loss_G: 0.6940 +2018-11-15 06:35:09,374 | epoch: [13/30] iter: [146/391] loss_D: 1.3859 loss_G: 0.6932 +2018-11-15 06:35:16,350 | epoch: [13/30] iter: [147/391] loss_D: 1.3865 loss_G: 0.6931 +2018-11-15 06:35:23,104 | epoch: [13/30] iter: [148/391] loss_D: 1.3878 loss_G: 0.6935 +2018-11-15 06:35:30,231 | epoch: [13/30] iter: [149/391] loss_D: 1.3866 loss_G: 0.6928 +2018-11-15 06:35:37,113 | epoch: [13/30] iter: [150/391] loss_D: 1.3867 loss_G: 0.6929 +2018-11-15 06:35:43,766 | epoch: [13/30] iter: [151/391] loss_D: 1.3868 loss_G: 0.6931 +2018-11-15 06:35:50,565 | epoch: [13/30] iter: [152/391] loss_D: 1.3862 loss_G: 0.6929 +2018-11-15 06:35:57,658 | epoch: [13/30] iter: [153/391] loss_D: 1.3861 loss_G: 0.6929 +2018-11-15 06:36:04,398 | epoch: [13/30] iter: [154/391] loss_D: 1.3869 loss_G: 0.6929 +2018-11-15 06:36:11,426 | epoch: [13/30] iter: [155/391] loss_D: 1.3873 loss_G: 0.6928 +2018-11-15 06:36:18,267 | epoch: [13/30] iter: [156/391] loss_D: 1.3865 loss_G: 0.6932 +2018-11-15 06:36:25,273 | epoch: [13/30] iter: [157/391] loss_D: 1.3872 loss_G: 0.6924 +2018-11-15 06:36:32,353 | epoch: [13/30] iter: [158/391] loss_D: 1.3870 loss_G: 0.6929 +2018-11-15 06:36:39,149 | epoch: [13/30] iter: [159/391] loss_D: 1.3868 loss_G: 0.6929 +2018-11-15 06:36:51,286 | epoch: [13/30] iter: [160/391] loss_D: 1.3863 loss_G: 0.6928 +2018-11-15 06:37:06,167 | epoch: [13/30] iter: [161/391] loss_D: 1.3867 loss_G: 0.6935 +2018-11-15 06:37:20,531 | epoch: [13/30] iter: [162/391] loss_D: 1.3873 loss_G: 0.6933 +2018-11-15 06:37:29,099 | epoch: [13/30] iter: [163/391] loss_D: 1.3875 loss_G: 0.6933 +2018-11-15 06:39:44,124 | epoch: [13/30] iter: [164/391] loss_D: 1.3865 loss_G: 0.6925 +2018-11-15 06:39:51,308 | epoch: [13/30] iter: [165/391] loss_D: 1.3866 loss_G: 0.6932 +2018-11-15 06:39:58,239 | epoch: [13/30] iter: [166/391] loss_D: 1.3868 loss_G: 0.6931 +2018-11-15 06:40:05,330 | epoch: [13/30] iter: [167/391] loss_D: 1.3865 loss_G: 0.6929 +2018-11-15 06:40:12,679 | epoch: [13/30] iter: [168/391] loss_D: 1.3864 loss_G: 0.6935 +2018-11-15 06:40:19,635 | epoch: [13/30] iter: [169/391] loss_D: 1.3861 loss_G: 0.6937 +2018-11-15 06:40:26,813 | epoch: [13/30] iter: [170/391] loss_D: 1.3867 loss_G: 0.6934 +2018-11-15 06:40:33,985 | epoch: [13/30] iter: [171/391] loss_D: 1.3870 loss_G: 0.6930 +2018-11-15 06:40:41,322 | epoch: [13/30] iter: [172/391] loss_D: 1.3862 loss_G: 0.6936 +2018-11-15 06:40:48,422 | epoch: [13/30] iter: [173/391] loss_D: 1.3863 loss_G: 0.6938 +2018-11-15 06:40:55,350 | epoch: [13/30] iter: [174/391] loss_D: 1.3854 loss_G: 0.6936 +2018-11-15 06:41:02,568 | epoch: [13/30] iter: [175/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 06:41:09,613 | epoch: [13/30] iter: [176/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 06:41:16,375 | epoch: [13/30] iter: [177/391] loss_D: 1.3866 loss_G: 0.6932 +2018-11-15 06:41:20,369 | epoch: [13/30] iter: [178/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-15 06:41:24,362 | epoch: [13/30] iter: [179/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 06:41:28,321 | epoch: [13/30] iter: [180/391] loss_D: 1.3852 loss_G: 0.6936 +2018-11-15 06:41:32,394 | epoch: [13/30] iter: [181/391] loss_D: 1.3860 loss_G: 0.6932 +2018-11-15 06:41:36,522 | epoch: [13/30] iter: [182/391] loss_D: 1.3861 loss_G: 0.6932 +2018-11-15 06:41:40,448 | epoch: [13/30] iter: [183/391] loss_D: 1.3867 loss_G: 0.6933 +2018-11-15 06:41:44,640 | epoch: [13/30] iter: [184/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 06:41:48,799 | epoch: [13/30] iter: [185/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 06:41:52,903 | epoch: [13/30] iter: [186/391] loss_D: 1.3865 loss_G: 0.6932 +2018-11-15 06:41:58,488 | epoch: [13/30] iter: [187/391] loss_D: 1.3855 loss_G: 0.6939 +2018-11-15 06:42:05,584 | epoch: [13/30] iter: [188/391] loss_D: 1.3863 loss_G: 0.6928 +2018-11-15 06:42:12,320 | epoch: [13/30] iter: [189/391] loss_D: 1.3867 loss_G: 0.6930 +2018-11-15 06:42:19,171 | epoch: [13/30] iter: [190/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 06:42:26,211 | epoch: [13/30] iter: [191/391] loss_D: 1.3864 loss_G: 0.6935 +2018-11-15 06:42:33,171 | epoch: [13/30] iter: [192/391] loss_D: 1.3859 loss_G: 0.6942 +2018-11-15 06:42:40,366 | epoch: [13/30] iter: [193/391] loss_D: 1.3865 loss_G: 0.6933 +2018-11-15 06:42:47,430 | epoch: [13/30] iter: [194/391] loss_D: 1.3857 loss_G: 0.6940 +2018-11-15 06:42:54,478 | epoch: [13/30] iter: [195/391] loss_D: 1.3855 loss_G: 0.6929 +2018-11-15 06:43:01,505 | epoch: [13/30] iter: [196/391] loss_D: 1.3859 loss_G: 0.6934 +2018-11-15 06:43:08,579 | epoch: [13/30] iter: [197/391] loss_D: 1.3862 loss_G: 0.6934 +2018-11-15 06:43:15,536 | epoch: [13/30] iter: [198/391] loss_D: 1.3863 loss_G: 0.6930 +2018-11-15 06:43:22,813 | epoch: [13/30] iter: [199/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-15 06:43:29,810 | epoch: [13/30] iter: [200/391] loss_D: 1.3859 loss_G: 0.6931 +2018-11-15 06:43:36,417 | epoch: [13/30] iter: [201/391] loss_D: 1.3873 loss_G: 0.6933 +2018-11-15 06:43:40,307 | epoch: [13/30] iter: [202/391] loss_D: 1.3864 loss_G: 0.6939 +2018-11-15 06:43:44,502 | epoch: [13/30] iter: [203/391] loss_D: 1.3859 loss_G: 0.6935 +2018-11-15 06:43:48,395 | epoch: [13/30] iter: [204/391] loss_D: 1.3853 loss_G: 0.6940 +2018-11-15 06:43:52,586 | epoch: [13/30] iter: [205/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 06:43:56,509 | epoch: [13/30] iter: [206/391] loss_D: 1.3858 loss_G: 0.6936 +2018-11-15 06:44:00,622 | epoch: [13/30] iter: [207/391] loss_D: 1.3860 loss_G: 0.6932 +2018-11-15 06:44:04,712 | epoch: [13/30] iter: [208/391] loss_D: 1.3857 loss_G: 0.6935 +2018-11-15 06:44:09,029 | epoch: [13/30] iter: [209/391] loss_D: 1.3859 loss_G: 0.6941 +2018-11-15 06:44:13,325 | epoch: [13/30] iter: [210/391] loss_D: 1.3857 loss_G: 0.6940 +2018-11-15 06:44:18,709 | epoch: [13/30] iter: [211/391] loss_D: 1.3859 loss_G: 0.6934 +2018-11-15 06:44:25,598 | epoch: [13/30] iter: [212/391] loss_D: 1.3863 loss_G: 0.6934 +2018-11-15 06:44:32,850 | epoch: [13/30] iter: [213/391] loss_D: 1.3857 loss_G: 0.6928 +2018-11-15 06:44:39,891 | epoch: [13/30] iter: [214/391] loss_D: 1.3850 loss_G: 0.6931 +2018-11-15 06:44:46,961 | epoch: [13/30] iter: [215/391] loss_D: 1.3850 loss_G: 0.6941 +2018-11-15 06:44:53,567 | epoch: [13/30] iter: [216/391] loss_D: 1.3858 loss_G: 0.6940 +2018-11-15 06:45:00,736 | epoch: [13/30] iter: [217/391] loss_D: 1.3860 loss_G: 0.6938 +2018-11-15 06:45:08,095 | epoch: [13/30] iter: [218/391] loss_D: 1.3853 loss_G: 0.6937 +2018-11-15 06:45:15,086 | epoch: [13/30] iter: [219/391] loss_D: 1.3861 loss_G: 0.6932 +2018-11-15 06:45:21,655 | epoch: [13/30] iter: [220/391] loss_D: 1.3861 loss_G: 0.6932 +2018-11-15 06:45:28,928 | epoch: [13/30] iter: [221/391] loss_D: 1.3854 loss_G: 0.6935 +2018-11-15 06:45:36,182 | epoch: [13/30] iter: [222/391] loss_D: 1.3862 loss_G: 0.6935 +2018-11-15 06:45:43,074 | epoch: [13/30] iter: [223/391] loss_D: 1.3860 loss_G: 0.6932 +2018-11-15 06:45:49,907 | epoch: [13/30] iter: [224/391] loss_D: 1.3864 loss_G: 0.6933 +2018-11-15 06:45:56,488 | epoch: [13/30] iter: [225/391] loss_D: 1.3860 loss_G: 0.6936 +2018-11-15 06:46:00,640 | epoch: [13/30] iter: [226/391] loss_D: 1.3865 loss_G: 0.6933 +2018-11-15 06:46:04,650 | epoch: [13/30] iter: [227/391] loss_D: 1.3858 loss_G: 0.6935 +2018-11-15 06:46:08,623 | epoch: [13/30] iter: [228/391] loss_D: 1.3865 loss_G: 0.6934 +2018-11-15 06:46:12,762 | epoch: [13/30] iter: [229/391] loss_D: 1.3858 loss_G: 0.6924 +2018-11-15 06:46:16,858 | epoch: [13/30] iter: [230/391] loss_D: 1.3866 loss_G: 0.6928 +2018-11-15 06:46:20,990 | epoch: [13/30] iter: [231/391] loss_D: 1.3866 loss_G: 0.6930 +2018-11-15 06:46:25,107 | epoch: [13/30] iter: [232/391] loss_D: 1.3865 loss_G: 0.6924 +2018-11-15 06:46:30,516 | epoch: [13/30] iter: [233/391] loss_D: 1.3861 loss_G: 0.6922 +2018-11-15 06:46:37,495 | epoch: [13/30] iter: [234/391] loss_D: 1.3861 loss_G: 0.6925 +2018-11-15 06:46:44,602 | epoch: [13/30] iter: [235/391] loss_D: 1.3864 loss_G: 0.6930 +2018-11-15 06:46:51,387 | epoch: [13/30] iter: [236/391] loss_D: 1.3857 loss_G: 0.6925 +2018-11-15 06:46:58,409 | epoch: [13/30] iter: [237/391] loss_D: 1.3865 loss_G: 0.6939 +2018-11-15 06:47:05,256 | epoch: [13/30] iter: [238/391] loss_D: 1.3859 loss_G: 0.6930 +2018-11-15 06:47:12,206 | epoch: [13/30] iter: [239/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 06:47:19,519 | epoch: [13/30] iter: [240/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-15 06:47:26,373 | epoch: [13/30] iter: [241/391] loss_D: 1.3868 loss_G: 0.6930 +2018-11-15 06:47:33,444 | epoch: [13/30] iter: [242/391] loss_D: 1.3863 loss_G: 0.6931 +2018-11-15 06:47:39,947 | epoch: [13/30] iter: [243/391] loss_D: 1.3861 loss_G: 0.6937 +2018-11-15 06:47:47,151 | epoch: [13/30] iter: [244/391] loss_D: 1.3868 loss_G: 0.6931 +2018-11-15 06:47:54,374 | epoch: [13/30] iter: [245/391] loss_D: 1.3858 loss_G: 0.6925 +2018-11-15 06:48:01,389 | epoch: [13/30] iter: [246/391] loss_D: 1.3873 loss_G: 0.6939 +2018-11-15 06:48:08,759 | epoch: [13/30] iter: [247/391] loss_D: 1.3862 loss_G: 0.6937 +2018-11-15 06:48:15,873 | epoch: [13/30] iter: [248/391] loss_D: 1.3861 loss_G: 0.6930 +2018-11-15 06:48:22,471 | epoch: [13/30] iter: [249/391] loss_D: 1.3854 loss_G: 0.6936 +2018-11-15 06:48:29,478 | epoch: [13/30] iter: [250/391] loss_D: 1.3864 loss_G: 0.6937 +2018-11-15 06:48:36,312 | epoch: [13/30] iter: [251/391] loss_D: 1.3863 loss_G: 0.6937 +2018-11-15 06:48:43,204 | epoch: [13/30] iter: [252/391] loss_D: 1.3867 loss_G: 0.6928 +2018-11-15 06:48:50,406 | epoch: [13/30] iter: [253/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 06:48:57,157 | epoch: [13/30] iter: [254/391] loss_D: 1.3867 loss_G: 0.6928 +2018-11-15 06:49:02,520 | epoch: [13/30] iter: [255/391] loss_D: 1.3868 loss_G: 0.6931 +2018-11-15 06:49:06,566 | epoch: [13/30] iter: [256/391] loss_D: 1.3868 loss_G: 0.6936 +2018-11-15 06:49:10,587 | epoch: [13/30] iter: [257/391] loss_D: 1.3862 loss_G: 0.6921 +2018-11-15 06:49:14,496 | epoch: [13/30] iter: [258/391] loss_D: 1.3866 loss_G: 0.6934 +2018-11-15 06:49:18,375 | epoch: [13/30] iter: [259/391] loss_D: 1.3866 loss_G: 0.6935 +2018-11-15 06:49:22,522 | epoch: [13/30] iter: [260/391] loss_D: 1.3860 loss_G: 0.6931 +2018-11-15 06:49:28,342 | epoch: [13/30] iter: [261/391] loss_D: 1.3865 loss_G: 0.6929 +2018-11-15 06:49:35,598 | epoch: [13/30] iter: [262/391] loss_D: 1.3859 loss_G: 0.6932 +2018-11-15 06:49:42,744 | epoch: [13/30] iter: [263/391] loss_D: 1.3865 loss_G: 0.6933 +2018-11-15 06:51:42,873 | epoch: [13/30] iter: [264/391] loss_D: 1.3861 loss_G: 0.6929 +2018-11-15 06:51:46,964 | epoch: [13/30] iter: [265/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 06:51:50,965 | epoch: [13/30] iter: [266/391] loss_D: 1.3870 loss_G: 0.6938 +2018-11-15 06:51:55,229 | epoch: [13/30] iter: [267/391] loss_D: 1.3865 loss_G: 0.6936 +2018-11-15 06:52:01,691 | epoch: [13/30] iter: [268/391] loss_D: 1.3858 loss_G: 0.6933 +2018-11-15 06:52:08,925 | epoch: [13/30] iter: [269/391] loss_D: 1.3856 loss_G: 0.6932 +2018-11-15 06:52:16,158 | epoch: [13/30] iter: [270/391] loss_D: 1.3867 loss_G: 0.6937 +2018-11-15 06:52:23,336 | epoch: [13/30] iter: [271/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 06:52:30,233 | epoch: [13/30] iter: [272/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 06:52:37,101 | epoch: [13/30] iter: [273/391] loss_D: 1.3865 loss_G: 0.6934 +2018-11-15 06:52:43,890 | epoch: [13/30] iter: [274/391] loss_D: 1.3860 loss_G: 0.6938 +2018-11-15 06:52:50,601 | epoch: [13/30] iter: [275/391] loss_D: 1.3862 loss_G: 0.6942 +2018-11-15 06:52:57,851 | epoch: [13/30] iter: [276/391] loss_D: 1.3866 loss_G: 0.6941 +2018-11-15 06:53:04,782 | epoch: [13/30] iter: [277/391] loss_D: 1.3859 loss_G: 0.6938 +2018-11-15 06:53:11,805 | epoch: [13/30] iter: [278/391] loss_D: 1.3854 loss_G: 0.6940 +2018-11-15 06:53:18,894 | epoch: [13/30] iter: [279/391] loss_D: 1.3859 loss_G: 0.6936 +2018-11-15 06:53:25,551 | epoch: [13/30] iter: [280/391] loss_D: 1.3862 loss_G: 0.6943 +2018-11-15 06:53:32,474 | epoch: [13/30] iter: [281/391] loss_D: 1.3856 loss_G: 0.6941 +2018-11-15 06:53:39,284 | epoch: [13/30] iter: [282/391] loss_D: 1.3863 loss_G: 0.6939 +2018-11-15 06:53:46,632 | epoch: [13/30] iter: [283/391] loss_D: 1.3863 loss_G: 0.6942 +2018-11-15 06:53:53,232 | epoch: [13/30] iter: [284/391] loss_D: 1.3862 loss_G: 0.6938 +2018-11-15 06:54:00,266 | epoch: [13/30] iter: [285/391] loss_D: 1.3848 loss_G: 0.6935 +2018-11-15 06:54:06,949 | epoch: [13/30] iter: [286/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 06:54:13,967 | epoch: [13/30] iter: [287/391] loss_D: 1.3864 loss_G: 0.6934 +2018-11-15 06:54:19,076 | epoch: [13/30] iter: [288/391] loss_D: 1.3855 loss_G: 0.6933 +2018-11-15 06:54:23,064 | epoch: [13/30] iter: [289/391] loss_D: 1.3862 loss_G: 0.6941 +2018-11-15 06:54:27,061 | epoch: [13/30] iter: [290/391] loss_D: 1.3854 loss_G: 0.6940 +2018-11-15 06:54:31,105 | epoch: [13/30] iter: [291/391] loss_D: 1.3857 loss_G: 0.6937 +2018-11-15 06:54:35,328 | epoch: [13/30] iter: [292/391] loss_D: 1.3860 loss_G: 0.6937 +2018-11-15 06:54:39,657 | epoch: [13/30] iter: [293/391] loss_D: 1.3862 loss_G: 0.6934 +2018-11-15 06:54:43,902 | epoch: [13/30] iter: [294/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 06:54:50,562 | epoch: [13/30] iter: [295/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 06:54:57,945 | epoch: [13/30] iter: [296/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 06:55:05,117 | epoch: [13/30] iter: [297/391] loss_D: 1.3865 loss_G: 0.6937 +2018-11-15 06:55:12,281 | epoch: [13/30] iter: [298/391] loss_D: 1.3862 loss_G: 0.6933 +2018-11-15 06:55:19,144 | epoch: [13/30] iter: [299/391] loss_D: 1.3862 loss_G: 0.6938 +2018-11-15 06:55:26,489 | epoch: [13/30] iter: [300/391] loss_D: 1.3864 loss_G: 0.6936 +2018-11-15 06:55:33,970 | epoch: [13/30] iter: [301/391] loss_D: 1.3859 loss_G: 0.6932 +2018-11-15 06:55:41,102 | epoch: [13/30] iter: [302/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 06:55:48,208 | epoch: [13/30] iter: [303/391] loss_D: 1.3863 loss_G: 0.6930 +2018-11-15 06:55:54,968 | epoch: [13/30] iter: [304/391] loss_D: 1.3856 loss_G: 0.6933 +2018-11-15 06:56:01,953 | epoch: [13/30] iter: [305/391] loss_D: 1.3857 loss_G: 0.6935 +2018-11-15 06:56:07,257 | epoch: [13/30] iter: [306/391] loss_D: 1.3871 loss_G: 0.6925 +2018-11-15 06:56:11,409 | epoch: [13/30] iter: [307/391] loss_D: 1.3877 loss_G: 0.6926 +2018-11-15 06:56:15,552 | epoch: [13/30] iter: [308/391] loss_D: 1.3863 loss_G: 0.6930 +2018-11-15 06:56:19,536 | epoch: [13/30] iter: [309/391] loss_D: 1.3862 loss_G: 0.6935 +2018-11-15 06:56:23,566 | epoch: [13/30] iter: [310/391] loss_D: 1.3853 loss_G: 0.6928 +2018-11-15 06:56:27,460 | epoch: [13/30] iter: [311/391] loss_D: 1.3864 loss_G: 0.6931 +2018-11-15 06:56:31,641 | epoch: [13/30] iter: [312/391] loss_D: 1.3858 loss_G: 0.6935 +2018-11-15 06:56:35,922 | epoch: [13/30] iter: [313/391] loss_D: 1.3863 loss_G: 0.6932 +2018-11-15 06:56:39,846 | epoch: [13/30] iter: [314/391] loss_D: 1.3862 loss_G: 0.6928 +2018-11-15 06:56:44,159 | epoch: [13/30] iter: [315/391] loss_D: 1.3867 loss_G: 0.6930 +2018-11-15 06:56:49,980 | epoch: [13/30] iter: [316/391] loss_D: 1.3861 loss_G: 0.6929 +2018-11-15 06:56:55,862 | epoch: [13/30] iter: [317/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 06:57:01,238 | epoch: [13/30] iter: [318/391] loss_D: 1.3854 loss_G: 0.6934 +2018-11-15 06:57:06,989 | epoch: [13/30] iter: [319/391] loss_D: 1.3863 loss_G: 0.6927 +2018-11-15 06:57:11,144 | epoch: [13/30] iter: [320/391] loss_D: 1.3869 loss_G: 0.6927 +2018-11-15 06:57:15,236 | epoch: [13/30] iter: [321/391] loss_D: 1.3880 loss_G: 0.6928 +2018-11-15 06:57:19,525 | epoch: [13/30] iter: [322/391] loss_D: 1.3859 loss_G: 0.6929 +2018-11-15 06:57:23,918 | epoch: [13/30] iter: [323/391] loss_D: 1.3873 loss_G: 0.6928 +2018-11-15 06:57:28,160 | epoch: [13/30] iter: [324/391] loss_D: 1.3867 loss_G: 0.6926 +2018-11-15 06:57:32,624 | epoch: [13/30] iter: [325/391] loss_D: 1.3865 loss_G: 0.6923 +2018-11-15 06:57:39,753 | epoch: [13/30] iter: [326/391] loss_D: 1.3877 loss_G: 0.6929 +2018-11-15 06:57:46,973 | epoch: [13/30] iter: [327/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 06:57:53,902 | epoch: [13/30] iter: [328/391] loss_D: 1.3875 loss_G: 0.6940 +2018-11-15 06:58:00,659 | epoch: [13/30] iter: [329/391] loss_D: 1.3858 loss_G: 0.6950 +2018-11-15 06:58:07,528 | epoch: [13/30] iter: [330/391] loss_D: 1.3850 loss_G: 0.6954 +2018-11-15 06:58:14,277 | epoch: [13/30] iter: [331/391] loss_D: 1.3851 loss_G: 0.6950 +2018-11-15 06:58:21,434 | epoch: [13/30] iter: [332/391] loss_D: 1.3855 loss_G: 0.6946 +2018-11-15 06:58:28,737 | epoch: [13/30] iter: [333/391] loss_D: 1.3860 loss_G: 0.6943 +2018-11-15 06:58:35,801 | epoch: [13/30] iter: [334/391] loss_D: 1.3865 loss_G: 0.6932 +2018-11-15 06:58:42,929 | epoch: [13/30] iter: [335/391] loss_D: 1.3856 loss_G: 0.6934 +2018-11-15 06:58:50,026 | epoch: [13/30] iter: [336/391] loss_D: 1.3868 loss_G: 0.6928 +2018-11-15 06:58:56,930 | epoch: [13/30] iter: [337/391] loss_D: 1.3866 loss_G: 0.6928 +2018-11-15 06:59:03,666 | epoch: [13/30] iter: [338/391] loss_D: 1.3869 loss_G: 0.6922 +2018-11-15 06:59:10,395 | epoch: [13/30] iter: [339/391] loss_D: 1.3870 loss_G: 0.6918 +2018-11-15 06:59:17,260 | epoch: [13/30] iter: [340/391] loss_D: 1.3861 loss_G: 0.6925 +2018-11-15 06:59:24,554 | epoch: [13/30] iter: [341/391] loss_D: 1.3875 loss_G: 0.6930 +2018-11-15 06:59:31,482 | epoch: [13/30] iter: [342/391] loss_D: 1.3864 loss_G: 0.6929 +2018-11-15 06:59:38,523 | epoch: [13/30] iter: [343/391] loss_D: 1.3858 loss_G: 0.6928 +2018-11-15 06:59:45,433 | epoch: [13/30] iter: [344/391] loss_D: 1.3862 loss_G: 0.6930 +2018-11-15 06:59:49,551 | epoch: [13/30] iter: [345/391] loss_D: 1.3864 loss_G: 0.6929 +2018-11-15 06:59:53,668 | epoch: [13/30] iter: [346/391] loss_D: 1.3863 loss_G: 0.6927 +2018-11-15 06:59:57,799 | epoch: [13/30] iter: [347/391] loss_D: 1.3863 loss_G: 0.6923 +2018-11-15 07:00:01,688 | epoch: [13/30] iter: [348/391] loss_D: 1.3862 loss_G: 0.6929 +2018-11-15 07:00:05,711 | epoch: [13/30] iter: [349/391] loss_D: 1.3855 loss_G: 0.6938 +2018-11-15 07:00:10,494 | epoch: [13/30] iter: [350/391] loss_D: 1.3853 loss_G: 0.6931 +2018-11-15 07:00:17,505 | epoch: [13/30] iter: [351/391] loss_D: 1.3855 loss_G: 0.6931 +2018-11-15 07:00:24,563 | epoch: [13/30] iter: [352/391] loss_D: 1.3842 loss_G: 0.6933 +2018-11-15 07:00:32,118 | epoch: [13/30] iter: [353/391] loss_D: 1.3853 loss_G: 0.6942 +2018-11-15 07:00:39,276 | epoch: [13/30] iter: [354/391] loss_D: 1.3851 loss_G: 0.6937 +2018-11-15 07:00:46,298 | epoch: [13/30] iter: [355/391] loss_D: 1.3863 loss_G: 0.6937 +2018-11-15 07:00:53,754 | epoch: [13/30] iter: [356/391] loss_D: 1.3869 loss_G: 0.6933 +2018-11-15 07:01:00,345 | epoch: [13/30] iter: [357/391] loss_D: 1.3869 loss_G: 0.6938 +2018-11-15 07:01:07,803 | epoch: [13/30] iter: [358/391] loss_D: 1.3860 loss_G: 0.6936 +2018-11-15 07:01:14,646 | epoch: [13/30] iter: [359/391] loss_D: 1.3875 loss_G: 0.6935 +2018-11-15 07:01:21,462 | epoch: [13/30] iter: [360/391] loss_D: 1.3884 loss_G: 0.6939 +2018-11-15 07:01:28,311 | epoch: [13/30] iter: [361/391] loss_D: 1.3883 loss_G: 0.6927 +2018-11-15 07:01:35,205 | epoch: [13/30] iter: [362/391] loss_D: 1.3881 loss_G: 0.6936 +2018-11-15 07:01:42,106 | epoch: [13/30] iter: [363/391] loss_D: 1.3884 loss_G: 0.6936 +2018-11-15 07:03:29,215 | epoch: [13/30] iter: [364/391] loss_D: 1.3887 loss_G: 0.6940 +2018-11-15 07:03:33,150 | epoch: [13/30] iter: [365/391] loss_D: 1.3877 loss_G: 0.6946 +2018-11-15 07:03:37,205 | epoch: [13/30] iter: [366/391] loss_D: 1.3859 loss_G: 0.6947 +2018-11-15 07:03:41,866 | epoch: [13/30] iter: [367/391] loss_D: 1.3862 loss_G: 0.6946 +2018-11-15 07:03:49,289 | epoch: [13/30] iter: [368/391] loss_D: 1.3847 loss_G: 0.6953 +2018-11-15 07:03:55,859 | epoch: [13/30] iter: [369/391] loss_D: 1.3847 loss_G: 0.6965 +2018-11-15 07:04:02,715 | epoch: [13/30] iter: [370/391] loss_D: 1.3850 loss_G: 0.6962 +2018-11-15 07:04:09,911 | epoch: [13/30] iter: [371/391] loss_D: 1.3848 loss_G: 0.6957 +2018-11-15 07:04:16,600 | epoch: [13/30] iter: [372/391] loss_D: 1.3851 loss_G: 0.6953 +2018-11-15 07:04:23,718 | epoch: [13/30] iter: [373/391] loss_D: 1.3860 loss_G: 0.6948 +2018-11-15 07:04:31,076 | epoch: [13/30] iter: [374/391] loss_D: 1.3858 loss_G: 0.6948 +2018-11-15 07:04:38,308 | epoch: [13/30] iter: [375/391] loss_D: 1.3847 loss_G: 0.6950 +2018-11-15 07:04:45,547 | epoch: [13/30] iter: [376/391] loss_D: 1.3857 loss_G: 0.6937 +2018-11-15 07:04:52,605 | epoch: [13/30] iter: [377/391] loss_D: 1.3864 loss_G: 0.6945 +2018-11-15 07:04:59,607 | epoch: [13/30] iter: [378/391] loss_D: 1.3869 loss_G: 0.6929 +2018-11-15 07:05:06,526 | epoch: [13/30] iter: [379/391] loss_D: 1.3871 loss_G: 0.6935 +2018-11-15 07:05:13,065 | epoch: [13/30] iter: [380/391] loss_D: 1.3876 loss_G: 0.6932 +2018-11-15 07:05:19,622 | epoch: [13/30] iter: [381/391] loss_D: 1.3875 loss_G: 0.6931 +2018-11-15 07:05:26,590 | epoch: [13/30] iter: [382/391] loss_D: 1.3868 loss_G: 0.6929 +2018-11-15 07:05:34,005 | epoch: [13/30] iter: [383/391] loss_D: 1.3876 loss_G: 0.6932 +2018-11-15 07:05:40,715 | epoch: [13/30] iter: [384/391] loss_D: 1.3868 loss_G: 0.6930 +2018-11-15 07:05:47,830 | epoch: [13/30] iter: [385/391] loss_D: 1.3864 loss_G: 0.6918 +2018-11-15 07:05:52,421 | epoch: [13/30] iter: [386/391] loss_D: 1.3870 loss_G: 0.6922 +2018-11-15 07:05:56,534 | epoch: [13/30] iter: [387/391] loss_D: 1.3863 loss_G: 0.6925 +2018-11-15 07:06:00,678 | epoch: [13/30] iter: [388/391] loss_D: 1.3862 loss_G: 0.6924 +2018-11-15 07:06:04,770 | epoch: [13/30] iter: [389/391] loss_D: 1.3865 loss_G: 0.6927 +2018-11-15 07:06:07,393 | epoch: [13/30] iter: [390/391] loss_D: 1.3869 loss_G: 0.6924 +2018-11-15 07:06:11,676 | epoch: [14/30] iter: [0/391] loss_D: 1.3848 loss_G: 0.6935 +2018-11-15 07:06:15,880 | epoch: [14/30] iter: [1/391] loss_D: 1.3860 loss_G: 0.6934 +2018-11-15 07:06:22,690 | epoch: [14/30] iter: [2/391] loss_D: 1.3858 loss_G: 0.6928 +2018-11-15 07:06:30,096 | epoch: [14/30] iter: [3/391] loss_D: 1.3852 loss_G: 0.6929 +2018-11-15 07:06:37,387 | epoch: [14/30] iter: [4/391] loss_D: 1.3852 loss_G: 0.6929 +2018-11-15 07:06:44,725 | epoch: [14/30] iter: [5/391] loss_D: 1.3863 loss_G: 0.6929 +2018-11-15 07:06:51,803 | epoch: [14/30] iter: [6/391] loss_D: 1.3867 loss_G: 0.6921 +2018-11-15 07:06:58,804 | epoch: [14/30] iter: [7/391] loss_D: 1.3858 loss_G: 0.6926 +2018-11-15 07:07:05,786 | epoch: [14/30] iter: [8/391] loss_D: 1.3871 loss_G: 0.6923 +2018-11-15 07:07:12,766 | epoch: [14/30] iter: [9/391] loss_D: 1.3888 loss_G: 0.6933 +2018-11-15 07:07:19,631 | epoch: [14/30] iter: [10/391] loss_D: 1.3879 loss_G: 0.6954 +2018-11-15 07:07:26,966 | epoch: [14/30] iter: [11/391] loss_D: 1.3851 loss_G: 0.6967 +2018-11-15 07:07:34,111 | epoch: [14/30] iter: [12/391] loss_D: 1.3850 loss_G: 0.6970 +2018-11-15 07:07:41,086 | epoch: [14/30] iter: [13/391] loss_D: 1.3838 loss_G: 0.6970 +2018-11-15 07:07:48,147 | epoch: [14/30] iter: [14/391] loss_D: 1.3860 loss_G: 0.6952 +2018-11-15 07:07:55,586 | epoch: [14/30] iter: [15/391] loss_D: 1.3846 loss_G: 0.6946 +2018-11-15 07:08:02,598 | epoch: [14/30] iter: [16/391] loss_D: 1.3849 loss_G: 0.6934 +2018-11-15 07:08:09,600 | epoch: [14/30] iter: [17/391] loss_D: 1.3869 loss_G: 0.6934 +2018-11-15 07:08:16,387 | epoch: [14/30] iter: [18/391] loss_D: 1.3866 loss_G: 0.6930 +2018-11-15 07:08:23,438 | epoch: [14/30] iter: [19/391] loss_D: 1.3864 loss_G: 0.6938 +2018-11-15 07:08:30,633 | epoch: [14/30] iter: [20/391] loss_D: 1.3860 loss_G: 0.6932 +2018-11-15 07:08:37,171 | epoch: [14/30] iter: [21/391] loss_D: 1.3864 loss_G: 0.6931 +2018-11-15 07:08:44,065 | epoch: [14/30] iter: [22/391] loss_D: 1.3864 loss_G: 0.6937 +2018-11-15 07:08:48,696 | epoch: [14/30] iter: [23/391] loss_D: 1.3864 loss_G: 0.6940 +2018-11-15 07:08:52,908 | epoch: [14/30] iter: [24/391] loss_D: 1.3868 loss_G: 0.6941 +2018-11-15 07:08:57,079 | epoch: [14/30] iter: [25/391] loss_D: 1.3855 loss_G: 0.6940 +2018-11-15 07:09:01,323 | epoch: [14/30] iter: [26/391] loss_D: 1.3862 loss_G: 0.6947 +2018-11-15 07:09:05,396 | epoch: [14/30] iter: [27/391] loss_D: 1.3849 loss_G: 0.6944 +2018-11-15 07:09:09,717 | epoch: [14/30] iter: [28/391] loss_D: 1.3855 loss_G: 0.6945 +2018-11-15 07:09:16,607 | epoch: [14/30] iter: [29/391] loss_D: 1.3852 loss_G: 0.6939 +2018-11-15 07:09:23,768 | epoch: [14/30] iter: [30/391] loss_D: 1.3843 loss_G: 0.6933 +2018-11-15 07:09:30,959 | epoch: [14/30] iter: [31/391] loss_D: 1.3856 loss_G: 0.6952 +2018-11-15 07:09:37,614 | epoch: [14/30] iter: [32/391] loss_D: 1.3840 loss_G: 0.6940 +2018-11-15 07:09:44,657 | epoch: [14/30] iter: [33/391] loss_D: 1.3875 loss_G: 0.6929 +2018-11-15 07:09:51,701 | epoch: [14/30] iter: [34/391] loss_D: 1.3840 loss_G: 0.6931 +2018-11-15 07:09:59,097 | epoch: [14/30] iter: [35/391] loss_D: 1.3863 loss_G: 0.6921 +2018-11-15 07:10:05,846 | epoch: [14/30] iter: [36/391] loss_D: 1.3866 loss_G: 0.6922 +2018-11-15 07:10:13,035 | epoch: [14/30] iter: [37/391] loss_D: 1.3882 loss_G: 0.6916 +2018-11-15 07:10:19,979 | epoch: [14/30] iter: [38/391] loss_D: 1.3866 loss_G: 0.6931 +2018-11-15 07:10:24,624 | epoch: [14/30] iter: [39/391] loss_D: 1.3869 loss_G: 0.6943 +2018-11-15 07:10:28,632 | epoch: [14/30] iter: [40/391] loss_D: 1.3860 loss_G: 0.6947 +2018-11-15 07:10:32,667 | epoch: [14/30] iter: [41/391] loss_D: 1.3858 loss_G: 0.6951 +2018-11-15 07:10:36,756 | epoch: [14/30] iter: [42/391] loss_D: 1.3860 loss_G: 0.6946 +2018-11-15 07:10:40,661 | epoch: [14/30] iter: [43/391] loss_D: 1.3854 loss_G: 0.6946 +2018-11-15 07:10:44,869 | epoch: [14/30] iter: [44/391] loss_D: 1.3854 loss_G: 0.6940 +2018-11-15 07:10:49,144 | epoch: [14/30] iter: [45/391] loss_D: 1.3870 loss_G: 0.6930 +2018-11-15 07:10:53,336 | epoch: [14/30] iter: [46/391] loss_D: 1.3862 loss_G: 0.6929 +2018-11-15 07:10:58,117 | epoch: [14/30] iter: [47/391] loss_D: 1.3870 loss_G: 0.6929 +2018-11-15 07:11:05,356 | epoch: [14/30] iter: [48/391] loss_D: 1.3877 loss_G: 0.6922 +2018-11-15 07:11:11,937 | epoch: [14/30] iter: [49/391] loss_D: 1.3874 loss_G: 0.6921 +2018-11-15 07:11:19,177 | epoch: [14/30] iter: [50/391] loss_D: 1.3874 loss_G: 0.6928 +2018-11-15 07:11:25,818 | epoch: [14/30] iter: [51/391] loss_D: 1.3872 loss_G: 0.6934 +2018-11-15 07:11:32,893 | epoch: [14/30] iter: [52/391] loss_D: 1.3884 loss_G: 0.6929 +2018-11-15 07:11:39,879 | epoch: [14/30] iter: [53/391] loss_D: 1.3879 loss_G: 0.6929 +2018-11-15 07:11:47,149 | epoch: [14/30] iter: [54/391] loss_D: 1.3872 loss_G: 0.6938 +2018-11-15 07:11:53,628 | epoch: [14/30] iter: [55/391] loss_D: 1.3866 loss_G: 0.6942 +2018-11-15 07:12:00,290 | epoch: [14/30] iter: [56/391] loss_D: 1.3872 loss_G: 0.6932 +2018-11-15 07:12:07,128 | epoch: [14/30] iter: [57/391] loss_D: 1.3871 loss_G: 0.6936 +2018-11-15 07:12:14,187 | epoch: [14/30] iter: [58/391] loss_D: 1.3865 loss_G: 0.6936 +2018-11-15 07:12:21,446 | epoch: [14/30] iter: [59/391] loss_D: 1.3880 loss_G: 0.6931 +2018-11-15 07:12:28,720 | epoch: [14/30] iter: [60/391] loss_D: 1.3880 loss_G: 0.6934 +2018-11-15 07:12:35,301 | epoch: [14/30] iter: [61/391] loss_D: 1.3878 loss_G: 0.6930 +2018-11-15 07:12:39,229 | epoch: [14/30] iter: [62/391] loss_D: 1.3865 loss_G: 0.6931 +2018-11-15 07:12:43,300 | epoch: [14/30] iter: [63/391] loss_D: 1.3867 loss_G: 0.6937 +2018-11-15 07:12:47,360 | epoch: [14/30] iter: [64/391] loss_D: 1.3872 loss_G: 0.6925 +2018-11-15 07:12:51,430 | epoch: [14/30] iter: [65/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 07:12:55,714 | epoch: [14/30] iter: [66/391] loss_D: 1.3872 loss_G: 0.6930 +2018-11-15 07:12:59,947 | epoch: [14/30] iter: [67/391] loss_D: 1.3854 loss_G: 0.6929 +2018-11-15 07:13:06,222 | epoch: [14/30] iter: [68/391] loss_D: 1.3859 loss_G: 0.6939 +2018-11-15 07:13:13,227 | epoch: [14/30] iter: [69/391] loss_D: 1.3859 loss_G: 0.6935 +2018-11-15 07:13:20,097 | epoch: [14/30] iter: [70/391] loss_D: 1.3859 loss_G: 0.6935 +2018-11-15 07:13:27,336 | epoch: [14/30] iter: [71/391] loss_D: 1.3856 loss_G: 0.6932 +2018-11-15 07:13:33,967 | epoch: [14/30] iter: [72/391] loss_D: 1.3867 loss_G: 0.6928 +2018-11-15 07:15:41,362 | epoch: [14/30] iter: [73/391] loss_D: 1.3867 loss_G: 0.6931 +2018-11-15 07:15:45,502 | epoch: [14/30] iter: [74/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 07:15:49,792 | epoch: [14/30] iter: [75/391] loss_D: 1.3872 loss_G: 0.6934 +2018-11-15 07:15:54,596 | epoch: [14/30] iter: [76/391] loss_D: 1.3877 loss_G: 0.6933 +2018-11-15 07:16:01,469 | epoch: [14/30] iter: [77/391] loss_D: 1.3872 loss_G: 0.6929 +2018-11-15 07:16:08,345 | epoch: [14/30] iter: [78/391] loss_D: 1.3870 loss_G: 0.6934 +2018-11-15 07:16:15,169 | epoch: [14/30] iter: [79/391] loss_D: 1.3859 loss_G: 0.6928 +2018-11-15 07:16:22,446 | epoch: [14/30] iter: [80/391] loss_D: 1.3873 loss_G: 0.6935 +2018-11-15 07:16:29,404 | epoch: [14/30] iter: [81/391] loss_D: 1.3870 loss_G: 0.6937 +2018-11-15 07:16:36,682 | epoch: [14/30] iter: [82/391] loss_D: 1.3859 loss_G: 0.6942 +2018-11-15 07:16:43,590 | epoch: [14/30] iter: [83/391] loss_D: 1.3854 loss_G: 0.6941 +2018-11-15 07:16:50,398 | epoch: [14/30] iter: [84/391] loss_D: 1.3865 loss_G: 0.6940 +2018-11-15 07:16:57,138 | epoch: [14/30] iter: [85/391] loss_D: 1.3858 loss_G: 0.6940 +2018-11-15 07:17:04,125 | epoch: [14/30] iter: [86/391] loss_D: 1.3860 loss_G: 0.6948 +2018-11-15 07:17:11,625 | epoch: [14/30] iter: [87/391] loss_D: 1.3865 loss_G: 0.6940 +2018-11-15 07:17:16,511 | epoch: [14/30] iter: [88/391] loss_D: 1.3869 loss_G: 0.6949 +2018-11-15 07:17:20,652 | epoch: [14/30] iter: [89/391] loss_D: 1.3864 loss_G: 0.6945 +2018-11-15 07:17:24,732 | epoch: [14/30] iter: [90/391] loss_D: 1.3853 loss_G: 0.6944 +2018-11-15 07:17:28,706 | epoch: [14/30] iter: [91/391] loss_D: 1.3857 loss_G: 0.6946 +2018-11-15 07:17:32,885 | epoch: [14/30] iter: [92/391] loss_D: 1.3861 loss_G: 0.6944 +2018-11-15 07:17:37,211 | epoch: [14/30] iter: [93/391] loss_D: 1.3859 loss_G: 0.6943 +2018-11-15 07:17:44,172 | epoch: [14/30] iter: [94/391] loss_D: 1.3853 loss_G: 0.6948 +2018-11-15 07:17:51,198 | epoch: [14/30] iter: [95/391] loss_D: 1.3860 loss_G: 0.6944 +2018-11-15 07:17:58,408 | epoch: [14/30] iter: [96/391] loss_D: 1.3852 loss_G: 0.6947 +2018-11-15 07:18:05,318 | epoch: [14/30] iter: [97/391] loss_D: 1.3861 loss_G: 0.6933 +2018-11-15 07:18:12,549 | epoch: [14/30] iter: [98/391] loss_D: 1.3858 loss_G: 0.6937 +2018-11-15 07:18:19,717 | epoch: [14/30] iter: [99/391] loss_D: 1.3860 loss_G: 0.6941 +2018-11-15 07:18:27,030 | epoch: [14/30] iter: [100/391] loss_D: 1.3861 loss_G: 0.6927 +2018-11-15 07:18:34,255 | epoch: [14/30] iter: [101/391] loss_D: 1.3849 loss_G: 0.6930 +2018-11-15 07:18:41,156 | epoch: [14/30] iter: [102/391] loss_D: 1.3853 loss_G: 0.6935 +2018-11-15 07:18:48,529 | epoch: [14/30] iter: [103/391] loss_D: 1.3850 loss_G: 0.6932 +2018-11-15 07:18:55,606 | epoch: [14/30] iter: [104/391] loss_D: 1.3859 loss_G: 0.6931 +2018-11-15 07:19:03,088 | epoch: [14/30] iter: [105/391] loss_D: 1.3862 loss_G: 0.6930 +2018-11-15 07:19:10,185 | epoch: [14/30] iter: [106/391] loss_D: 1.3866 loss_G: 0.6931 +2018-11-15 07:19:17,254 | epoch: [14/30] iter: [107/391] loss_D: 1.3839 loss_G: 0.6932 +2018-11-15 07:19:23,878 | epoch: [14/30] iter: [108/391] loss_D: 1.3856 loss_G: 0.6932 +2018-11-15 07:19:28,976 | epoch: [14/30] iter: [109/391] loss_D: 1.3872 loss_G: 0.6927 +2018-11-15 07:19:32,987 | epoch: [14/30] iter: [110/391] loss_D: 1.3864 loss_G: 0.6925 +2018-11-15 07:19:36,821 | epoch: [14/30] iter: [111/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 07:19:40,936 | epoch: [14/30] iter: [112/391] loss_D: 1.3854 loss_G: 0.6931 +2018-11-15 07:19:44,956 | epoch: [14/30] iter: [113/391] loss_D: 1.3858 loss_G: 0.6933 +2018-11-15 07:19:48,783 | epoch: [14/30] iter: [114/391] loss_D: 1.3852 loss_G: 0.6938 +2018-11-15 07:19:52,837 | epoch: [14/30] iter: [115/391] loss_D: 1.3867 loss_G: 0.6932 +2018-11-15 07:19:56,865 | epoch: [14/30] iter: [116/391] loss_D: 1.3873 loss_G: 0.6928 +2018-11-15 07:20:00,939 | epoch: [14/30] iter: [117/391] loss_D: 1.3855 loss_G: 0.6925 +2018-11-15 07:20:05,282 | epoch: [14/30] iter: [118/391] loss_D: 1.3863 loss_G: 0.6923 +2018-11-15 07:20:09,242 | epoch: [14/30] iter: [119/391] loss_D: 1.3857 loss_G: 0.6918 +2018-11-15 07:20:13,393 | epoch: [14/30] iter: [120/391] loss_D: 1.3863 loss_G: 0.6926 +2018-11-15 07:20:17,516 | epoch: [14/30] iter: [121/391] loss_D: 1.3905 loss_G: 0.6932 +2018-11-15 07:20:21,839 | epoch: [14/30] iter: [122/391] loss_D: 1.3885 loss_G: 0.6932 +2018-11-15 07:20:28,667 | epoch: [14/30] iter: [123/391] loss_D: 1.3889 loss_G: 0.6953 +2018-11-15 07:20:35,850 | epoch: [14/30] iter: [124/391] loss_D: 1.3890 loss_G: 0.6949 +2018-11-15 07:20:42,874 | epoch: [14/30] iter: [125/391] loss_D: 1.3873 loss_G: 0.6957 +2018-11-15 07:20:49,694 | epoch: [14/30] iter: [126/391] loss_D: 1.3862 loss_G: 0.6960 +2018-11-15 07:20:56,645 | epoch: [14/30] iter: [127/391] loss_D: 1.3853 loss_G: 0.6957 +2018-11-15 07:21:03,430 | epoch: [14/30] iter: [128/391] loss_D: 1.3851 loss_G: 0.6939 +2018-11-15 07:21:10,182 | epoch: [14/30] iter: [129/391] loss_D: 1.3850 loss_G: 0.6949 +2018-11-15 07:21:17,038 | epoch: [14/30] iter: [130/391] loss_D: 1.3859 loss_G: 0.6935 +2018-11-15 07:21:24,007 | epoch: [14/30] iter: [131/391] loss_D: 1.3861 loss_G: 0.6937 +2018-11-15 07:21:30,986 | epoch: [14/30] iter: [132/391] loss_D: 1.3855 loss_G: 0.6939 +2018-11-15 07:21:37,838 | epoch: [14/30] iter: [133/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 07:21:44,356 | epoch: [14/30] iter: [134/391] loss_D: 1.3850 loss_G: 0.6931 +2018-11-15 07:21:51,032 | epoch: [14/30] iter: [135/391] loss_D: 1.3850 loss_G: 0.6936 +2018-11-15 07:21:58,024 | epoch: [14/30] iter: [136/391] loss_D: 1.3853 loss_G: 0.6935 +2018-11-15 07:22:04,790 | epoch: [14/30] iter: [137/391] loss_D: 1.3846 loss_G: 0.6936 +2018-11-15 07:22:11,669 | epoch: [14/30] iter: [138/391] loss_D: 1.3852 loss_G: 0.6936 +2018-11-15 07:22:18,462 | epoch: [14/30] iter: [139/391] loss_D: 1.3847 loss_G: 0.6929 +2018-11-15 07:22:25,686 | epoch: [14/30] iter: [140/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-15 07:22:32,382 | epoch: [14/30] iter: [141/391] loss_D: 1.3859 loss_G: 0.6929 +2018-11-15 07:22:37,060 | epoch: [14/30] iter: [142/391] loss_D: 1.3868 loss_G: 0.6931 +2018-11-15 07:22:40,995 | epoch: [14/30] iter: [143/391] loss_D: 1.3879 loss_G: 0.6923 +2018-11-15 07:22:45,146 | epoch: [14/30] iter: [144/391] loss_D: 1.3874 loss_G: 0.6928 +2018-11-15 07:22:49,130 | epoch: [14/30] iter: [145/391] loss_D: 1.3869 loss_G: 0.6929 +2018-11-15 07:22:53,217 | epoch: [14/30] iter: [146/391] loss_D: 1.3894 loss_G: 0.6929 +2018-11-15 07:22:57,299 | epoch: [14/30] iter: [147/391] loss_D: 1.3871 loss_G: 0.6939 +2018-11-15 07:23:01,501 | epoch: [14/30] iter: [148/391] loss_D: 1.3869 loss_G: 0.6936 +2018-11-15 07:23:05,758 | epoch: [14/30] iter: [149/391] loss_D: 1.3887 loss_G: 0.6937 +2018-11-15 07:23:09,910 | epoch: [14/30] iter: [150/391] loss_D: 1.3894 loss_G: 0.6942 +2018-11-15 07:23:13,988 | epoch: [14/30] iter: [151/391] loss_D: 1.3876 loss_G: 0.6938 +2018-11-15 07:23:18,581 | epoch: [14/30] iter: [152/391] loss_D: 1.3871 loss_G: 0.6932 +2018-11-15 07:23:25,067 | epoch: [14/30] iter: [153/391] loss_D: 1.3869 loss_G: 0.6935 +2018-11-15 07:23:32,321 | epoch: [14/30] iter: [154/391] loss_D: 1.3868 loss_G: 0.6928 +2018-11-15 07:23:39,713 | epoch: [14/30] iter: [155/391] loss_D: 1.3877 loss_G: 0.6924 +2018-11-15 07:23:46,674 | epoch: [14/30] iter: [156/391] loss_D: 1.3867 loss_G: 0.6930 +2018-11-15 07:23:53,583 | epoch: [14/30] iter: [157/391] loss_D: 1.3867 loss_G: 0.6925 +2018-11-15 07:24:00,597 | epoch: [14/30] iter: [158/391] loss_D: 1.3869 loss_G: 0.6936 +2018-11-15 07:24:07,650 | epoch: [14/30] iter: [159/391] loss_D: 1.3866 loss_G: 0.6935 +2018-11-15 07:24:14,814 | epoch: [14/30] iter: [160/391] loss_D: 1.3870 loss_G: 0.6934 +2018-11-15 07:24:22,254 | epoch: [14/30] iter: [161/391] loss_D: 1.3857 loss_G: 0.6934 +2018-11-15 07:24:29,162 | epoch: [14/30] iter: [162/391] loss_D: 1.3862 loss_G: 0.6939 +2018-11-15 07:24:36,398 | epoch: [14/30] iter: [163/391] loss_D: 1.3867 loss_G: 0.6938 +2018-11-15 07:24:43,042 | epoch: [14/30] iter: [164/391] loss_D: 1.3856 loss_G: 0.6937 +2018-11-15 07:24:50,073 | epoch: [14/30] iter: [165/391] loss_D: 1.3864 loss_G: 0.6943 +2018-11-15 07:24:56,222 | epoch: [14/30] iter: [166/391] loss_D: 1.3856 loss_G: 0.6953 +2018-11-15 07:25:00,230 | epoch: [14/30] iter: [167/391] loss_D: 1.3860 loss_G: 0.6954 +2018-11-15 07:25:04,240 | epoch: [14/30] iter: [168/391] loss_D: 1.3851 loss_G: 0.6962 +2018-11-15 07:25:08,378 | epoch: [14/30] iter: [169/391] loss_D: 1.3852 loss_G: 0.6956 +2018-11-15 07:25:12,355 | epoch: [14/30] iter: [170/391] loss_D: 1.3846 loss_G: 0.6955 +2018-11-15 07:25:16,443 | epoch: [14/30] iter: [171/391] loss_D: 1.3844 loss_G: 0.6962 +2018-11-15 07:25:22,626 | epoch: [14/30] iter: [172/391] loss_D: 1.3832 loss_G: 0.6985 +2018-11-15 07:27:22,587 | epoch: [14/30] iter: [173/391] loss_D: 1.3883 loss_G: 0.6957 +2018-11-15 07:27:26,588 | epoch: [14/30] iter: [174/391] loss_D: 1.3869 loss_G: 0.6934 +2018-11-15 07:27:30,792 | epoch: [14/30] iter: [175/391] loss_D: 1.3877 loss_G: 0.6931 +2018-11-15 07:27:34,915 | epoch: [14/30] iter: [176/391] loss_D: 1.3853 loss_G: 0.6918 +2018-11-15 07:27:39,803 | epoch: [14/30] iter: [177/391] loss_D: 1.3886 loss_G: 0.6911 +2018-11-15 07:27:45,337 | epoch: [14/30] iter: [178/391] loss_D: 1.3881 loss_G: 0.6910 +2018-11-15 07:27:49,809 | epoch: [14/30] iter: [179/391] loss_D: 1.3895 loss_G: 0.6914 +2018-11-15 07:27:54,171 | epoch: [14/30] iter: [180/391] loss_D: 1.3899 loss_G: 0.6910 +2018-11-15 07:28:01,720 | epoch: [14/30] iter: [181/391] loss_D: 1.3881 loss_G: 0.6916 +2018-11-15 07:28:06,574 | epoch: [14/30] iter: [182/391] loss_D: 1.3867 loss_G: 0.6921 +2018-11-15 07:28:12,561 | epoch: [14/30] iter: [183/391] loss_D: 1.3865 loss_G: 0.6928 +2018-11-15 07:28:18,665 | epoch: [14/30] iter: [184/391] loss_D: 1.3867 loss_G: 0.6927 +2018-11-15 07:28:23,170 | epoch: [14/30] iter: [185/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 07:28:27,449 | epoch: [14/30] iter: [186/391] loss_D: 1.3859 loss_G: 0.6934 +2018-11-15 07:28:33,652 | epoch: [14/30] iter: [187/391] loss_D: 1.3861 loss_G: 0.6940 +2018-11-15 07:28:40,314 | epoch: [14/30] iter: [188/391] loss_D: 1.3854 loss_G: 0.6935 +2018-11-15 07:28:46,387 | epoch: [14/30] iter: [189/391] loss_D: 1.3847 loss_G: 0.6940 +2018-11-15 07:28:50,816 | epoch: [14/30] iter: [190/391] loss_D: 1.3855 loss_G: 0.6940 +2018-11-15 07:28:54,873 | epoch: [14/30] iter: [191/391] loss_D: 1.3850 loss_G: 0.6935 +2018-11-15 07:28:59,557 | epoch: [14/30] iter: [192/391] loss_D: 1.3852 loss_G: 0.6933 +2018-11-15 07:29:03,928 | epoch: [14/30] iter: [193/391] loss_D: 1.3862 loss_G: 0.6934 +2018-11-15 07:29:10,270 | epoch: [14/30] iter: [194/391] loss_D: 1.3854 loss_G: 0.6937 +2018-11-15 07:29:16,374 | epoch: [14/30] iter: [195/391] loss_D: 1.3849 loss_G: 0.6934 +2018-11-15 07:29:20,644 | epoch: [14/30] iter: [196/391] loss_D: 1.3855 loss_G: 0.6938 +2018-11-15 07:29:25,080 | epoch: [14/30] iter: [197/391] loss_D: 1.3854 loss_G: 0.6936 +2018-11-15 07:29:29,419 | epoch: [14/30] iter: [198/391] loss_D: 1.3854 loss_G: 0.6934 +2018-11-15 07:29:34,147 | epoch: [14/30] iter: [199/391] loss_D: 1.3843 loss_G: 0.6939 +2018-11-15 07:29:38,302 | epoch: [14/30] iter: [200/391] loss_D: 1.3850 loss_G: 0.6941 +2018-11-15 07:29:43,047 | epoch: [14/30] iter: [201/391] loss_D: 1.3847 loss_G: 0.6943 +2018-11-15 07:29:47,333 | epoch: [14/30] iter: [202/391] loss_D: 1.3839 loss_G: 0.6939 +2018-11-15 07:29:53,108 | epoch: [14/30] iter: [203/391] loss_D: 1.3857 loss_G: 0.6935 +2018-11-15 07:29:59,731 | epoch: [14/30] iter: [204/391] loss_D: 1.3853 loss_G: 0.6936 +2018-11-15 07:30:05,512 | epoch: [14/30] iter: [205/391] loss_D: 1.3844 loss_G: 0.6936 +2018-11-15 07:30:10,219 | epoch: [14/30] iter: [206/391] loss_D: 1.3856 loss_G: 0.6938 +2018-11-15 07:30:16,385 | epoch: [14/30] iter: [207/391] loss_D: 1.3853 loss_G: 0.6936 +2018-11-15 07:30:20,824 | epoch: [14/30] iter: [208/391] loss_D: 1.3860 loss_G: 0.6944 +2018-11-15 07:30:25,436 | epoch: [14/30] iter: [209/391] loss_D: 1.3846 loss_G: 0.6938 +2018-11-15 07:30:29,725 | epoch: [14/30] iter: [210/391] loss_D: 1.3862 loss_G: 0.6938 +2018-11-15 07:30:34,320 | epoch: [14/30] iter: [211/391] loss_D: 1.3856 loss_G: 0.6937 +2018-11-15 07:30:38,604 | epoch: [14/30] iter: [212/391] loss_D: 1.3850 loss_G: 0.6936 +2018-11-15 07:30:43,090 | epoch: [14/30] iter: [213/391] loss_D: 1.3853 loss_G: 0.6938 +2018-11-15 07:30:47,297 | epoch: [14/30] iter: [214/391] loss_D: 1.3858 loss_G: 0.6929 +2018-11-15 07:30:52,808 | epoch: [14/30] iter: [215/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-15 07:30:59,765 | epoch: [14/30] iter: [216/391] loss_D: 1.3875 loss_G: 0.6935 +2018-11-15 07:31:04,363 | epoch: [14/30] iter: [217/391] loss_D: 1.3874 loss_G: 0.6930 +2018-11-15 07:31:08,919 | epoch: [14/30] iter: [218/391] loss_D: 1.3872 loss_G: 0.6923 +2018-11-15 07:31:15,944 | epoch: [14/30] iter: [219/391] loss_D: 1.3870 loss_G: 0.6929 +2018-11-15 07:31:21,260 | epoch: [14/30] iter: [220/391] loss_D: 1.3862 loss_G: 0.6929 +2018-11-15 07:31:25,413 | epoch: [14/30] iter: [221/391] loss_D: 1.3870 loss_G: 0.6936 +2018-11-15 07:31:30,120 | epoch: [14/30] iter: [222/391] loss_D: 1.3880 loss_G: 0.6931 +2018-11-15 07:31:34,376 | epoch: [14/30] iter: [223/391] loss_D: 1.3868 loss_G: 0.6940 +2018-11-15 07:31:39,556 | epoch: [14/30] iter: [224/391] loss_D: 1.3881 loss_G: 0.6938 +2018-11-15 07:31:46,845 | epoch: [14/30] iter: [225/391] loss_D: 1.3870 loss_G: 0.6940 +2018-11-15 07:31:52,330 | epoch: [14/30] iter: [226/391] loss_D: 1.3879 loss_G: 0.6943 +2018-11-15 07:31:57,470 | epoch: [14/30] iter: [227/391] loss_D: 1.3867 loss_G: 0.6937 +2018-11-15 07:32:01,557 | epoch: [14/30] iter: [228/391] loss_D: 1.3879 loss_G: 0.6934 +2018-11-15 07:32:06,365 | epoch: [14/30] iter: [229/391] loss_D: 1.3859 loss_G: 0.6942 +2018-11-15 07:32:14,139 | epoch: [14/30] iter: [230/391] loss_D: 1.3869 loss_G: 0.6942 +2018-11-15 07:32:19,149 | epoch: [14/30] iter: [231/391] loss_D: 1.3871 loss_G: 0.6935 +2018-11-15 07:32:25,076 | epoch: [14/30] iter: [232/391] loss_D: 1.3865 loss_G: 0.6938 +2018-11-15 07:32:31,146 | epoch: [14/30] iter: [233/391] loss_D: 1.3866 loss_G: 0.6939 +2018-11-15 07:32:35,796 | epoch: [14/30] iter: [234/391] loss_D: 1.3855 loss_G: 0.6939 +2018-11-15 07:32:40,339 | epoch: [14/30] iter: [235/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 07:32:46,236 | epoch: [14/30] iter: [236/391] loss_D: 1.3857 loss_G: 0.6941 +2018-11-15 07:32:52,593 | epoch: [14/30] iter: [237/391] loss_D: 1.3859 loss_G: 0.6945 +2018-11-15 07:32:58,358 | epoch: [14/30] iter: [238/391] loss_D: 1.3854 loss_G: 0.6951 +2018-11-15 07:33:03,395 | epoch: [14/30] iter: [239/391] loss_D: 1.3846 loss_G: 0.6946 +2018-11-15 07:33:08,885 | epoch: [14/30] iter: [240/391] loss_D: 1.3863 loss_G: 0.6945 +2018-11-15 07:33:13,255 | epoch: [14/30] iter: [241/391] loss_D: 1.3865 loss_G: 0.6948 +2018-11-15 07:33:18,013 | epoch: [14/30] iter: [242/391] loss_D: 1.3861 loss_G: 0.6950 +2018-11-15 07:33:25,515 | epoch: [14/30] iter: [243/391] loss_D: 1.3848 loss_G: 0.6952 +2018-11-15 07:33:30,454 | epoch: [14/30] iter: [244/391] loss_D: 1.3860 loss_G: 0.6963 +2018-11-15 07:33:36,640 | epoch: [14/30] iter: [245/391] loss_D: 1.3847 loss_G: 0.6954 +2018-11-15 07:33:42,518 | epoch: [14/30] iter: [246/391] loss_D: 1.3853 loss_G: 0.6980 +2018-11-15 07:33:46,956 | epoch: [14/30] iter: [247/391] loss_D: 1.3851 loss_G: 0.6961 +2018-11-15 07:33:51,244 | epoch: [14/30] iter: [248/391] loss_D: 1.3837 loss_G: 0.6968 +2018-11-15 07:33:55,899 | epoch: [14/30] iter: [249/391] loss_D: 1.3846 loss_G: 0.6974 +2018-11-15 07:34:00,448 | epoch: [14/30] iter: [250/391] loss_D: 1.3888 loss_G: 0.6949 +2018-11-15 07:34:06,693 | epoch: [14/30] iter: [251/391] loss_D: 1.3887 loss_G: 0.6933 +2018-11-15 07:34:12,879 | epoch: [14/30] iter: [252/391] loss_D: 1.3885 loss_G: 0.6907 +2018-11-15 07:34:18,885 | epoch: [14/30] iter: [253/391] loss_D: 1.3888 loss_G: 0.6912 +2018-11-15 07:34:23,550 | epoch: [14/30] iter: [254/391] loss_D: 1.3888 loss_G: 0.6896 +2018-11-15 07:34:29,284 | epoch: [14/30] iter: [255/391] loss_D: 1.3895 loss_G: 0.6901 +2018-11-15 07:34:35,681 | epoch: [14/30] iter: [256/391] loss_D: 1.3898 loss_G: 0.6901 +2018-11-15 07:34:41,223 | epoch: [14/30] iter: [257/391] loss_D: 1.3885 loss_G: 0.6912 +2018-11-15 07:34:46,319 | epoch: [14/30] iter: [258/391] loss_D: 1.3882 loss_G: 0.6916 +2018-11-15 07:34:50,654 | epoch: [14/30] iter: [259/391] loss_D: 1.3882 loss_G: 0.6913 +2018-11-15 07:34:55,353 | epoch: [14/30] iter: [260/391] loss_D: 1.3872 loss_G: 0.6920 +2018-11-15 07:34:59,643 | epoch: [14/30] iter: [261/391] loss_D: 1.3871 loss_G: 0.6920 +2018-11-15 07:35:04,971 | epoch: [14/30] iter: [262/391] loss_D: 1.3869 loss_G: 0.6928 +2018-11-15 07:35:11,642 | epoch: [14/30] iter: [263/391] loss_D: 1.3871 loss_G: 0.6924 +2018-11-15 07:35:16,958 | epoch: [14/30] iter: [264/391] loss_D: 1.3867 loss_G: 0.6928 +2018-11-15 07:35:22,040 | epoch: [14/30] iter: [265/391] loss_D: 1.3865 loss_G: 0.6927 +2018-11-15 07:35:26,170 | epoch: [14/30] iter: [266/391] loss_D: 1.3867 loss_G: 0.6930 +2018-11-15 07:35:30,618 | epoch: [14/30] iter: [267/391] loss_D: 1.3861 loss_G: 0.6930 +2018-11-15 07:35:38,011 | epoch: [14/30] iter: [268/391] loss_D: 1.3870 loss_G: 0.6928 +2018-11-15 07:35:42,942 | epoch: [14/30] iter: [269/391] loss_D: 1.3866 loss_G: 0.6930 +2018-11-15 07:35:48,764 | epoch: [14/30] iter: [270/391] loss_D: 1.3868 loss_G: 0.6928 +2018-11-15 07:35:54,705 | epoch: [14/30] iter: [271/391] loss_D: 1.3865 loss_G: 0.6929 +2018-11-15 07:35:59,294 | epoch: [14/30] iter: [272/391] loss_D: 1.3871 loss_G: 0.6929 +2018-11-15 07:37:45,326 | epoch: [14/30] iter: [273/391] loss_D: 1.3864 loss_G: 0.6927 +2018-11-15 07:37:51,762 | epoch: [14/30] iter: [274/391] loss_D: 1.3863 loss_G: 0.6931 +2018-11-15 07:37:59,134 | epoch: [14/30] iter: [275/391] loss_D: 1.3865 loss_G: 0.6931 +2018-11-15 07:38:05,849 | epoch: [14/30] iter: [276/391] loss_D: 1.3865 loss_G: 0.6932 +2018-11-15 07:38:12,791 | epoch: [14/30] iter: [277/391] loss_D: 1.3859 loss_G: 0.6933 +2018-11-15 07:38:19,794 | epoch: [14/30] iter: [278/391] loss_D: 1.3859 loss_G: 0.6930 +2018-11-15 07:38:26,921 | epoch: [14/30] iter: [279/391] loss_D: 1.3871 loss_G: 0.6927 +2018-11-15 07:38:34,026 | epoch: [14/30] iter: [280/391] loss_D: 1.3856 loss_G: 0.6932 +2018-11-15 07:38:40,638 | epoch: [14/30] iter: [281/391] loss_D: 1.3852 loss_G: 0.6931 +2018-11-15 07:38:47,348 | epoch: [14/30] iter: [282/391] loss_D: 1.3865 loss_G: 0.6936 +2018-11-15 07:38:54,365 | epoch: [14/30] iter: [283/391] loss_D: 1.3857 loss_G: 0.6933 +2018-11-15 07:39:01,318 | epoch: [14/30] iter: [284/391] loss_D: 1.3860 loss_G: 0.6933 +2018-11-15 07:39:08,160 | epoch: [14/30] iter: [285/391] loss_D: 1.3857 loss_G: 0.6933 +2018-11-15 07:39:15,164 | epoch: [14/30] iter: [286/391] loss_D: 1.3865 loss_G: 0.6926 +2018-11-15 07:39:22,146 | epoch: [14/30] iter: [287/391] loss_D: 1.3869 loss_G: 0.6931 +2018-11-15 07:39:29,246 | epoch: [14/30] iter: [288/391] loss_D: 1.3872 loss_G: 0.6933 +2018-11-15 07:39:36,162 | epoch: [14/30] iter: [289/391] loss_D: 1.3860 loss_G: 0.6930 +2018-11-15 07:39:43,048 | epoch: [14/30] iter: [290/391] loss_D: 1.3862 loss_G: 0.6928 +2018-11-15 07:39:50,175 | epoch: [14/30] iter: [291/391] loss_D: 1.3862 loss_G: 0.6930 +2018-11-15 07:39:57,085 | epoch: [14/30] iter: [292/391] loss_D: 1.3863 loss_G: 0.6932 +2018-11-15 07:40:04,249 | epoch: [14/30] iter: [293/391] loss_D: 1.3868 loss_G: 0.6930 +2018-11-15 07:40:09,311 | epoch: [14/30] iter: [294/391] loss_D: 1.3863 loss_G: 0.6934 +2018-11-15 07:40:13,494 | epoch: [14/30] iter: [295/391] loss_D: 1.3866 loss_G: 0.6932 +2018-11-15 07:40:17,530 | epoch: [14/30] iter: [296/391] loss_D: 1.3859 loss_G: 0.6936 +2018-11-15 07:40:21,620 | epoch: [14/30] iter: [297/391] loss_D: 1.3861 loss_G: 0.6937 +2018-11-15 07:40:25,752 | epoch: [14/30] iter: [298/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 07:40:30,005 | epoch: [14/30] iter: [299/391] loss_D: 1.3860 loss_G: 0.6928 +2018-11-15 07:40:34,035 | epoch: [14/30] iter: [300/391] loss_D: 1.3866 loss_G: 0.6924 +2018-11-15 07:40:38,374 | epoch: [14/30] iter: [301/391] loss_D: 1.3867 loss_G: 0.6930 +2018-11-15 07:40:44,433 | epoch: [14/30] iter: [302/391] loss_D: 1.3858 loss_G: 0.6928 +2018-11-15 07:40:49,904 | epoch: [14/30] iter: [303/391] loss_D: 1.3868 loss_G: 0.6931 +2018-11-15 07:40:54,870 | epoch: [14/30] iter: [304/391] loss_D: 1.3867 loss_G: 0.6932 +2018-11-15 07:41:01,017 | epoch: [14/30] iter: [305/391] loss_D: 1.3875 loss_G: 0.6930 +2018-11-15 07:41:05,561 | epoch: [14/30] iter: [306/391] loss_D: 1.3862 loss_G: 0.6934 +2018-11-15 07:41:10,065 | epoch: [14/30] iter: [307/391] loss_D: 1.3869 loss_G: 0.6932 +2018-11-15 07:41:14,272 | epoch: [14/30] iter: [308/391] loss_D: 1.3864 loss_G: 0.6930 +2018-11-15 07:41:18,368 | epoch: [14/30] iter: [309/391] loss_D: 1.3861 loss_G: 0.6932 +2018-11-15 07:41:22,754 | epoch: [14/30] iter: [310/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 07:41:28,633 | epoch: [14/30] iter: [311/391] loss_D: 1.3866 loss_G: 0.6934 +2018-11-15 07:41:34,142 | epoch: [14/30] iter: [312/391] loss_D: 1.3867 loss_G: 0.6926 +2018-11-15 07:41:39,248 | epoch: [14/30] iter: [313/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 07:41:45,487 | epoch: [14/30] iter: [314/391] loss_D: 1.3862 loss_G: 0.6933 +2018-11-15 07:41:49,961 | epoch: [14/30] iter: [315/391] loss_D: 1.3859 loss_G: 0.6931 +2018-11-15 07:41:53,957 | epoch: [14/30] iter: [316/391] loss_D: 1.3872 loss_G: 0.6932 +2018-11-15 07:41:58,265 | epoch: [14/30] iter: [317/391] loss_D: 1.3860 loss_G: 0.6936 +2018-11-15 07:42:04,530 | epoch: [14/30] iter: [318/391] loss_D: 1.3865 loss_G: 0.6934 +2018-11-15 07:42:10,507 | epoch: [14/30] iter: [319/391] loss_D: 1.3864 loss_G: 0.6935 +2018-11-15 07:42:15,268 | epoch: [14/30] iter: [320/391] loss_D: 1.3863 loss_G: 0.6934 +2018-11-15 07:42:21,286 | epoch: [14/30] iter: [321/391] loss_D: 1.3860 loss_G: 0.6930 +2018-11-15 07:42:25,561 | epoch: [14/30] iter: [322/391] loss_D: 1.3866 loss_G: 0.6938 +2018-11-15 07:42:30,256 | epoch: [14/30] iter: [323/391] loss_D: 1.3863 loss_G: 0.6939 +2018-11-15 07:42:34,460 | epoch: [14/30] iter: [324/391] loss_D: 1.3870 loss_G: 0.6934 +2018-11-15 07:42:38,366 | epoch: [14/30] iter: [325/391] loss_D: 1.3866 loss_G: 0.6940 +2018-11-15 07:42:42,561 | epoch: [14/30] iter: [326/391] loss_D: 1.3866 loss_G: 0.6938 +2018-11-15 07:42:48,931 | epoch: [14/30] iter: [327/391] loss_D: 1.3860 loss_G: 0.6930 +2018-11-15 07:42:54,799 | epoch: [14/30] iter: [328/391] loss_D: 1.3863 loss_G: 0.6934 +2018-11-15 07:43:00,204 | epoch: [14/30] iter: [329/391] loss_D: 1.3865 loss_G: 0.6942 +2018-11-15 07:43:05,742 | epoch: [14/30] iter: [330/391] loss_D: 1.3871 loss_G: 0.6930 +2018-11-15 07:43:12,018 | epoch: [14/30] iter: [331/391] loss_D: 1.3869 loss_G: 0.6931 +2018-11-15 07:43:16,634 | epoch: [14/30] iter: [332/391] loss_D: 1.3864 loss_G: 0.6928 +2018-11-15 07:43:21,151 | epoch: [14/30] iter: [333/391] loss_D: 1.3862 loss_G: 0.6931 +2018-11-15 07:43:27,431 | epoch: [14/30] iter: [334/391] loss_D: 1.3862 loss_G: 0.6927 +2018-11-15 07:43:33,411 | epoch: [14/30] iter: [335/391] loss_D: 1.3866 loss_G: 0.6927 +2018-11-15 07:43:39,349 | epoch: [14/30] iter: [336/391] loss_D: 1.3865 loss_G: 0.6930 +2018-11-15 07:43:43,770 | epoch: [14/30] iter: [337/391] loss_D: 1.3865 loss_G: 0.6928 +2018-11-15 07:43:48,106 | epoch: [14/30] iter: [338/391] loss_D: 1.3865 loss_G: 0.6934 +2018-11-15 07:43:52,637 | epoch: [14/30] iter: [339/391] loss_D: 1.3867 loss_G: 0.6929 +2018-11-15 07:43:57,264 | epoch: [14/30] iter: [340/391] loss_D: 1.3870 loss_G: 0.6932 +2018-11-15 07:44:03,841 | epoch: [14/30] iter: [341/391] loss_D: 1.3869 loss_G: 0.6936 +2018-11-15 07:44:09,600 | epoch: [14/30] iter: [342/391] loss_D: 1.3869 loss_G: 0.6939 +2018-11-15 07:44:13,906 | epoch: [14/30] iter: [343/391] loss_D: 1.3864 loss_G: 0.6935 +2018-11-15 07:44:18,318 | epoch: [14/30] iter: [344/391] loss_D: 1.3859 loss_G: 0.6931 +2018-11-15 07:44:25,815 | epoch: [14/30] iter: [345/391] loss_D: 1.3867 loss_G: 0.6933 +2018-11-15 07:44:30,777 | epoch: [14/30] iter: [346/391] loss_D: 1.3866 loss_G: 0.6937 +2018-11-15 07:44:35,178 | epoch: [14/30] iter: [347/391] loss_D: 1.3856 loss_G: 0.6933 +2018-11-15 07:44:40,100 | epoch: [14/30] iter: [348/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 07:44:47,263 | epoch: [14/30] iter: [349/391] loss_D: 1.3862 loss_G: 0.6933 +2018-11-15 07:44:51,941 | epoch: [14/30] iter: [350/391] loss_D: 1.3863 loss_G: 0.6934 +2018-11-15 07:44:56,177 | epoch: [14/30] iter: [351/391] loss_D: 1.3861 loss_G: 0.6933 +2018-11-15 07:45:00,550 | epoch: [14/30] iter: [352/391] loss_D: 1.3856 loss_G: 0.6939 +2018-11-15 07:45:05,128 | epoch: [14/30] iter: [353/391] loss_D: 1.3863 loss_G: 0.6930 +2018-11-15 07:45:11,666 | epoch: [14/30] iter: [354/391] loss_D: 1.3862 loss_G: 0.6933 +2018-11-15 07:45:17,353 | epoch: [14/30] iter: [355/391] loss_D: 1.3858 loss_G: 0.6939 +2018-11-15 07:45:23,566 | epoch: [14/30] iter: [356/391] loss_D: 1.3860 loss_G: 0.6936 +2018-11-15 07:45:28,991 | epoch: [14/30] iter: [357/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 07:45:34,352 | epoch: [14/30] iter: [358/391] loss_D: 1.3858 loss_G: 0.6933 +2018-11-15 07:45:38,759 | epoch: [14/30] iter: [359/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 07:45:43,402 | epoch: [14/30] iter: [360/391] loss_D: 1.3858 loss_G: 0.6930 +2018-11-15 07:45:50,810 | epoch: [14/30] iter: [361/391] loss_D: 1.3853 loss_G: 0.6939 +2018-11-15 07:45:55,596 | epoch: [14/30] iter: [362/391] loss_D: 1.3857 loss_G: 0.6940 +2018-11-15 07:45:59,798 | epoch: [14/30] iter: [363/391] loss_D: 1.3858 loss_G: 0.6935 +2018-11-15 07:46:04,346 | epoch: [14/30] iter: [364/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 07:46:08,662 | epoch: [14/30] iter: [365/391] loss_D: 1.3851 loss_G: 0.6942 +2018-11-15 07:46:15,414 | epoch: [14/30] iter: [366/391] loss_D: 1.3852 loss_G: 0.6938 +2018-11-15 07:46:21,800 | epoch: [14/30] iter: [367/391] loss_D: 1.3852 loss_G: 0.6942 +2018-11-15 07:46:26,090 | epoch: [14/30] iter: [368/391] loss_D: 1.3866 loss_G: 0.6938 +2018-11-15 07:46:30,737 | epoch: [14/30] iter: [369/391] loss_D: 1.3851 loss_G: 0.6934 +2018-11-15 07:46:37,967 | epoch: [14/30] iter: [370/391] loss_D: 1.3856 loss_G: 0.6933 +2018-11-15 07:46:42,935 | epoch: [14/30] iter: [371/391] loss_D: 1.3849 loss_G: 0.6941 +2018-11-15 07:46:49,277 | epoch: [14/30] iter: [372/391] loss_D: 1.3859 loss_G: 0.6942 +2018-11-15 07:48:38,281 | epoch: [14/30] iter: [373/391] loss_D: 1.3864 loss_G: 0.6941 +2018-11-15 07:48:42,348 | epoch: [14/30] iter: [374/391] loss_D: 1.3856 loss_G: 0.6939 +2018-11-15 07:48:46,505 | epoch: [14/30] iter: [375/391] loss_D: 1.3855 loss_G: 0.6936 +2018-11-15 07:48:53,178 | epoch: [14/30] iter: [376/391] loss_D: 1.3860 loss_G: 0.6939 +2018-11-15 07:48:59,793 | epoch: [14/30] iter: [377/391] loss_D: 1.3858 loss_G: 0.6935 +2018-11-15 07:49:07,042 | epoch: [14/30] iter: [378/391] loss_D: 1.3874 loss_G: 0.6930 +2018-11-15 07:49:14,045 | epoch: [14/30] iter: [379/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 07:49:21,052 | epoch: [14/30] iter: [380/391] loss_D: 1.3866 loss_G: 0.6929 +2018-11-15 07:49:28,276 | epoch: [14/30] iter: [381/391] loss_D: 1.3870 loss_G: 0.6929 +2018-11-15 07:49:35,249 | epoch: [14/30] iter: [382/391] loss_D: 1.3856 loss_G: 0.6931 +2018-11-15 07:49:42,094 | epoch: [14/30] iter: [383/391] loss_D: 1.3864 loss_G: 0.6926 +2018-11-15 07:49:49,203 | epoch: [14/30] iter: [384/391] loss_D: 1.3874 loss_G: 0.6927 +2018-11-15 07:49:56,283 | epoch: [14/30] iter: [385/391] loss_D: 1.3874 loss_G: 0.6929 +2018-11-15 07:50:03,263 | epoch: [14/30] iter: [386/391] loss_D: 1.3876 loss_G: 0.6923 +2018-11-15 07:50:10,228 | epoch: [14/30] iter: [387/391] loss_D: 1.3865 loss_G: 0.6920 +2018-11-15 07:50:16,925 | epoch: [14/30] iter: [388/391] loss_D: 1.3863 loss_G: 0.6925 +2018-11-15 07:50:23,559 | epoch: [14/30] iter: [389/391] loss_D: 1.3876 loss_G: 0.6925 +2018-11-15 07:50:27,651 | epoch: [14/30] iter: [390/391] loss_D: 1.3864 loss_G: 0.6923 +2018-11-15 07:50:34,914 | epoch: [15/30] iter: [0/391] loss_D: 1.3867 loss_G: 0.6929 +2018-11-15 07:50:42,103 | epoch: [15/30] iter: [1/391] loss_D: 1.3863 loss_G: 0.6928 +2018-11-15 07:50:49,123 | epoch: [15/30] iter: [2/391] loss_D: 1.3854 loss_G: 0.6926 +2018-11-15 07:50:56,586 | epoch: [15/30] iter: [3/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 07:51:03,910 | epoch: [15/30] iter: [4/391] loss_D: 1.3867 loss_G: 0.6931 +2018-11-15 07:51:10,772 | epoch: [15/30] iter: [5/391] loss_D: 1.3853 loss_G: 0.6933 +2018-11-15 07:51:17,856 | epoch: [15/30] iter: [6/391] loss_D: 1.3859 loss_G: 0.6921 +2018-11-15 07:51:22,572 | epoch: [15/30] iter: [7/391] loss_D: 1.3861 loss_G: 0.6931 +2018-11-15 07:51:26,483 | epoch: [15/30] iter: [8/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 07:51:30,621 | epoch: [15/30] iter: [9/391] loss_D: 1.3866 loss_G: 0.6928 +2018-11-15 07:51:34,643 | epoch: [15/30] iter: [10/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-15 07:51:38,864 | epoch: [15/30] iter: [11/391] loss_D: 1.3859 loss_G: 0.6942 +2018-11-15 07:51:42,953 | epoch: [15/30] iter: [12/391] loss_D: 1.3866 loss_G: 0.6931 +2018-11-15 07:51:47,224 | epoch: [15/30] iter: [13/391] loss_D: 1.3872 loss_G: 0.6928 +2018-11-15 07:51:51,446 | epoch: [15/30] iter: [14/391] loss_D: 1.3852 loss_G: 0.6929 +2018-11-15 07:51:55,540 | epoch: [15/30] iter: [15/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 07:52:00,157 | epoch: [15/30] iter: [16/391] loss_D: 1.3868 loss_G: 0.6933 +2018-11-15 07:52:07,006 | epoch: [15/30] iter: [17/391] loss_D: 1.3866 loss_G: 0.6929 +2018-11-15 07:52:14,419 | epoch: [15/30] iter: [18/391] loss_D: 1.3872 loss_G: 0.6927 +2018-11-15 07:52:21,329 | epoch: [15/30] iter: [19/391] loss_D: 1.3865 loss_G: 0.6932 +2018-11-15 07:52:28,188 | epoch: [15/30] iter: [20/391] loss_D: 1.3856 loss_G: 0.6937 +2018-11-15 07:52:35,544 | epoch: [15/30] iter: [21/391] loss_D: 1.3856 loss_G: 0.6936 +2018-11-15 07:52:43,058 | epoch: [15/30] iter: [22/391] loss_D: 1.3870 loss_G: 0.6939 +2018-11-15 07:52:50,234 | epoch: [15/30] iter: [23/391] loss_D: 1.3866 loss_G: 0.6932 +2018-11-15 07:52:57,480 | epoch: [15/30] iter: [24/391] loss_D: 1.3862 loss_G: 0.6938 +2018-11-15 07:53:04,222 | epoch: [15/30] iter: [25/391] loss_D: 1.3852 loss_G: 0.6940 +2018-11-15 07:53:11,593 | epoch: [15/30] iter: [26/391] loss_D: 1.3858 loss_G: 0.6931 +2018-11-15 07:53:18,633 | epoch: [15/30] iter: [27/391] loss_D: 1.3866 loss_G: 0.6932 +2018-11-15 07:53:25,771 | epoch: [15/30] iter: [28/391] loss_D: 1.3867 loss_G: 0.6927 +2018-11-15 07:53:32,401 | epoch: [15/30] iter: [29/391] loss_D: 1.3874 loss_G: 0.6928 +2018-11-15 07:53:39,590 | epoch: [15/30] iter: [30/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 07:53:46,602 | epoch: [15/30] iter: [31/391] loss_D: 1.3862 loss_G: 0.6927 +2018-11-15 07:53:51,437 | epoch: [15/30] iter: [32/391] loss_D: 1.3878 loss_G: 0.6921 +2018-11-15 07:53:55,623 | epoch: [15/30] iter: [33/391] loss_D: 1.3859 loss_G: 0.6930 +2018-11-15 07:53:59,830 | epoch: [15/30] iter: [34/391] loss_D: 1.3859 loss_G: 0.6926 +2018-11-15 07:54:03,944 | epoch: [15/30] iter: [35/391] loss_D: 1.3869 loss_G: 0.6932 +2018-11-15 07:54:07,935 | epoch: [15/30] iter: [36/391] loss_D: 1.3862 loss_G: 0.6935 +2018-11-15 07:54:12,789 | epoch: [15/30] iter: [37/391] loss_D: 1.3870 loss_G: 0.6936 +2018-11-15 07:54:19,468 | epoch: [15/30] iter: [38/391] loss_D: 1.3868 loss_G: 0.6932 +2018-11-15 07:54:26,510 | epoch: [15/30] iter: [39/391] loss_D: 1.3857 loss_G: 0.6930 +2018-11-15 07:54:33,514 | epoch: [15/30] iter: [40/391] loss_D: 1.3853 loss_G: 0.6931 +2018-11-15 07:54:40,766 | epoch: [15/30] iter: [41/391] loss_D: 1.3862 loss_G: 0.6937 +2018-11-15 07:54:47,960 | epoch: [15/30] iter: [42/391] loss_D: 1.3870 loss_G: 0.6926 +2018-11-15 07:54:54,970 | epoch: [15/30] iter: [43/391] loss_D: 1.3855 loss_G: 0.6935 +2018-11-15 07:55:01,569 | epoch: [15/30] iter: [44/391] loss_D: 1.3858 loss_G: 0.6936 +2018-11-15 07:55:08,647 | epoch: [15/30] iter: [45/391] loss_D: 1.3867 loss_G: 0.6938 +2018-11-15 07:55:15,718 | epoch: [15/30] iter: [46/391] loss_D: 1.3851 loss_G: 0.6933 +2018-11-15 07:55:22,297 | epoch: [15/30] iter: [47/391] loss_D: 1.3869 loss_G: 0.6932 +2018-11-15 07:55:28,428 | epoch: [15/30] iter: [48/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 07:55:32,322 | epoch: [15/30] iter: [49/391] loss_D: 1.3865 loss_G: 0.6937 +2018-11-15 07:55:36,364 | epoch: [15/30] iter: [50/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 07:55:40,271 | epoch: [15/30] iter: [51/391] loss_D: 1.3856 loss_G: 0.6946 +2018-11-15 07:55:44,198 | epoch: [15/30] iter: [52/391] loss_D: 1.3864 loss_G: 0.6944 +2018-11-15 07:55:48,433 | epoch: [15/30] iter: [53/391] loss_D: 1.3847 loss_G: 0.6944 +2018-11-15 07:55:52,520 | epoch: [15/30] iter: [54/391] loss_D: 1.3858 loss_G: 0.6945 +2018-11-15 07:55:56,700 | epoch: [15/30] iter: [55/391] loss_D: 1.3843 loss_G: 0.6946 +2018-11-15 07:56:01,005 | epoch: [15/30] iter: [56/391] loss_D: 1.3864 loss_G: 0.6938 +2018-11-15 07:56:06,530 | epoch: [15/30] iter: [57/391] loss_D: 1.3865 loss_G: 0.6951 +2018-11-15 07:56:13,366 | epoch: [15/30] iter: [58/391] loss_D: 1.3851 loss_G: 0.6942 +2018-11-15 07:56:20,776 | epoch: [15/30] iter: [59/391] loss_D: 1.3853 loss_G: 0.6935 +2018-11-15 07:56:27,996 | epoch: [15/30] iter: [60/391] loss_D: 1.3872 loss_G: 0.6932 +2018-11-15 07:56:34,981 | epoch: [15/30] iter: [61/391] loss_D: 1.3881 loss_G: 0.6930 +2018-11-15 07:56:41,907 | epoch: [15/30] iter: [62/391] loss_D: 1.3867 loss_G: 0.6931 +2018-11-15 07:56:48,983 | epoch: [15/30] iter: [63/391] loss_D: 1.3877 loss_G: 0.6931 +2018-11-15 07:56:56,263 | epoch: [15/30] iter: [64/391] loss_D: 1.3874 loss_G: 0.6928 +2018-11-15 07:57:03,310 | epoch: [15/30] iter: [65/391] loss_D: 1.3871 loss_G: 0.6929 +2018-11-15 07:57:10,621 | epoch: [15/30] iter: [66/391] loss_D: 1.3867 loss_G: 0.6932 +2018-11-15 07:57:17,539 | epoch: [15/30] iter: [67/391] loss_D: 1.3866 loss_G: 0.6930 +2018-11-15 07:57:24,523 | epoch: [15/30] iter: [68/391] loss_D: 1.3860 loss_G: 0.6924 +2018-11-15 07:57:31,585 | epoch: [15/30] iter: [69/391] loss_D: 1.3861 loss_G: 0.6930 +2018-11-15 07:57:38,473 | epoch: [15/30] iter: [70/391] loss_D: 1.3864 loss_G: 0.6937 +2018-11-15 07:57:45,357 | epoch: [15/30] iter: [71/391] loss_D: 1.3858 loss_G: 0.6929 +2018-11-15 07:57:52,537 | epoch: [15/30] iter: [72/391] loss_D: 1.3866 loss_G: 0.6938 +2018-11-15 07:57:58,256 | epoch: [15/30] iter: [73/391] loss_D: 1.3861 loss_G: 0.6936 +2018-11-15 07:58:02,351 | epoch: [15/30] iter: [74/391] loss_D: 1.3861 loss_G: 0.6939 +2018-11-15 07:58:06,544 | epoch: [15/30] iter: [75/391] loss_D: 1.3866 loss_G: 0.6941 +2018-11-15 07:58:10,677 | epoch: [15/30] iter: [76/391] loss_D: 1.3857 loss_G: 0.6928 +2018-11-15 07:58:14,854 | epoch: [15/30] iter: [77/391] loss_D: 1.3858 loss_G: 0.6931 +2018-11-15 07:58:19,169 | epoch: [15/30] iter: [78/391] loss_D: 1.3858 loss_G: 0.6930 +2018-11-15 07:58:23,416 | epoch: [15/30] iter: [79/391] loss_D: 1.3858 loss_G: 0.6930 +2018-11-15 07:58:27,674 | epoch: [15/30] iter: [80/391] loss_D: 1.3865 loss_G: 0.6935 +2018-11-15 07:58:34,662 | epoch: [15/30] iter: [81/391] loss_D: 1.3851 loss_G: 0.6932 +2018-11-15 08:00:32,968 | epoch: [15/30] iter: [82/391] loss_D: 1.3863 loss_G: 0.6938 +2018-11-15 08:00:37,204 | epoch: [15/30] iter: [83/391] loss_D: 1.3851 loss_G: 0.6937 +2018-11-15 08:00:41,141 | epoch: [15/30] iter: [84/391] loss_D: 1.3869 loss_G: 0.6941 +2018-11-15 08:00:46,314 | epoch: [15/30] iter: [85/391] loss_D: 1.3866 loss_G: 0.6938 +2018-11-15 08:00:53,133 | epoch: [15/30] iter: [86/391] loss_D: 1.3866 loss_G: 0.6936 +2018-11-15 08:01:00,082 | epoch: [15/30] iter: [87/391] loss_D: 1.3858 loss_G: 0.6933 +2018-11-15 08:01:07,503 | epoch: [15/30] iter: [88/391] loss_D: 1.3863 loss_G: 0.6932 +2018-11-15 08:01:14,462 | epoch: [15/30] iter: [89/391] loss_D: 1.3865 loss_G: 0.6931 +2018-11-15 08:01:21,220 | epoch: [15/30] iter: [90/391] loss_D: 1.3860 loss_G: 0.6933 +2018-11-15 08:01:28,359 | epoch: [15/30] iter: [91/391] loss_D: 1.3861 loss_G: 0.6937 +2018-11-15 08:01:34,910 | epoch: [15/30] iter: [92/391] loss_D: 1.3867 loss_G: 0.6938 +2018-11-15 08:01:42,244 | epoch: [15/30] iter: [93/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 08:01:48,754 | epoch: [15/30] iter: [94/391] loss_D: 1.3864 loss_G: 0.6935 +2018-11-15 08:01:56,133 | epoch: [15/30] iter: [95/391] loss_D: 1.3873 loss_G: 0.6934 +2018-11-15 08:02:03,224 | epoch: [15/30] iter: [96/391] loss_D: 1.3870 loss_G: 0.6935 +2018-11-15 08:02:10,306 | epoch: [15/30] iter: [97/391] loss_D: 1.3865 loss_G: 0.6928 +2018-11-15 08:02:17,322 | epoch: [15/30] iter: [98/391] loss_D: 1.3858 loss_G: 0.6933 +2018-11-15 08:02:23,942 | epoch: [15/30] iter: [99/391] loss_D: 1.3868 loss_G: 0.6936 +2018-11-15 08:02:30,740 | epoch: [15/30] iter: [100/391] loss_D: 1.3871 loss_G: 0.6930 +2018-11-15 08:02:37,766 | epoch: [15/30] iter: [101/391] loss_D: 1.3860 loss_G: 0.6934 +2018-11-15 08:02:44,788 | epoch: [15/30] iter: [102/391] loss_D: 1.3854 loss_G: 0.6939 +2018-11-15 08:02:48,775 | epoch: [15/30] iter: [103/391] loss_D: 1.3867 loss_G: 0.6943 +2018-11-15 08:02:52,841 | epoch: [15/30] iter: [104/391] loss_D: 1.3853 loss_G: 0.6932 +2018-11-15 08:02:56,816 | epoch: [15/30] iter: [105/391] loss_D: 1.3866 loss_G: 0.6941 +2018-11-15 08:03:00,903 | epoch: [15/30] iter: [106/391] loss_D: 1.3864 loss_G: 0.6937 +2018-11-15 08:03:05,182 | epoch: [15/30] iter: [107/391] loss_D: 1.3858 loss_G: 0.6942 +2018-11-15 08:03:09,222 | epoch: [15/30] iter: [108/391] loss_D: 1.3852 loss_G: 0.6942 +2018-11-15 08:03:13,281 | epoch: [15/30] iter: [109/391] loss_D: 1.3862 loss_G: 0.6935 +2018-11-15 08:03:17,508 | epoch: [15/30] iter: [110/391] loss_D: 1.3862 loss_G: 0.6934 +2018-11-15 08:03:21,862 | epoch: [15/30] iter: [111/391] loss_D: 1.3864 loss_G: 0.6926 +2018-11-15 08:03:27,366 | epoch: [15/30] iter: [112/391] loss_D: 1.3856 loss_G: 0.6932 +2018-11-15 08:03:34,432 | epoch: [15/30] iter: [113/391] loss_D: 1.3854 loss_G: 0.6935 +2018-11-15 08:03:41,239 | epoch: [15/30] iter: [114/391] loss_D: 1.3866 loss_G: 0.6935 +2018-11-15 08:03:47,715 | epoch: [15/30] iter: [115/391] loss_D: 1.3849 loss_G: 0.6933 +2018-11-15 08:03:54,878 | epoch: [15/30] iter: [116/391] loss_D: 1.3854 loss_G: 0.6942 +2018-11-15 08:04:01,640 | epoch: [15/30] iter: [117/391] loss_D: 1.3867 loss_G: 0.6943 +2018-11-15 08:04:08,854 | epoch: [15/30] iter: [118/391] loss_D: 1.3846 loss_G: 0.6935 +2018-11-15 08:04:16,135 | epoch: [15/30] iter: [119/391] loss_D: 1.3849 loss_G: 0.6934 +2018-11-15 08:04:22,997 | epoch: [15/30] iter: [120/391] loss_D: 1.3857 loss_G: 0.6931 +2018-11-15 08:04:30,056 | epoch: [15/30] iter: [121/391] loss_D: 1.3871 loss_G: 0.6929 +2018-11-15 08:04:37,285 | epoch: [15/30] iter: [122/391] loss_D: 1.3864 loss_G: 0.6935 +2018-11-15 08:04:43,956 | epoch: [15/30] iter: [123/391] loss_D: 1.3871 loss_G: 0.6921 +2018-11-15 08:04:50,966 | epoch: [15/30] iter: [124/391] loss_D: 1.3875 loss_G: 0.6925 +2018-11-15 08:04:57,666 | epoch: [15/30] iter: [125/391] loss_D: 1.3857 loss_G: 0.6925 +2018-11-15 08:05:04,616 | epoch: [15/30] iter: [126/391] loss_D: 1.3874 loss_G: 0.6928 +2018-11-15 08:05:11,775 | epoch: [15/30] iter: [127/391] loss_D: 1.3873 loss_G: 0.6917 +2018-11-15 08:05:19,046 | epoch: [15/30] iter: [128/391] loss_D: 1.3869 loss_G: 0.6923 +2018-11-15 08:05:23,624 | epoch: [15/30] iter: [129/391] loss_D: 1.3868 loss_G: 0.6930 +2018-11-15 08:05:27,596 | epoch: [15/30] iter: [130/391] loss_D: 1.3860 loss_G: 0.6926 +2018-11-15 08:05:31,632 | epoch: [15/30] iter: [131/391] loss_D: 1.3869 loss_G: 0.6932 +2018-11-15 08:05:35,555 | epoch: [15/30] iter: [132/391] loss_D: 1.3885 loss_G: 0.6931 +2018-11-15 08:05:39,636 | epoch: [15/30] iter: [133/391] loss_D: 1.3868 loss_G: 0.6924 +2018-11-15 08:05:43,705 | epoch: [15/30] iter: [134/391] loss_D: 1.3876 loss_G: 0.6929 +2018-11-15 08:05:47,812 | epoch: [15/30] iter: [135/391] loss_D: 1.3880 loss_G: 0.6934 +2018-11-15 08:05:51,726 | epoch: [15/30] iter: [136/391] loss_D: 1.3873 loss_G: 0.6940 +2018-11-15 08:05:56,046 | epoch: [15/30] iter: [137/391] loss_D: 1.3862 loss_G: 0.6939 +2018-11-15 08:06:00,307 | epoch: [15/30] iter: [138/391] loss_D: 1.3884 loss_G: 0.6939 +2018-11-15 08:06:07,309 | epoch: [15/30] iter: [139/391] loss_D: 1.3879 loss_G: 0.6932 +2018-11-15 08:06:14,582 | epoch: [15/30] iter: [140/391] loss_D: 1.3873 loss_G: 0.6932 +2018-11-15 08:06:21,906 | epoch: [15/30] iter: [141/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 08:06:28,860 | epoch: [15/30] iter: [142/391] loss_D: 1.3857 loss_G: 0.6934 +2018-11-15 08:06:36,046 | epoch: [15/30] iter: [143/391] loss_D: 1.3870 loss_G: 0.6923 +2018-11-15 08:06:43,366 | epoch: [15/30] iter: [144/391] loss_D: 1.3857 loss_G: 0.6933 +2018-11-15 08:06:49,884 | epoch: [15/30] iter: [145/391] loss_D: 1.3855 loss_G: 0.6932 +2018-11-15 08:06:56,949 | epoch: [15/30] iter: [146/391] loss_D: 1.3869 loss_G: 0.6935 +2018-11-15 08:07:03,518 | epoch: [15/30] iter: [147/391] loss_D: 1.3861 loss_G: 0.6933 +2018-11-15 08:07:10,500 | epoch: [15/30] iter: [148/391] loss_D: 1.3860 loss_G: 0.6928 +2018-11-15 08:07:17,011 | epoch: [15/30] iter: [149/391] loss_D: 1.3854 loss_G: 0.6924 +2018-11-15 08:07:23,981 | epoch: [15/30] iter: [150/391] loss_D: 1.3859 loss_G: 0.6934 +2018-11-15 08:07:31,085 | epoch: [15/30] iter: [151/391] loss_D: 1.3865 loss_G: 0.6935 +2018-11-15 08:07:38,160 | epoch: [15/30] iter: [152/391] loss_D: 1.3862 loss_G: 0.6937 +2018-11-15 08:07:45,125 | epoch: [15/30] iter: [153/391] loss_D: 1.3863 loss_G: 0.6939 +2018-11-15 08:07:52,290 | epoch: [15/30] iter: [154/391] loss_D: 1.3862 loss_G: 0.6935 +2018-11-15 08:07:58,913 | epoch: [15/30] iter: [155/391] loss_D: 1.3871 loss_G: 0.6940 +2018-11-15 08:08:03,997 | epoch: [15/30] iter: [156/391] loss_D: 1.3853 loss_G: 0.6936 +2018-11-15 08:08:07,961 | epoch: [15/30] iter: [157/391] loss_D: 1.3853 loss_G: 0.6938 +2018-11-15 08:08:12,244 | epoch: [15/30] iter: [158/391] loss_D: 1.3858 loss_G: 0.6927 +2018-11-15 08:08:16,401 | epoch: [15/30] iter: [159/391] loss_D: 1.3860 loss_G: 0.6929 +2018-11-15 08:08:20,442 | epoch: [15/30] iter: [160/391] loss_D: 1.3858 loss_G: 0.6936 +2018-11-15 08:08:24,712 | epoch: [15/30] iter: [161/391] loss_D: 1.3863 loss_G: 0.6940 +2018-11-15 08:08:31,874 | epoch: [15/30] iter: [162/391] loss_D: 1.3861 loss_G: 0.6941 +2018-11-15 08:08:39,014 | epoch: [15/30] iter: [163/391] loss_D: 1.3849 loss_G: 0.6935 +2018-11-15 08:08:45,621 | epoch: [15/30] iter: [164/391] loss_D: 1.3860 loss_G: 0.6938 +2018-11-15 08:08:52,433 | epoch: [15/30] iter: [165/391] loss_D: 1.3858 loss_G: 0.6933 +2018-11-15 08:08:59,494 | epoch: [15/30] iter: [166/391] loss_D: 1.3852 loss_G: 0.6937 +2018-11-15 08:09:06,499 | epoch: [15/30] iter: [167/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 08:09:13,840 | epoch: [15/30] iter: [168/391] loss_D: 1.3854 loss_G: 0.6932 +2018-11-15 08:09:20,685 | epoch: [15/30] iter: [169/391] loss_D: 1.3865 loss_G: 0.6938 +2018-11-15 08:09:27,725 | epoch: [15/30] iter: [170/391] loss_D: 1.3860 loss_G: 0.6928 +2018-11-15 08:09:34,593 | epoch: [15/30] iter: [171/391] loss_D: 1.3857 loss_G: 0.6931 +2018-11-15 08:09:41,624 | epoch: [15/30] iter: [172/391] loss_D: 1.3862 loss_G: 0.6928 +2018-11-15 08:09:48,249 | epoch: [15/30] iter: [173/391] loss_D: 1.3867 loss_G: 0.6925 +2018-11-15 08:09:55,451 | epoch: [15/30] iter: [174/391] loss_D: 1.3859 loss_G: 0.6935 +2018-11-15 08:10:02,843 | epoch: [15/30] iter: [175/391] loss_D: 1.3848 loss_G: 0.6934 +2018-11-15 08:10:09,361 | epoch: [15/30] iter: [176/391] loss_D: 1.3870 loss_G: 0.6938 +2018-11-15 08:10:13,482 | epoch: [15/30] iter: [177/391] loss_D: 1.3873 loss_G: 0.6938 +2018-11-15 08:10:17,583 | epoch: [15/30] iter: [178/391] loss_D: 1.3871 loss_G: 0.6928 +2018-11-15 08:10:21,811 | epoch: [15/30] iter: [179/391] loss_D: 1.3859 loss_G: 0.6938 +2018-11-15 08:10:26,032 | epoch: [15/30] iter: [180/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 08:10:30,263 | epoch: [15/30] iter: [181/391] loss_D: 1.3869 loss_G: 0.6933 +2018-11-15 08:12:30,452 | epoch: [15/30] iter: [182/391] loss_D: 1.3866 loss_G: 0.6925 +2018-11-15 08:12:34,564 | epoch: [15/30] iter: [183/391] loss_D: 1.3863 loss_G: 0.6928 +2018-11-15 08:12:38,682 | epoch: [15/30] iter: [184/391] loss_D: 1.3878 loss_G: 0.6927 +2018-11-15 08:12:42,810 | epoch: [15/30] iter: [185/391] loss_D: 1.3863 loss_G: 0.6940 +2018-11-15 08:12:46,746 | epoch: [15/30] iter: [186/391] loss_D: 1.3868 loss_G: 0.6933 +2018-11-15 08:12:50,902 | epoch: [15/30] iter: [187/391] loss_D: 1.3870 loss_G: 0.6938 +2018-11-15 08:12:55,323 | epoch: [15/30] iter: [188/391] loss_D: 1.3862 loss_G: 0.6933 +2018-11-15 08:13:01,423 | epoch: [15/30] iter: [189/391] loss_D: 1.3862 loss_G: 0.6929 +2018-11-15 08:13:08,617 | epoch: [15/30] iter: [190/391] loss_D: 1.3868 loss_G: 0.6937 +2018-11-15 08:13:15,379 | epoch: [15/30] iter: [191/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-15 08:13:22,567 | epoch: [15/30] iter: [192/391] loss_D: 1.3857 loss_G: 0.6938 +2018-11-15 08:13:29,621 | epoch: [15/30] iter: [193/391] loss_D: 1.3871 loss_G: 0.6938 +2018-11-15 08:13:36,267 | epoch: [15/30] iter: [194/391] loss_D: 1.3855 loss_G: 0.6938 +2018-11-15 08:13:42,982 | epoch: [15/30] iter: [195/391] loss_D: 1.3852 loss_G: 0.6929 +2018-11-15 08:13:50,125 | epoch: [15/30] iter: [196/391] loss_D: 1.3852 loss_G: 0.6933 +2018-11-15 08:13:57,239 | epoch: [15/30] iter: [197/391] loss_D: 1.3866 loss_G: 0.6931 +2018-11-15 08:14:04,635 | epoch: [15/30] iter: [198/391] loss_D: 1.3848 loss_G: 0.6925 +2018-11-15 08:14:11,680 | epoch: [15/30] iter: [199/391] loss_D: 1.3871 loss_G: 0.6934 +2018-11-15 08:14:18,571 | epoch: [15/30] iter: [200/391] loss_D: 1.3868 loss_G: 0.6932 +2018-11-15 08:14:25,453 | epoch: [15/30] iter: [201/391] loss_D: 1.3868 loss_G: 0.6935 +2018-11-15 08:14:29,385 | epoch: [15/30] iter: [202/391] loss_D: 1.3864 loss_G: 0.6939 +2018-11-15 08:14:33,353 | epoch: [15/30] iter: [203/391] loss_D: 1.3870 loss_G: 0.6935 +2018-11-15 08:14:37,361 | epoch: [15/30] iter: [204/391] loss_D: 1.3878 loss_G: 0.6937 +2018-11-15 08:14:41,457 | epoch: [15/30] iter: [205/391] loss_D: 1.3877 loss_G: 0.6938 +2018-11-15 08:14:45,533 | epoch: [15/30] iter: [206/391] loss_D: 1.3865 loss_G: 0.6933 +2018-11-15 08:14:49,680 | epoch: [15/30] iter: [207/391] loss_D: 1.3868 loss_G: 0.6946 +2018-11-15 08:14:53,784 | epoch: [15/30] iter: [208/391] loss_D: 1.3878 loss_G: 0.6938 +2018-11-15 08:14:57,831 | epoch: [15/30] iter: [209/391] loss_D: 1.3872 loss_G: 0.6937 +2018-11-15 08:15:02,069 | epoch: [15/30] iter: [210/391] loss_D: 1.3877 loss_G: 0.6933 +2018-11-15 08:15:06,332 | epoch: [15/30] iter: [211/391] loss_D: 1.3856 loss_G: 0.6935 +2018-11-15 08:15:11,491 | epoch: [15/30] iter: [212/391] loss_D: 1.3871 loss_G: 0.6929 +2018-11-15 08:15:18,314 | epoch: [15/30] iter: [213/391] loss_D: 1.3877 loss_G: 0.6927 +2018-11-15 08:15:25,386 | epoch: [15/30] iter: [214/391] loss_D: 1.3869 loss_G: 0.6936 +2018-11-15 08:15:32,218 | epoch: [15/30] iter: [215/391] loss_D: 1.3874 loss_G: 0.6938 +2018-11-15 08:15:39,022 | epoch: [15/30] iter: [216/391] loss_D: 1.3862 loss_G: 0.6936 +2018-11-15 08:15:46,032 | epoch: [15/30] iter: [217/391] loss_D: 1.3869 loss_G: 0.6937 +2018-11-15 08:15:53,253 | epoch: [15/30] iter: [218/391] loss_D: 1.3855 loss_G: 0.6930 +2018-11-15 08:16:00,255 | epoch: [15/30] iter: [219/391] loss_D: 1.3862 loss_G: 0.6941 +2018-11-15 08:16:06,855 | epoch: [15/30] iter: [220/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 08:16:13,857 | epoch: [15/30] iter: [221/391] loss_D: 1.3867 loss_G: 0.6939 +2018-11-15 08:16:20,873 | epoch: [15/30] iter: [222/391] loss_D: 1.3862 loss_G: 0.6928 +2018-11-15 08:16:28,052 | epoch: [15/30] iter: [223/391] loss_D: 1.3864 loss_G: 0.6933 +2018-11-15 08:16:35,006 | epoch: [15/30] iter: [224/391] loss_D: 1.3862 loss_G: 0.6934 +2018-11-15 08:16:41,550 | epoch: [15/30] iter: [225/391] loss_D: 1.3858 loss_G: 0.6932 +2018-11-15 08:16:48,819 | epoch: [15/30] iter: [226/391] loss_D: 1.3861 loss_G: 0.6929 +2018-11-15 08:16:55,746 | epoch: [15/30] iter: [227/391] loss_D: 1.3871 loss_G: 0.6933 +2018-11-15 08:17:02,506 | epoch: [15/30] iter: [228/391] loss_D: 1.3867 loss_G: 0.6925 +2018-11-15 08:17:09,475 | epoch: [15/30] iter: [229/391] loss_D: 1.3866 loss_G: 0.6933 +2018-11-15 08:17:16,563 | epoch: [15/30] iter: [230/391] loss_D: 1.3862 loss_G: 0.6931 +2018-11-15 08:17:23,262 | epoch: [15/30] iter: [231/391] loss_D: 1.3865 loss_G: 0.6942 +2018-11-15 08:17:29,942 | epoch: [15/30] iter: [232/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 08:17:37,273 | epoch: [15/30] iter: [233/391] loss_D: 1.3854 loss_G: 0.6934 +2018-11-15 08:17:43,926 | epoch: [15/30] iter: [234/391] loss_D: 1.3856 loss_G: 0.6937 +2018-11-15 08:17:48,672 | epoch: [15/30] iter: [235/391] loss_D: 1.3872 loss_G: 0.6935 +2018-11-15 08:17:52,810 | epoch: [15/30] iter: [236/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 08:17:57,074 | epoch: [15/30] iter: [237/391] loss_D: 1.3852 loss_G: 0.6934 +2018-11-15 08:18:01,294 | epoch: [15/30] iter: [238/391] loss_D: 1.3864 loss_G: 0.6935 +2018-11-15 08:18:05,422 | epoch: [15/30] iter: [239/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-15 08:18:09,585 | epoch: [15/30] iter: [240/391] loss_D: 1.3867 loss_G: 0.6932 +2018-11-15 08:18:13,825 | epoch: [15/30] iter: [241/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 08:18:17,972 | epoch: [15/30] iter: [242/391] loss_D: 1.3852 loss_G: 0.6923 +2018-11-15 08:18:22,699 | epoch: [15/30] iter: [243/391] loss_D: 1.3861 loss_G: 0.6931 +2018-11-15 08:18:29,272 | epoch: [15/30] iter: [244/391] loss_D: 1.3856 loss_G: 0.6932 +2018-11-15 08:18:35,998 | epoch: [15/30] iter: [245/391] loss_D: 1.3850 loss_G: 0.6935 +2018-11-15 08:18:43,241 | epoch: [15/30] iter: [246/391] loss_D: 1.3864 loss_G: 0.6930 +2018-11-15 08:18:50,122 | epoch: [15/30] iter: [247/391] loss_D: 1.3868 loss_G: 0.6934 +2018-11-15 08:18:57,246 | epoch: [15/30] iter: [248/391] loss_D: 1.3870 loss_G: 0.6927 +2018-11-15 08:19:03,935 | epoch: [15/30] iter: [249/391] loss_D: 1.3877 loss_G: 0.6924 +2018-11-15 08:19:11,216 | epoch: [15/30] iter: [250/391] loss_D: 1.3876 loss_G: 0.6924 +2018-11-15 08:19:18,071 | epoch: [15/30] iter: [251/391] loss_D: 1.3878 loss_G: 0.6940 +2018-11-15 08:19:25,445 | epoch: [15/30] iter: [252/391] loss_D: 1.3865 loss_G: 0.6949 +2018-11-15 08:19:33,014 | epoch: [15/30] iter: [253/391] loss_D: 1.3869 loss_G: 0.6928 +2018-11-15 08:19:40,009 | epoch: [15/30] iter: [254/391] loss_D: 1.3879 loss_G: 0.6938 +2018-11-15 08:19:44,576 | epoch: [15/30] iter: [255/391] loss_D: 1.3872 loss_G: 0.6938 +2018-11-15 08:19:48,558 | epoch: [15/30] iter: [256/391] loss_D: 1.3870 loss_G: 0.6938 +2018-11-15 08:19:52,750 | epoch: [15/30] iter: [257/391] loss_D: 1.3877 loss_G: 0.6940 +2018-11-15 08:19:56,838 | epoch: [15/30] iter: [258/391] loss_D: 1.3870 loss_G: 0.6936 +2018-11-15 08:20:00,771 | epoch: [15/30] iter: [259/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 08:20:05,000 | epoch: [15/30] iter: [260/391] loss_D: 1.3863 loss_G: 0.6926 +2018-11-15 08:20:11,567 | epoch: [15/30] iter: [261/391] loss_D: 1.3857 loss_G: 0.6938 +2018-11-15 08:20:18,863 | epoch: [15/30] iter: [262/391] loss_D: 1.3852 loss_G: 0.6935 +2018-11-15 08:20:25,511 | epoch: [15/30] iter: [263/391] loss_D: 1.3872 loss_G: 0.6934 +2018-11-15 08:20:32,460 | epoch: [15/30] iter: [264/391] loss_D: 1.3862 loss_G: 0.6945 +2018-11-15 08:20:39,511 | epoch: [15/30] iter: [265/391] loss_D: 1.3848 loss_G: 0.6959 +2018-11-15 08:20:46,148 | epoch: [15/30] iter: [266/391] loss_D: 1.3859 loss_G: 0.6941 +2018-11-15 08:20:53,412 | epoch: [15/30] iter: [267/391] loss_D: 1.3859 loss_G: 0.6950 +2018-11-15 08:21:00,486 | epoch: [15/30] iter: [268/391] loss_D: 1.3854 loss_G: 0.6947 +2018-11-15 08:21:07,574 | epoch: [15/30] iter: [269/391] loss_D: 1.3851 loss_G: 0.6945 +2018-11-15 08:21:14,762 | epoch: [15/30] iter: [270/391] loss_D: 1.3855 loss_G: 0.6941 +2018-11-15 08:21:21,601 | epoch: [15/30] iter: [271/391] loss_D: 1.3852 loss_G: 0.6954 +2018-11-15 08:21:28,353 | epoch: [15/30] iter: [272/391] loss_D: 1.3855 loss_G: 0.6940 +2018-11-15 08:21:35,352 | epoch: [15/30] iter: [273/391] loss_D: 1.3860 loss_G: 0.6936 +2018-11-15 08:21:42,568 | epoch: [15/30] iter: [274/391] loss_D: 1.3866 loss_G: 0.6924 +2018-11-15 08:21:47,866 | epoch: [15/30] iter: [275/391] loss_D: 1.3876 loss_G: 0.6919 +2018-11-15 08:21:52,062 | epoch: [15/30] iter: [276/391] loss_D: 1.3877 loss_G: 0.6928 +2018-11-15 08:21:56,232 | epoch: [15/30] iter: [277/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 08:22:00,288 | epoch: [15/30] iter: [278/391] loss_D: 1.3865 loss_G: 0.6928 +2018-11-15 08:22:04,287 | epoch: [15/30] iter: [279/391] loss_D: 1.3860 loss_G: 0.6923 +2018-11-15 08:22:08,452 | epoch: [15/30] iter: [280/391] loss_D: 1.3871 loss_G: 0.6920 +2018-11-15 08:22:12,436 | epoch: [15/30] iter: [281/391] loss_D: 1.3869 loss_G: 0.6925 +2018-11-15 08:24:17,554 | epoch: [15/30] iter: [282/391] loss_D: 1.3877 loss_G: 0.6924 +2018-11-15 08:24:21,537 | epoch: [15/30] iter: [283/391] loss_D: 1.3869 loss_G: 0.6944 +2018-11-15 08:24:25,521 | epoch: [15/30] iter: [284/391] loss_D: 1.3863 loss_G: 0.6937 +2018-11-15 08:24:30,138 | epoch: [15/30] iter: [285/391] loss_D: 1.3858 loss_G: 0.6939 +2018-11-15 08:24:36,754 | epoch: [15/30] iter: [286/391] loss_D: 1.3871 loss_G: 0.6933 +2018-11-15 08:24:44,025 | epoch: [15/30] iter: [287/391] loss_D: 1.3869 loss_G: 0.6937 +2018-11-15 08:24:50,786 | epoch: [15/30] iter: [288/391] loss_D: 1.3864 loss_G: 0.6938 +2018-11-15 08:24:57,698 | epoch: [15/30] iter: [289/391] loss_D: 1.3876 loss_G: 0.6927 +2018-11-15 08:25:04,120 | epoch: [15/30] iter: [290/391] loss_D: 1.3882 loss_G: 0.6931 +2018-11-15 08:25:11,599 | epoch: [15/30] iter: [291/391] loss_D: 1.3878 loss_G: 0.6927 +2018-11-15 08:25:18,847 | epoch: [15/30] iter: [292/391] loss_D: 1.3880 loss_G: 0.6930 +2018-11-15 08:25:25,843 | epoch: [15/30] iter: [293/391] loss_D: 1.3872 loss_G: 0.6929 +2018-11-15 08:25:33,094 | epoch: [15/30] iter: [294/391] loss_D: 1.3879 loss_G: 0.6929 +2018-11-15 08:25:39,754 | epoch: [15/30] iter: [295/391] loss_D: 1.3870 loss_G: 0.6940 +2018-11-15 08:25:46,645 | epoch: [15/30] iter: [296/391] loss_D: 1.3867 loss_G: 0.6938 +2018-11-15 08:25:53,628 | epoch: [15/30] iter: [297/391] loss_D: 1.3871 loss_G: 0.6954 +2018-11-15 08:26:00,410 | epoch: [15/30] iter: [298/391] loss_D: 1.3869 loss_G: 0.6942 +2018-11-15 08:26:05,038 | epoch: [15/30] iter: [299/391] loss_D: 1.3872 loss_G: 0.6943 +2018-11-15 08:26:09,046 | epoch: [15/30] iter: [300/391] loss_D: 1.3863 loss_G: 0.6943 +2018-11-15 08:26:12,988 | epoch: [15/30] iter: [301/391] loss_D: 1.3853 loss_G: 0.6946 +2018-11-15 08:26:17,096 | epoch: [15/30] iter: [302/391] loss_D: 1.3854 loss_G: 0.6954 +2018-11-15 08:26:21,283 | epoch: [15/30] iter: [303/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 08:26:25,933 | epoch: [15/30] iter: [304/391] loss_D: 1.3850 loss_G: 0.6941 +2018-11-15 08:26:32,672 | epoch: [15/30] iter: [305/391] loss_D: 1.3864 loss_G: 0.6931 +2018-11-15 08:26:39,943 | epoch: [15/30] iter: [306/391] loss_D: 1.3858 loss_G: 0.6937 +2018-11-15 08:26:47,077 | epoch: [15/30] iter: [307/391] loss_D: 1.3871 loss_G: 0.6929 +2018-11-15 08:26:54,233 | epoch: [15/30] iter: [308/391] loss_D: 1.3872 loss_G: 0.6923 +2018-11-15 08:27:00,882 | epoch: [15/30] iter: [309/391] loss_D: 1.3866 loss_G: 0.6927 +2018-11-15 08:27:07,985 | epoch: [15/30] iter: [310/391] loss_D: 1.3863 loss_G: 0.6919 +2018-11-15 08:27:14,849 | epoch: [15/30] iter: [311/391] loss_D: 1.3867 loss_G: 0.6937 +2018-11-15 08:27:21,382 | epoch: [15/30] iter: [312/391] loss_D: 1.3867 loss_G: 0.6935 +2018-11-15 08:27:28,336 | epoch: [15/30] iter: [313/391] loss_D: 1.3873 loss_G: 0.6937 +2018-11-15 08:27:33,035 | epoch: [15/30] iter: [314/391] loss_D: 1.3860 loss_G: 0.6940 +2018-11-15 08:27:37,189 | epoch: [15/30] iter: [315/391] loss_D: 1.3864 loss_G: 0.6936 +2018-11-15 08:27:41,392 | epoch: [15/30] iter: [316/391] loss_D: 1.3865 loss_G: 0.6934 +2018-11-15 08:27:45,620 | epoch: [15/30] iter: [317/391] loss_D: 1.3863 loss_G: 0.6937 +2018-11-15 08:27:49,581 | epoch: [15/30] iter: [318/391] loss_D: 1.3859 loss_G: 0.6938 +2018-11-15 08:27:53,879 | epoch: [15/30] iter: [319/391] loss_D: 1.3864 loss_G: 0.6933 +2018-11-15 08:28:00,825 | epoch: [15/30] iter: [320/391] loss_D: 1.3846 loss_G: 0.6941 +2018-11-15 08:28:08,076 | epoch: [15/30] iter: [321/391] loss_D: 1.3844 loss_G: 0.6938 +2018-11-15 08:28:15,425 | epoch: [15/30] iter: [322/391] loss_D: 1.3850 loss_G: 0.6945 +2018-11-15 08:28:22,159 | epoch: [15/30] iter: [323/391] loss_D: 1.3845 loss_G: 0.6943 +2018-11-15 08:28:29,440 | epoch: [15/30] iter: [324/391] loss_D: 1.3847 loss_G: 0.6942 +2018-11-15 08:28:36,017 | epoch: [15/30] iter: [325/391] loss_D: 1.3840 loss_G: 0.6942 +2018-11-15 08:28:43,226 | epoch: [15/30] iter: [326/391] loss_D: 1.3835 loss_G: 0.6943 +2018-11-15 08:28:50,368 | epoch: [15/30] iter: [327/391] loss_D: 1.3826 loss_G: 0.6951 +2018-11-15 08:28:57,377 | epoch: [15/30] iter: [328/391] loss_D: 1.3833 loss_G: 0.6944 +2018-11-15 08:29:04,430 | epoch: [15/30] iter: [329/391] loss_D: 1.3849 loss_G: 0.6939 +2018-11-15 08:29:09,127 | epoch: [15/30] iter: [330/391] loss_D: 1.3840 loss_G: 0.6927 +2018-11-15 08:29:13,368 | epoch: [15/30] iter: [331/391] loss_D: 1.3834 loss_G: 0.6938 +2018-11-15 08:29:17,333 | epoch: [15/30] iter: [332/391] loss_D: 1.3911 loss_G: 0.6933 +2018-11-15 08:29:21,443 | epoch: [15/30] iter: [333/391] loss_D: 1.3873 loss_G: 0.6937 +2018-11-15 08:29:25,732 | epoch: [15/30] iter: [334/391] loss_D: 1.3875 loss_G: 0.6934 +2018-11-15 08:29:30,170 | epoch: [15/30] iter: [335/391] loss_D: 1.3857 loss_G: 0.6941 +2018-11-15 08:29:37,307 | epoch: [15/30] iter: [336/391] loss_D: 1.3878 loss_G: 0.6961 +2018-11-15 08:29:44,281 | epoch: [15/30] iter: [337/391] loss_D: 1.3877 loss_G: 0.6968 +2018-11-15 08:29:51,450 | epoch: [15/30] iter: [338/391] loss_D: 1.3857 loss_G: 0.6963 +2018-11-15 08:29:58,026 | epoch: [15/30] iter: [339/391] loss_D: 1.3870 loss_G: 0.6967 +2018-11-15 08:30:04,689 | epoch: [15/30] iter: [340/391] loss_D: 1.3861 loss_G: 0.6957 +2018-11-15 08:30:11,910 | epoch: [15/30] iter: [341/391] loss_D: 1.3880 loss_G: 0.6944 +2018-11-15 08:30:18,936 | epoch: [15/30] iter: [342/391] loss_D: 1.3879 loss_G: 0.6933 +2018-11-15 08:30:25,400 | epoch: [15/30] iter: [343/391] loss_D: 1.3863 loss_G: 0.6941 +2018-11-15 08:30:32,277 | epoch: [15/30] iter: [344/391] loss_D: 1.3854 loss_G: 0.6923 +2018-11-15 08:30:39,359 | epoch: [15/30] iter: [345/391] loss_D: 1.3855 loss_G: 0.6929 +2018-11-15 08:30:46,336 | epoch: [15/30] iter: [346/391] loss_D: 1.3860 loss_G: 0.6929 +2018-11-15 08:30:53,501 | epoch: [15/30] iter: [347/391] loss_D: 1.3866 loss_G: 0.6924 +2018-11-15 08:31:00,310 | epoch: [15/30] iter: [348/391] loss_D: 1.3876 loss_G: 0.6919 +2018-11-15 08:31:07,504 | epoch: [15/30] iter: [349/391] loss_D: 1.3880 loss_G: 0.6916 +2018-11-15 08:31:14,293 | epoch: [15/30] iter: [350/391] loss_D: 1.3882 loss_G: 0.6934 +2018-11-15 08:31:21,499 | epoch: [15/30] iter: [351/391] loss_D: 1.3875 loss_G: 0.6935 +2018-11-15 08:31:28,302 | epoch: [15/30] iter: [352/391] loss_D: 1.3889 loss_G: 0.6955 +2018-11-15 08:31:35,335 | epoch: [15/30] iter: [353/391] loss_D: 1.3886 loss_G: 0.6944 +2018-11-15 08:31:41,953 | epoch: [15/30] iter: [354/391] loss_D: 1.3877 loss_G: 0.6940 +2018-11-15 08:31:47,869 | epoch: [15/30] iter: [355/391] loss_D: 1.3883 loss_G: 0.6938 +2018-11-15 08:31:51,972 | epoch: [15/30] iter: [356/391] loss_D: 1.3867 loss_G: 0.6943 +2018-11-15 08:31:56,089 | epoch: [15/30] iter: [357/391] loss_D: 1.3866 loss_G: 0.6945 +2018-11-15 08:32:00,058 | epoch: [15/30] iter: [358/391] loss_D: 1.3861 loss_G: 0.6939 +2018-11-15 08:32:04,242 | epoch: [15/30] iter: [359/391] loss_D: 1.3866 loss_G: 0.6946 +2018-11-15 08:32:08,341 | epoch: [15/30] iter: [360/391] loss_D: 1.3858 loss_G: 0.6943 +2018-11-15 08:32:12,319 | epoch: [15/30] iter: [361/391] loss_D: 1.3860 loss_G: 0.6941 +2018-11-15 08:32:16,576 | epoch: [15/30] iter: [362/391] loss_D: 1.3854 loss_G: 0.6943 +2018-11-15 08:32:22,563 | epoch: [15/30] iter: [363/391] loss_D: 1.3863 loss_G: 0.6941 +2018-11-15 08:32:27,927 | epoch: [15/30] iter: [364/391] loss_D: 1.3855 loss_G: 0.6946 +2018-11-15 08:32:33,379 | epoch: [15/30] iter: [365/391] loss_D: 1.3845 loss_G: 0.6944 +2018-11-15 08:32:39,480 | epoch: [15/30] iter: [366/391] loss_D: 1.3847 loss_G: 0.6949 +2018-11-15 08:32:45,376 | epoch: [15/30] iter: [367/391] loss_D: 1.3851 loss_G: 0.6945 +2018-11-15 08:32:50,018 | epoch: [15/30] iter: [368/391] loss_D: 1.3845 loss_G: 0.6952 +2018-11-15 08:32:56,102 | epoch: [15/30] iter: [369/391] loss_D: 1.3849 loss_G: 0.6944 +2018-11-15 08:33:00,593 | epoch: [15/30] iter: [370/391] loss_D: 1.3844 loss_G: 0.6954 +2018-11-15 08:33:05,321 | epoch: [15/30] iter: [371/391] loss_D: 1.3856 loss_G: 0.6928 +2018-11-15 08:33:12,710 | epoch: [15/30] iter: [372/391] loss_D: 1.3876 loss_G: 0.6925 +2018-11-15 08:33:17,834 | epoch: [15/30] iter: [373/391] loss_D: 1.3857 loss_G: 0.6917 +2018-11-15 08:33:22,005 | epoch: [15/30] iter: [374/391] loss_D: 1.3870 loss_G: 0.6914 +2018-11-15 08:33:26,452 | epoch: [15/30] iter: [375/391] loss_D: 1.3872 loss_G: 0.6922 +2018-11-15 08:33:30,963 | epoch: [15/30] iter: [376/391] loss_D: 1.3877 loss_G: 0.6916 +2018-11-15 08:33:36,868 | epoch: [15/30] iter: [377/391] loss_D: 1.3871 loss_G: 0.6930 +2018-11-15 08:33:43,308 | epoch: [15/30] iter: [378/391] loss_D: 1.3867 loss_G: 0.6935 +2018-11-15 08:33:48,606 | epoch: [15/30] iter: [379/391] loss_D: 1.3877 loss_G: 0.6928 +2018-11-15 08:33:53,535 | epoch: [15/30] iter: [380/391] loss_D: 1.3874 loss_G: 0.6926 +2018-11-15 08:33:59,661 | epoch: [15/30] iter: [381/391] loss_D: 1.3879 loss_G: 0.6916 +2018-11-15 08:35:51,978 | epoch: [15/30] iter: [382/391] loss_D: 1.3868 loss_G: 0.6929 +2018-11-15 08:35:57,921 | epoch: [15/30] iter: [383/391] loss_D: 1.3874 loss_G: 0.6936 +2018-11-15 08:36:04,560 | epoch: [15/30] iter: [384/391] loss_D: 1.3873 loss_G: 0.6942 +2018-11-15 08:36:11,206 | epoch: [15/30] iter: [385/391] loss_D: 1.3872 loss_G: 0.6933 +2018-11-15 08:36:17,930 | epoch: [15/30] iter: [386/391] loss_D: 1.3882 loss_G: 0.6925 +2018-11-15 08:36:24,878 | epoch: [15/30] iter: [387/391] loss_D: 1.3875 loss_G: 0.6935 +2018-11-15 08:36:31,694 | epoch: [15/30] iter: [388/391] loss_D: 1.3876 loss_G: 0.6924 +2018-11-15 08:36:38,998 | epoch: [15/30] iter: [389/391] loss_D: 1.3876 loss_G: 0.6933 +2018-11-15 08:36:43,374 | epoch: [15/30] iter: [390/391] loss_D: 1.3874 loss_G: 0.6927 +2018-11-15 08:36:50,667 | epoch: [16/30] iter: [0/391] loss_D: 1.3865 loss_G: 0.6916 +2018-11-15 08:36:57,807 | epoch: [16/30] iter: [1/391] loss_D: 1.3885 loss_G: 0.6935 +2018-11-15 08:37:05,114 | epoch: [16/30] iter: [2/391] loss_D: 1.3874 loss_G: 0.6945 +2018-11-15 08:37:12,247 | epoch: [16/30] iter: [3/391] loss_D: 1.3874 loss_G: 0.6946 +2018-11-15 08:37:19,557 | epoch: [16/30] iter: [4/391] loss_D: 1.3868 loss_G: 0.6937 +2018-11-15 08:37:26,754 | epoch: [16/30] iter: [5/391] loss_D: 1.3869 loss_G: 0.6937 +2018-11-15 08:37:33,918 | epoch: [16/30] iter: [6/391] loss_D: 1.3865 loss_G: 0.6940 +2018-11-15 08:37:40,856 | epoch: [16/30] iter: [7/391] loss_D: 1.3859 loss_G: 0.6940 +2018-11-15 08:37:45,401 | epoch: [16/30] iter: [8/391] loss_D: 1.3878 loss_G: 0.6927 +2018-11-15 08:37:49,338 | epoch: [16/30] iter: [9/391] loss_D: 1.3868 loss_G: 0.6920 +2018-11-15 08:37:53,456 | epoch: [16/30] iter: [10/391] loss_D: 1.3852 loss_G: 0.6935 +2018-11-15 08:37:57,540 | epoch: [16/30] iter: [11/391] loss_D: 1.3877 loss_G: 0.6929 +2018-11-15 08:38:01,398 | epoch: [16/30] iter: [12/391] loss_D: 1.3864 loss_G: 0.6928 +2018-11-15 08:38:05,428 | epoch: [16/30] iter: [13/391] loss_D: 1.3871 loss_G: 0.6933 +2018-11-15 08:38:09,339 | epoch: [16/30] iter: [14/391] loss_D: 1.3857 loss_G: 0.6934 +2018-11-15 08:38:13,284 | epoch: [16/30] iter: [15/391] loss_D: 1.3868 loss_G: 0.6933 +2018-11-15 08:38:17,304 | epoch: [16/30] iter: [16/391] loss_D: 1.3874 loss_G: 0.6932 +2018-11-15 08:38:21,483 | epoch: [16/30] iter: [17/391] loss_D: 1.3868 loss_G: 0.6930 +2018-11-15 08:38:25,728 | epoch: [16/30] iter: [18/391] loss_D: 1.3864 loss_G: 0.6930 +2018-11-15 08:38:29,885 | epoch: [16/30] iter: [19/391] loss_D: 1.3879 loss_G: 0.6930 +2018-11-15 08:38:34,137 | epoch: [16/30] iter: [20/391] loss_D: 1.3872 loss_G: 0.6935 +2018-11-15 08:38:40,610 | epoch: [16/30] iter: [21/391] loss_D: 1.3862 loss_G: 0.6935 +2018-11-15 08:38:47,518 | epoch: [16/30] iter: [22/391] loss_D: 1.3869 loss_G: 0.6939 +2018-11-15 08:38:53,989 | epoch: [16/30] iter: [23/391] loss_D: 1.3864 loss_G: 0.6937 +2018-11-15 08:39:01,014 | epoch: [16/30] iter: [24/391] loss_D: 1.3881 loss_G: 0.6940 +2018-11-15 08:39:08,496 | epoch: [16/30] iter: [25/391] loss_D: 1.3867 loss_G: 0.6935 +2018-11-15 08:39:15,617 | epoch: [16/30] iter: [26/391] loss_D: 1.3853 loss_G: 0.6939 +2018-11-15 08:39:22,214 | epoch: [16/30] iter: [27/391] loss_D: 1.3856 loss_G: 0.6938 +2018-11-15 08:39:29,623 | epoch: [16/30] iter: [28/391] loss_D: 1.3859 loss_G: 0.6941 +2018-11-15 08:39:36,745 | epoch: [16/30] iter: [29/391] loss_D: 1.3867 loss_G: 0.6931 +2018-11-15 08:39:43,949 | epoch: [16/30] iter: [30/391] loss_D: 1.3861 loss_G: 0.6931 +2018-11-15 08:39:50,922 | epoch: [16/30] iter: [31/391] loss_D: 1.3854 loss_G: 0.6940 +2018-11-15 08:39:58,173 | epoch: [16/30] iter: [32/391] loss_D: 1.3859 loss_G: 0.6932 +2018-11-15 08:40:04,970 | epoch: [16/30] iter: [33/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 08:40:12,194 | epoch: [16/30] iter: [34/391] loss_D: 1.3865 loss_G: 0.6941 +2018-11-15 08:40:19,173 | epoch: [16/30] iter: [35/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 08:40:26,054 | epoch: [16/30] iter: [36/391] loss_D: 1.3860 loss_G: 0.6932 +2018-11-15 08:40:32,954 | epoch: [16/30] iter: [37/391] loss_D: 1.3857 loss_G: 0.6931 +2018-11-15 08:40:37,705 | epoch: [16/30] iter: [38/391] loss_D: 1.3848 loss_G: 0.6942 +2018-11-15 08:40:41,917 | epoch: [16/30] iter: [39/391] loss_D: 1.3842 loss_G: 0.6940 +2018-11-15 08:40:45,765 | epoch: [16/30] iter: [40/391] loss_D: 1.3844 loss_G: 0.6940 +2018-11-15 08:40:49,872 | epoch: [16/30] iter: [41/391] loss_D: 1.3850 loss_G: 0.6937 +2018-11-15 08:40:54,028 | epoch: [16/30] iter: [42/391] loss_D: 1.3848 loss_G: 0.6933 +2018-11-15 08:40:58,184 | epoch: [16/30] iter: [43/391] loss_D: 1.3844 loss_G: 0.6936 +2018-11-15 08:41:02,903 | epoch: [16/30] iter: [44/391] loss_D: 1.3842 loss_G: 0.6935 +2018-11-15 08:41:09,688 | epoch: [16/30] iter: [45/391] loss_D: 1.3852 loss_G: 0.6937 +2018-11-15 08:41:16,563 | epoch: [16/30] iter: [46/391] loss_D: 1.3858 loss_G: 0.6941 +2018-11-15 08:41:23,305 | epoch: [16/30] iter: [47/391] loss_D: 1.3864 loss_G: 0.6941 +2018-11-15 08:41:30,158 | epoch: [16/30] iter: [48/391] loss_D: 1.3839 loss_G: 0.6941 +2018-11-15 08:41:36,910 | epoch: [16/30] iter: [49/391] loss_D: 1.3868 loss_G: 0.6942 +2018-11-15 08:41:43,708 | epoch: [16/30] iter: [50/391] loss_D: 1.3880 loss_G: 0.6940 +2018-11-15 08:41:50,677 | epoch: [16/30] iter: [51/391] loss_D: 1.3854 loss_G: 0.6940 +2018-11-15 08:41:57,542 | epoch: [16/30] iter: [52/391] loss_D: 1.3873 loss_G: 0.6940 +2018-11-15 08:42:04,757 | epoch: [16/30] iter: [53/391] loss_D: 1.3878 loss_G: 0.6947 +2018-11-15 08:42:12,094 | epoch: [16/30] iter: [54/391] loss_D: 1.3882 loss_G: 0.6941 +2018-11-15 08:42:18,707 | epoch: [16/30] iter: [55/391] loss_D: 1.3877 loss_G: 0.6935 +2018-11-15 08:42:24,292 | epoch: [16/30] iter: [56/391] loss_D: 1.3889 loss_G: 0.6939 +2018-11-15 08:42:28,430 | epoch: [16/30] iter: [57/391] loss_D: 1.3868 loss_G: 0.6943 +2018-11-15 08:42:32,666 | epoch: [16/30] iter: [58/391] loss_D: 1.3884 loss_G: 0.6943 +2018-11-15 08:42:36,738 | epoch: [16/30] iter: [59/391] loss_D: 1.3869 loss_G: 0.6941 +2018-11-15 08:42:40,836 | epoch: [16/30] iter: [60/391] loss_D: 1.3871 loss_G: 0.6937 +2018-11-15 08:42:45,113 | epoch: [16/30] iter: [61/391] loss_D: 1.3866 loss_G: 0.6943 +2018-11-15 08:42:51,131 | epoch: [16/30] iter: [62/391] loss_D: 1.3868 loss_G: 0.6946 +2018-11-15 08:42:57,702 | epoch: [16/30] iter: [63/391] loss_D: 1.3861 loss_G: 0.6948 +2018-11-15 08:43:04,379 | epoch: [16/30] iter: [64/391] loss_D: 1.3866 loss_G: 0.6938 +2018-11-15 08:43:11,718 | epoch: [16/30] iter: [65/391] loss_D: 1.3863 loss_G: 0.6932 +2018-11-15 08:43:18,521 | epoch: [16/30] iter: [66/391] loss_D: 1.3864 loss_G: 0.6933 +2018-11-15 08:43:25,497 | epoch: [16/30] iter: [67/391] loss_D: 1.3854 loss_G: 0.6926 +2018-11-15 08:43:32,511 | epoch: [16/30] iter: [68/391] loss_D: 1.3863 loss_G: 0.6928 +2018-11-15 08:43:39,478 | epoch: [16/30] iter: [69/391] loss_D: 1.3855 loss_G: 0.6932 +2018-11-15 08:43:46,327 | epoch: [16/30] iter: [70/391] loss_D: 1.3862 loss_G: 0.6930 +2018-11-15 08:43:53,443 | epoch: [16/30] iter: [71/391] loss_D: 1.3850 loss_G: 0.6932 +2018-11-15 08:44:00,110 | epoch: [16/30] iter: [72/391] loss_D: 1.3864 loss_G: 0.6930 +2018-11-15 08:44:07,290 | epoch: [16/30] iter: [73/391] loss_D: 1.3851 loss_G: 0.6931 +2018-11-15 08:44:14,284 | epoch: [16/30] iter: [74/391] loss_D: 1.3861 loss_G: 0.6932 +2018-11-15 08:44:21,304 | epoch: [16/30] iter: [75/391] loss_D: 1.3861 loss_G: 0.6922 +2018-11-15 08:44:28,614 | epoch: [16/30] iter: [76/391] loss_D: 1.3855 loss_G: 0.6928 +2018-11-15 08:44:35,613 | epoch: [16/30] iter: [77/391] loss_D: 1.3868 loss_G: 0.6938 +2018-11-15 08:44:42,342 | epoch: [16/30] iter: [78/391] loss_D: 1.3862 loss_G: 0.6936 +2018-11-15 08:44:49,133 | epoch: [16/30] iter: [79/391] loss_D: 1.3878 loss_G: 0.6942 +2018-11-15 08:44:56,016 | epoch: [16/30] iter: [80/391] loss_D: 1.3862 loss_G: 0.6934 +2018-11-15 08:45:02,870 | epoch: [16/30] iter: [81/391] loss_D: 1.3864 loss_G: 0.6928 +2018-11-15 08:45:09,696 | epoch: [16/30] iter: [82/391] loss_D: 1.3876 loss_G: 0.6929 +2018-11-15 08:45:14,143 | epoch: [16/30] iter: [83/391] loss_D: 1.3882 loss_G: 0.6929 +2018-11-15 08:45:18,071 | epoch: [16/30] iter: [84/391] loss_D: 1.3867 loss_G: 0.6930 +2018-11-15 08:45:21,978 | epoch: [16/30] iter: [85/391] loss_D: 1.3869 loss_G: 0.6934 +2018-11-15 08:45:26,201 | epoch: [16/30] iter: [86/391] loss_D: 1.3876 loss_G: 0.6927 +2018-11-15 08:45:30,267 | epoch: [16/30] iter: [87/391] loss_D: 1.3870 loss_G: 0.6931 +2018-11-15 08:45:34,334 | epoch: [16/30] iter: [88/391] loss_D: 1.3868 loss_G: 0.6934 +2018-11-15 08:45:41,420 | epoch: [16/30] iter: [89/391] loss_D: 1.3871 loss_G: 0.6935 +2018-11-15 08:45:48,619 | epoch: [16/30] iter: [90/391] loss_D: 1.3856 loss_G: 0.6933 +2018-11-15 08:47:53,741 | epoch: [16/30] iter: [91/391] loss_D: 1.3873 loss_G: 0.6933 +2018-11-15 08:47:57,681 | epoch: [16/30] iter: [92/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 08:48:01,857 | epoch: [16/30] iter: [93/391] loss_D: 1.3864 loss_G: 0.6940 +2018-11-15 08:48:05,974 | epoch: [16/30] iter: [94/391] loss_D: 1.3862 loss_G: 0.6931 +2018-11-15 08:48:10,320 | epoch: [16/30] iter: [95/391] loss_D: 1.3861 loss_G: 0.6932 +2018-11-15 08:48:16,058 | epoch: [16/30] iter: [96/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-15 08:48:21,494 | epoch: [16/30] iter: [97/391] loss_D: 1.3856 loss_G: 0.6936 +2018-11-15 08:48:26,519 | epoch: [16/30] iter: [98/391] loss_D: 1.3857 loss_G: 0.6940 +2018-11-15 08:48:30,698 | epoch: [16/30] iter: [99/391] loss_D: 1.3859 loss_G: 0.6931 +2018-11-15 08:48:35,301 | epoch: [16/30] iter: [100/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 08:48:39,675 | epoch: [16/30] iter: [101/391] loss_D: 1.3855 loss_G: 0.6943 +2018-11-15 08:48:45,911 | epoch: [16/30] iter: [102/391] loss_D: 1.3860 loss_G: 0.6931 +2018-11-15 08:48:52,659 | epoch: [16/30] iter: [103/391] loss_D: 1.3867 loss_G: 0.6941 +2018-11-15 08:48:58,646 | epoch: [16/30] iter: [104/391] loss_D: 1.3871 loss_G: 0.6931 +2018-11-15 08:49:03,269 | epoch: [16/30] iter: [105/391] loss_D: 1.3856 loss_G: 0.6938 +2018-11-15 08:49:07,832 | epoch: [16/30] iter: [106/391] loss_D: 1.3860 loss_G: 0.6942 +2018-11-15 08:49:13,896 | epoch: [16/30] iter: [107/391] loss_D: 1.3864 loss_G: 0.6932 +2018-11-15 08:49:20,248 | epoch: [16/30] iter: [108/391] loss_D: 1.3863 loss_G: 0.6937 +2018-11-15 08:49:26,115 | epoch: [16/30] iter: [109/391] loss_D: 1.3856 loss_G: 0.6934 +2018-11-15 08:49:31,152 | epoch: [16/30] iter: [110/391] loss_D: 1.3863 loss_G: 0.6939 +2018-11-15 08:49:37,239 | epoch: [16/30] iter: [111/391] loss_D: 1.3857 loss_G: 0.6937 +2018-11-15 08:49:43,472 | epoch: [16/30] iter: [112/391] loss_D: 1.3861 loss_G: 0.6941 +2018-11-15 08:49:48,780 | epoch: [16/30] iter: [113/391] loss_D: 1.3869 loss_G: 0.6941 +2018-11-15 08:49:54,067 | epoch: [16/30] iter: [114/391] loss_D: 1.3869 loss_G: 0.6936 +2018-11-15 08:49:58,349 | epoch: [16/30] iter: [115/391] loss_D: 1.3860 loss_G: 0.6930 +2018-11-15 08:50:02,933 | epoch: [16/30] iter: [116/391] loss_D: 1.3860 loss_G: 0.6931 +2018-11-15 08:50:10,581 | epoch: [16/30] iter: [117/391] loss_D: 1.3864 loss_G: 0.6937 +2018-11-15 08:50:15,070 | epoch: [16/30] iter: [118/391] loss_D: 1.3860 loss_G: 0.6932 +2018-11-15 08:50:19,427 | epoch: [16/30] iter: [119/391] loss_D: 1.3860 loss_G: 0.6934 +2018-11-15 08:50:23,407 | epoch: [16/30] iter: [120/391] loss_D: 1.3861 loss_G: 0.6931 +2018-11-15 08:50:28,135 | epoch: [16/30] iter: [121/391] loss_D: 1.3869 loss_G: 0.6933 +2018-11-15 08:50:33,623 | epoch: [16/30] iter: [122/391] loss_D: 1.3853 loss_G: 0.6940 +2018-11-15 08:50:38,018 | epoch: [16/30] iter: [123/391] loss_D: 1.3850 loss_G: 0.6931 +2018-11-15 08:50:42,317 | epoch: [16/30] iter: [124/391] loss_D: 1.3852 loss_G: 0.6932 +2018-11-15 08:50:46,794 | epoch: [16/30] iter: [125/391] loss_D: 1.3851 loss_G: 0.6938 +2018-11-15 08:50:53,178 | epoch: [16/30] iter: [126/391] loss_D: 1.3867 loss_G: 0.6933 +2018-11-15 08:50:59,504 | epoch: [16/30] iter: [127/391] loss_D: 1.3872 loss_G: 0.6933 +2018-11-15 08:51:04,869 | epoch: [16/30] iter: [128/391] loss_D: 1.3874 loss_G: 0.6930 +2018-11-15 08:51:09,858 | epoch: [16/30] iter: [129/391] loss_D: 1.3861 loss_G: 0.6944 +2018-11-15 08:51:14,330 | epoch: [16/30] iter: [130/391] loss_D: 1.3847 loss_G: 0.6938 +2018-11-15 08:51:18,803 | epoch: [16/30] iter: [131/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 08:51:26,229 | epoch: [16/30] iter: [132/391] loss_D: 1.3842 loss_G: 0.6946 +2018-11-15 08:51:31,105 | epoch: [16/30] iter: [133/391] loss_D: 1.3839 loss_G: 0.6944 +2018-11-15 08:51:37,261 | epoch: [16/30] iter: [134/391] loss_D: 1.3852 loss_G: 0.6933 +2018-11-15 08:51:41,708 | epoch: [16/30] iter: [135/391] loss_D: 1.3851 loss_G: 0.6934 +2018-11-15 08:51:46,254 | epoch: [16/30] iter: [136/391] loss_D: 1.3861 loss_G: 0.6932 +2018-11-15 08:51:50,538 | epoch: [16/30] iter: [137/391] loss_D: 1.3854 loss_G: 0.6935 +2018-11-15 08:51:55,348 | epoch: [16/30] iter: [138/391] loss_D: 1.3838 loss_G: 0.6947 +2018-11-15 08:52:02,882 | epoch: [16/30] iter: [139/391] loss_D: 1.3849 loss_G: 0.6937 +2018-11-15 08:52:07,566 | epoch: [16/30] iter: [140/391] loss_D: 1.3853 loss_G: 0.6953 +2018-11-15 08:52:11,876 | epoch: [16/30] iter: [141/391] loss_D: 1.3852 loss_G: 0.6947 +2018-11-15 08:52:17,468 | epoch: [16/30] iter: [142/391] loss_D: 1.3846 loss_G: 0.6952 +2018-11-15 08:52:24,020 | epoch: [16/30] iter: [143/391] loss_D: 1.3873 loss_G: 0.6946 +2018-11-15 08:52:28,507 | epoch: [16/30] iter: [144/391] loss_D: 1.3847 loss_G: 0.6947 +2018-11-15 08:52:32,908 | epoch: [16/30] iter: [145/391] loss_D: 1.3852 loss_G: 0.6949 +2018-11-15 08:52:37,214 | epoch: [16/30] iter: [146/391] loss_D: 1.3836 loss_G: 0.6935 +2018-11-15 08:52:42,864 | epoch: [16/30] iter: [147/391] loss_D: 1.3851 loss_G: 0.6942 +2018-11-15 08:52:47,516 | epoch: [16/30] iter: [148/391] loss_D: 1.3850 loss_G: 0.6926 +2018-11-15 08:52:51,837 | epoch: [16/30] iter: [149/391] loss_D: 1.3865 loss_G: 0.6922 +2018-11-15 08:52:57,280 | epoch: [16/30] iter: [150/391] loss_D: 1.3884 loss_G: 0.6924 +2018-11-15 08:53:04,087 | epoch: [16/30] iter: [151/391] loss_D: 1.3887 loss_G: 0.6931 +2018-11-15 08:53:08,652 | epoch: [16/30] iter: [152/391] loss_D: 1.3909 loss_G: 0.6922 +2018-11-15 08:53:12,818 | epoch: [16/30] iter: [153/391] loss_D: 1.3920 loss_G: 0.6949 +2018-11-15 08:53:19,552 | epoch: [16/30] iter: [154/391] loss_D: 1.3880 loss_G: 0.6974 +2018-11-15 08:53:25,363 | epoch: [16/30] iter: [155/391] loss_D: 1.3859 loss_G: 0.6986 +2018-11-15 08:53:29,778 | epoch: [16/30] iter: [156/391] loss_D: 1.3844 loss_G: 0.6982 +2018-11-15 08:53:34,350 | epoch: [16/30] iter: [157/391] loss_D: 1.3842 loss_G: 0.6970 +2018-11-15 08:53:41,606 | epoch: [16/30] iter: [158/391] loss_D: 1.3848 loss_G: 0.6953 +2018-11-15 08:53:46,584 | epoch: [16/30] iter: [159/391] loss_D: 1.3885 loss_G: 0.6934 +2018-11-15 08:53:50,909 | epoch: [16/30] iter: [160/391] loss_D: 1.3863 loss_G: 0.6922 +2018-11-15 08:53:55,560 | epoch: [16/30] iter: [161/391] loss_D: 1.3859 loss_G: 0.6931 +2018-11-15 08:53:59,927 | epoch: [16/30] iter: [162/391] loss_D: 1.3871 loss_G: 0.6935 +2018-11-15 08:54:05,568 | epoch: [16/30] iter: [163/391] loss_D: 1.3853 loss_G: 0.6938 +2018-11-15 08:54:11,946 | epoch: [16/30] iter: [164/391] loss_D: 1.3852 loss_G: 0.6940 +2018-11-15 08:54:17,714 | epoch: [16/30] iter: [165/391] loss_D: 1.3854 loss_G: 0.6961 +2018-11-15 08:54:22,693 | epoch: [16/30] iter: [166/391] loss_D: 1.3834 loss_G: 0.6975 +2018-11-15 08:54:28,719 | epoch: [16/30] iter: [167/391] loss_D: 1.3845 loss_G: 0.6984 +2018-11-15 08:54:34,779 | epoch: [16/30] iter: [168/391] loss_D: 1.3864 loss_G: 0.6964 +2018-11-15 08:54:39,452 | epoch: [16/30] iter: [169/391] loss_D: 1.3838 loss_G: 0.6957 +2018-11-15 08:54:45,220 | epoch: [16/30] iter: [170/391] loss_D: 1.3863 loss_G: 0.6940 +2018-11-15 08:54:51,266 | epoch: [16/30] iter: [171/391] loss_D: 1.3893 loss_G: 0.6903 +2018-11-15 08:54:55,605 | epoch: [16/30] iter: [172/391] loss_D: 1.3890 loss_G: 0.6908 +2018-11-15 08:55:00,049 | epoch: [16/30] iter: [173/391] loss_D: 1.3885 loss_G: 0.6894 +2018-11-15 08:55:04,726 | epoch: [16/30] iter: [174/391] loss_D: 1.3895 loss_G: 0.6907 +2018-11-15 08:55:09,088 | epoch: [16/30] iter: [175/391] loss_D: 1.3886 loss_G: 0.6913 +2018-11-15 08:55:15,434 | epoch: [16/30] iter: [176/391] loss_D: 1.3890 loss_G: 0.6909 +2018-11-15 08:55:21,396 | epoch: [16/30] iter: [177/391] loss_D: 1.3898 loss_G: 0.6918 +2018-11-15 08:55:25,921 | epoch: [16/30] iter: [178/391] loss_D: 1.3865 loss_G: 0.6925 +2018-11-15 08:55:30,497 | epoch: [16/30] iter: [179/391] loss_D: 1.3867 loss_G: 0.6938 +2018-11-15 08:55:34,852 | epoch: [16/30] iter: [180/391] loss_D: 1.3857 loss_G: 0.6933 +2018-11-15 08:55:39,616 | epoch: [16/30] iter: [181/391] loss_D: 1.3858 loss_G: 0.6936 +2018-11-15 08:55:43,776 | epoch: [16/30] iter: [182/391] loss_D: 1.3857 loss_G: 0.6934 +2018-11-15 08:55:48,420 | epoch: [16/30] iter: [183/391] loss_D: 1.3852 loss_G: 0.6934 +2018-11-15 08:55:52,807 | epoch: [16/30] iter: [184/391] loss_D: 1.3848 loss_G: 0.6926 +2018-11-15 08:55:59,125 | epoch: [16/30] iter: [185/391] loss_D: 1.3861 loss_G: 0.6925 +2018-11-15 08:56:05,322 | epoch: [16/30] iter: [186/391] loss_D: 1.3875 loss_G: 0.6937 +2018-11-15 08:56:11,246 | epoch: [16/30] iter: [187/391] loss_D: 1.3859 loss_G: 0.6934 +2018-11-15 08:56:15,659 | epoch: [16/30] iter: [188/391] loss_D: 1.3863 loss_G: 0.6930 +2018-11-15 08:56:20,087 | epoch: [16/30] iter: [189/391] loss_D: 1.3879 loss_G: 0.6933 +2018-11-15 08:56:26,143 | epoch: [16/30] iter: [190/391] loss_D: 1.3876 loss_G: 0.6928 +2018-11-15 08:58:22,412 | epoch: [16/30] iter: [191/391] loss_D: 1.3873 loss_G: 0.6942 +2018-11-15 08:58:26,551 | epoch: [16/30] iter: [192/391] loss_D: 1.3868 loss_G: 0.6938 +2018-11-15 08:58:30,816 | epoch: [16/30] iter: [193/391] loss_D: 1.3875 loss_G: 0.6946 +2018-11-15 08:58:37,045 | epoch: [16/30] iter: [194/391] loss_D: 1.3869 loss_G: 0.6942 +2018-11-15 08:58:42,850 | epoch: [16/30] iter: [195/391] loss_D: 1.3854 loss_G: 0.6953 +2018-11-15 08:58:47,746 | epoch: [16/30] iter: [196/391] loss_D: 1.3845 loss_G: 0.6946 +2018-11-15 08:58:53,755 | epoch: [16/30] iter: [197/391] loss_D: 1.3861 loss_G: 0.6930 +2018-11-15 08:58:59,867 | epoch: [16/30] iter: [198/391] loss_D: 1.3861 loss_G: 0.6925 +2018-11-15 08:59:05,078 | epoch: [16/30] iter: [199/391] loss_D: 1.3853 loss_G: 0.6933 +2018-11-15 08:59:10,433 | epoch: [16/30] iter: [200/391] loss_D: 1.3872 loss_G: 0.6927 +2018-11-15 08:59:14,731 | epoch: [16/30] iter: [201/391] loss_D: 1.3859 loss_G: 0.6943 +2018-11-15 08:59:19,197 | epoch: [16/30] iter: [202/391] loss_D: 1.3861 loss_G: 0.6941 +2018-11-15 08:59:26,527 | epoch: [16/30] iter: [203/391] loss_D: 1.3871 loss_G: 0.6941 +2018-11-15 08:59:31,602 | epoch: [16/30] iter: [204/391] loss_D: 1.3857 loss_G: 0.6947 +2018-11-15 08:59:37,285 | epoch: [16/30] iter: [205/391] loss_D: 1.3852 loss_G: 0.6932 +2018-11-15 08:59:43,162 | epoch: [16/30] iter: [206/391] loss_D: 1.3855 loss_G: 0.6929 +2018-11-15 08:59:47,941 | epoch: [16/30] iter: [207/391] loss_D: 1.3871 loss_G: 0.6938 +2018-11-15 08:59:52,413 | epoch: [16/30] iter: [208/391] loss_D: 1.3855 loss_G: 0.6941 +2018-11-15 08:59:56,994 | epoch: [16/30] iter: [209/391] loss_D: 1.3855 loss_G: 0.6947 +2018-11-15 09:00:01,362 | epoch: [16/30] iter: [210/391] loss_D: 1.3861 loss_G: 0.6941 +2018-11-15 09:00:07,318 | epoch: [16/30] iter: [211/391] loss_D: 1.3871 loss_G: 0.6939 +2018-11-15 09:00:13,492 | epoch: [16/30] iter: [212/391] loss_D: 1.3866 loss_G: 0.6952 +2018-11-15 09:00:17,977 | epoch: [16/30] iter: [213/391] loss_D: 1.3859 loss_G: 0.6939 +2018-11-15 09:00:22,554 | epoch: [16/30] iter: [214/391] loss_D: 1.3868 loss_G: 0.6936 +2018-11-15 09:00:26,675 | epoch: [16/30] iter: [215/391] loss_D: 1.3866 loss_G: 0.6939 +2018-11-15 09:00:30,699 | epoch: [16/30] iter: [216/391] loss_D: 1.3871 loss_G: 0.6944 +2018-11-15 09:00:34,922 | epoch: [16/30] iter: [217/391] loss_D: 1.3870 loss_G: 0.6945 +2018-11-15 09:00:41,029 | epoch: [16/30] iter: [218/391] loss_D: 1.3878 loss_G: 0.6939 +2018-11-15 09:00:46,512 | epoch: [16/30] iter: [219/391] loss_D: 1.3868 loss_G: 0.6933 +2018-11-15 09:00:51,861 | epoch: [16/30] iter: [220/391] loss_D: 1.3870 loss_G: 0.6927 +2018-11-15 09:00:57,440 | epoch: [16/30] iter: [221/391] loss_D: 1.3869 loss_G: 0.6929 +2018-11-15 09:01:01,792 | epoch: [16/30] iter: [222/391] loss_D: 1.3874 loss_G: 0.6932 +2018-11-15 09:01:06,249 | epoch: [16/30] iter: [223/391] loss_D: 1.3857 loss_G: 0.6928 +2018-11-15 09:01:13,586 | epoch: [16/30] iter: [224/391] loss_D: 1.3872 loss_G: 0.6932 +2018-11-15 09:01:18,964 | epoch: [16/30] iter: [225/391] loss_D: 1.3867 loss_G: 0.6933 +2018-11-15 09:01:25,070 | epoch: [16/30] iter: [226/391] loss_D: 1.3869 loss_G: 0.6939 +2018-11-15 09:01:29,692 | epoch: [16/30] iter: [227/391] loss_D: 1.3849 loss_G: 0.6943 +2018-11-15 09:01:34,421 | epoch: [16/30] iter: [228/391] loss_D: 1.3860 loss_G: 0.6937 +2018-11-15 09:01:38,876 | epoch: [16/30] iter: [229/391] loss_D: 1.3851 loss_G: 0.6935 +2018-11-15 09:01:43,873 | epoch: [16/30] iter: [230/391] loss_D: 1.3856 loss_G: 0.6940 +2018-11-15 09:01:51,066 | epoch: [16/30] iter: [231/391] loss_D: 1.3863 loss_G: 0.6943 +2018-11-15 09:01:56,161 | epoch: [16/30] iter: [232/391] loss_D: 1.3859 loss_G: 0.6933 +2018-11-15 09:02:00,410 | epoch: [16/30] iter: [233/391] loss_D: 1.3852 loss_G: 0.6934 +2018-11-15 09:02:06,340 | epoch: [16/30] iter: [234/391] loss_D: 1.3847 loss_G: 0.6944 +2018-11-15 09:02:12,878 | epoch: [16/30] iter: [235/391] loss_D: 1.3864 loss_G: 0.6936 +2018-11-15 09:02:17,183 | epoch: [16/30] iter: [236/391] loss_D: 1.3848 loss_G: 0.6941 +2018-11-15 09:02:21,714 | epoch: [16/30] iter: [237/391] loss_D: 1.3866 loss_G: 0.6930 +2018-11-15 09:02:28,307 | epoch: [16/30] iter: [238/391] loss_D: 1.3855 loss_G: 0.6929 +2018-11-15 09:02:34,021 | epoch: [16/30] iter: [239/391] loss_D: 1.3834 loss_G: 0.6925 +2018-11-15 09:02:40,254 | epoch: [16/30] iter: [240/391] loss_D: 1.3855 loss_G: 0.6926 +2018-11-15 09:02:44,651 | epoch: [16/30] iter: [241/391] loss_D: 1.3844 loss_G: 0.6933 +2018-11-15 09:02:48,770 | epoch: [16/30] iter: [242/391] loss_D: 1.3858 loss_G: 0.6928 +2018-11-15 09:02:54,563 | epoch: [16/30] iter: [243/391] loss_D: 1.3860 loss_G: 0.6922 +2018-11-15 09:03:00,936 | epoch: [16/30] iter: [244/391] loss_D: 1.3862 loss_G: 0.6918 +2018-11-15 09:03:06,354 | epoch: [16/30] iter: [245/391] loss_D: 1.3872 loss_G: 0.6951 +2018-11-15 09:03:11,347 | epoch: [16/30] iter: [246/391] loss_D: 1.3846 loss_G: 0.6935 +2018-11-15 09:03:17,338 | epoch: [16/30] iter: [247/391] loss_D: 1.3846 loss_G: 0.6942 +2018-11-15 09:03:23,351 | epoch: [16/30] iter: [248/391] loss_D: 1.3861 loss_G: 0.6944 +2018-11-15 09:03:28,055 | epoch: [16/30] iter: [249/391] loss_D: 1.3868 loss_G: 0.6940 +2018-11-15 09:03:32,508 | epoch: [16/30] iter: [250/391] loss_D: 1.3859 loss_G: 0.6950 +2018-11-15 09:03:37,933 | epoch: [16/30] iter: [251/391] loss_D: 1.3883 loss_G: 0.6947 +2018-11-15 09:03:45,019 | epoch: [16/30] iter: [252/391] loss_D: 1.3858 loss_G: 0.6945 +2018-11-15 09:03:49,503 | epoch: [16/30] iter: [253/391] loss_D: 1.3840 loss_G: 0.6938 +2018-11-15 09:03:53,935 | epoch: [16/30] iter: [254/391] loss_D: 1.3848 loss_G: 0.6946 +2018-11-15 09:04:00,403 | epoch: [16/30] iter: [255/391] loss_D: 1.3859 loss_G: 0.6941 +2018-11-15 09:04:06,323 | epoch: [16/30] iter: [256/391] loss_D: 1.3857 loss_G: 0.6950 +2018-11-15 09:04:10,740 | epoch: [16/30] iter: [257/391] loss_D: 1.3881 loss_G: 0.6934 +2018-11-15 09:04:15,180 | epoch: [16/30] iter: [258/391] loss_D: 1.3885 loss_G: 0.6926 +2018-11-15 09:04:22,627 | epoch: [16/30] iter: [259/391] loss_D: 1.3925 loss_G: 0.6914 +2018-11-15 09:04:27,766 | epoch: [16/30] iter: [260/391] loss_D: 1.3882 loss_G: 0.6950 +2018-11-15 09:04:31,985 | epoch: [16/30] iter: [261/391] loss_D: 1.3874 loss_G: 0.6956 +2018-11-15 09:04:37,384 | epoch: [16/30] iter: [262/391] loss_D: 1.3880 loss_G: 0.6964 +2018-11-15 09:04:44,382 | epoch: [16/30] iter: [263/391] loss_D: 1.3874 loss_G: 0.6957 +2018-11-15 09:04:49,641 | epoch: [16/30] iter: [264/391] loss_D: 1.3868 loss_G: 0.6942 +2018-11-15 09:04:54,875 | epoch: [16/30] iter: [265/391] loss_D: 1.3861 loss_G: 0.6932 +2018-11-15 09:04:59,173 | epoch: [16/30] iter: [266/391] loss_D: 1.3863 loss_G: 0.6937 +2018-11-15 09:05:03,862 | epoch: [16/30] iter: [267/391] loss_D: 1.3861 loss_G: 0.6933 +2018-11-15 09:05:11,685 | epoch: [16/30] iter: [268/391] loss_D: 1.3857 loss_G: 0.6943 +2018-11-15 09:05:16,065 | epoch: [16/30] iter: [269/391] loss_D: 1.3851 loss_G: 0.6948 +2018-11-15 09:05:20,564 | epoch: [16/30] iter: [270/391] loss_D: 1.3861 loss_G: 0.6965 +2018-11-15 09:05:25,107 | epoch: [16/30] iter: [271/391] loss_D: 1.3850 loss_G: 0.6962 +2018-11-15 09:05:29,675 | epoch: [16/30] iter: [272/391] loss_D: 1.3852 loss_G: 0.6974 +2018-11-15 09:05:36,057 | epoch: [16/30] iter: [273/391] loss_D: 1.3847 loss_G: 0.6966 +2018-11-15 09:05:41,579 | epoch: [16/30] iter: [274/391] loss_D: 1.3838 loss_G: 0.6967 +2018-11-15 09:05:47,572 | epoch: [16/30] iter: [275/391] loss_D: 1.3847 loss_G: 0.6942 +2018-11-15 09:05:52,287 | epoch: [16/30] iter: [276/391] loss_D: 1.3831 loss_G: 0.6940 +2018-11-15 09:05:56,415 | epoch: [16/30] iter: [277/391] loss_D: 1.3865 loss_G: 0.6937 +2018-11-15 09:06:02,104 | epoch: [16/30] iter: [278/391] loss_D: 1.3892 loss_G: 0.6915 +2018-11-15 09:06:08,681 | epoch: [16/30] iter: [279/391] loss_D: 1.3881 loss_G: 0.6896 +2018-11-15 09:06:13,818 | epoch: [16/30] iter: [280/391] loss_D: 1.3877 loss_G: 0.6904 +2018-11-15 09:06:19,187 | epoch: [16/30] iter: [281/391] loss_D: 1.3869 loss_G: 0.6924 +2018-11-15 09:06:23,411 | epoch: [16/30] iter: [282/391] loss_D: 1.3895 loss_G: 0.6917 +2018-11-15 09:06:28,109 | epoch: [16/30] iter: [283/391] loss_D: 1.3919 loss_G: 0.6930 +2018-11-15 09:06:35,611 | epoch: [16/30] iter: [284/391] loss_D: 1.3908 loss_G: 0.6917 +2018-11-15 09:06:40,299 | epoch: [16/30] iter: [285/391] loss_D: 1.3883 loss_G: 0.6934 +2018-11-15 09:06:45,891 | epoch: [16/30] iter: [286/391] loss_D: 1.3881 loss_G: 0.6942 +2018-11-15 09:06:52,073 | epoch: [16/30] iter: [287/391] loss_D: 1.3896 loss_G: 0.6930 +2018-11-15 09:06:57,449 | epoch: [16/30] iter: [288/391] loss_D: 1.3889 loss_G: 0.6954 +2018-11-15 09:07:02,519 | epoch: [16/30] iter: [289/391] loss_D: 1.3859 loss_G: 0.6954 +2018-11-15 09:07:06,799 | epoch: [16/30] iter: [290/391] loss_D: 1.3860 loss_G: 0.6957 +2018-11-15 09:08:57,157 | epoch: [16/30] iter: [291/391] loss_D: 1.3868 loss_G: 0.6952 +2018-11-15 09:09:03,973 | epoch: [16/30] iter: [292/391] loss_D: 1.3869 loss_G: 0.6942 +2018-11-15 09:09:11,098 | epoch: [16/30] iter: [293/391] loss_D: 1.3863 loss_G: 0.6932 +2018-11-15 09:09:17,894 | epoch: [16/30] iter: [294/391] loss_D: 1.3875 loss_G: 0.6924 +2018-11-15 09:09:24,692 | epoch: [16/30] iter: [295/391] loss_D: 1.3877 loss_G: 0.6931 +2018-11-15 09:09:31,671 | epoch: [16/30] iter: [296/391] loss_D: 1.3869 loss_G: 0.6934 +2018-11-15 09:09:38,830 | epoch: [16/30] iter: [297/391] loss_D: 1.3868 loss_G: 0.6934 +2018-11-15 09:09:45,801 | epoch: [16/30] iter: [298/391] loss_D: 1.3875 loss_G: 0.6929 +2018-11-15 09:09:52,935 | epoch: [16/30] iter: [299/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 09:10:00,562 | epoch: [16/30] iter: [300/391] loss_D: 1.3874 loss_G: 0.6933 +2018-11-15 09:10:07,695 | epoch: [16/30] iter: [301/391] loss_D: 1.3859 loss_G: 0.6934 +2018-11-15 09:10:14,883 | epoch: [16/30] iter: [302/391] loss_D: 1.3864 loss_G: 0.6938 +2018-11-15 09:10:21,737 | epoch: [16/30] iter: [303/391] loss_D: 1.3862 loss_G: 0.6937 +2018-11-15 09:10:29,203 | epoch: [16/30] iter: [304/391] loss_D: 1.3850 loss_G: 0.6939 +2018-11-15 09:10:36,071 | epoch: [16/30] iter: [305/391] loss_D: 1.3857 loss_G: 0.6940 +2018-11-15 09:10:43,279 | epoch: [16/30] iter: [306/391] loss_D: 1.3858 loss_G: 0.6943 +2018-11-15 09:10:49,526 | epoch: [16/30] iter: [307/391] loss_D: 1.3850 loss_G: 0.6938 +2018-11-15 09:10:53,818 | epoch: [16/30] iter: [308/391] loss_D: 1.3851 loss_G: 0.6939 +2018-11-15 09:10:58,048 | epoch: [16/30] iter: [309/391] loss_D: 1.3847 loss_G: 0.6932 +2018-11-15 09:11:02,206 | epoch: [16/30] iter: [310/391] loss_D: 1.3848 loss_G: 0.6934 +2018-11-15 09:11:06,179 | epoch: [16/30] iter: [311/391] loss_D: 1.3850 loss_G: 0.6939 +2018-11-15 09:11:10,251 | epoch: [16/30] iter: [312/391] loss_D: 1.3852 loss_G: 0.6937 +2018-11-15 09:11:16,038 | epoch: [16/30] iter: [313/391] loss_D: 1.3855 loss_G: 0.6935 +2018-11-15 09:11:23,072 | epoch: [16/30] iter: [314/391] loss_D: 1.3857 loss_G: 0.6937 +2018-11-15 09:11:29,976 | epoch: [16/30] iter: [315/391] loss_D: 1.3845 loss_G: 0.6935 +2018-11-15 09:11:36,827 | epoch: [16/30] iter: [316/391] loss_D: 1.3851 loss_G: 0.6936 +2018-11-15 09:11:44,023 | epoch: [16/30] iter: [317/391] loss_D: 1.3851 loss_G: 0.6944 +2018-11-15 09:11:50,723 | epoch: [16/30] iter: [318/391] loss_D: 1.3838 loss_G: 0.6940 +2018-11-15 09:11:57,754 | epoch: [16/30] iter: [319/391] loss_D: 1.3845 loss_G: 0.6936 +2018-11-15 09:12:04,821 | epoch: [16/30] iter: [320/391] loss_D: 1.3846 loss_G: 0.6943 +2018-11-15 09:12:11,924 | epoch: [16/30] iter: [321/391] loss_D: 1.3835 loss_G: 0.6940 +2018-11-15 09:12:18,785 | epoch: [16/30] iter: [322/391] loss_D: 1.3828 loss_G: 0.6945 +2018-11-15 09:12:25,764 | epoch: [16/30] iter: [323/391] loss_D: 1.3822 loss_G: 0.6944 +2018-11-15 09:12:32,828 | epoch: [16/30] iter: [324/391] loss_D: 1.3841 loss_G: 0.6941 +2018-11-15 09:12:39,932 | epoch: [16/30] iter: [325/391] loss_D: 1.3854 loss_G: 0.6933 +2018-11-15 09:12:47,071 | epoch: [16/30] iter: [326/391] loss_D: 1.3836 loss_G: 0.6928 +2018-11-15 09:12:51,676 | epoch: [16/30] iter: [327/391] loss_D: 1.3859 loss_G: 0.6935 +2018-11-15 09:12:55,765 | epoch: [16/30] iter: [328/391] loss_D: 1.3880 loss_G: 0.6922 +2018-11-15 09:13:00,025 | epoch: [16/30] iter: [329/391] loss_D: 1.3891 loss_G: 0.6924 +2018-11-15 09:13:03,927 | epoch: [16/30] iter: [330/391] loss_D: 1.3892 loss_G: 0.6941 +2018-11-15 09:13:08,103 | epoch: [16/30] iter: [331/391] loss_D: 1.3891 loss_G: 0.6936 +2018-11-15 09:13:13,006 | epoch: [16/30] iter: [332/391] loss_D: 1.3894 loss_G: 0.6950 +2018-11-15 09:13:20,196 | epoch: [16/30] iter: [333/391] loss_D: 1.3894 loss_G: 0.6947 +2018-11-15 09:13:27,198 | epoch: [16/30] iter: [334/391] loss_D: 1.3880 loss_G: 0.6953 +2018-11-15 09:13:33,857 | epoch: [16/30] iter: [335/391] loss_D: 1.3891 loss_G: 0.6939 +2018-11-15 09:13:40,982 | epoch: [16/30] iter: [336/391] loss_D: 1.3873 loss_G: 0.6935 +2018-11-15 09:13:48,211 | epoch: [16/30] iter: [337/391] loss_D: 1.3890 loss_G: 0.6933 +2018-11-15 09:13:55,063 | epoch: [16/30] iter: [338/391] loss_D: 1.3871 loss_G: 0.6952 +2018-11-15 09:14:02,395 | epoch: [16/30] iter: [339/391] loss_D: 1.3873 loss_G: 0.6949 +2018-11-15 09:14:09,357 | epoch: [16/30] iter: [340/391] loss_D: 1.3849 loss_G: 0.6958 +2018-11-15 09:14:16,379 | epoch: [16/30] iter: [341/391] loss_D: 1.3840 loss_G: 0.6981 +2018-11-15 09:14:23,374 | epoch: [16/30] iter: [342/391] loss_D: 1.3817 loss_G: 0.6992 +2018-11-15 09:14:30,389 | epoch: [16/30] iter: [343/391] loss_D: 1.3839 loss_G: 0.6994 +2018-11-15 09:14:36,710 | epoch: [16/30] iter: [344/391] loss_D: 1.3865 loss_G: 0.6964 +2018-11-15 09:14:40,805 | epoch: [16/30] iter: [345/391] loss_D: 1.3848 loss_G: 0.6957 +2018-11-15 09:14:45,065 | epoch: [16/30] iter: [346/391] loss_D: 1.3858 loss_G: 0.6931 +2018-11-15 09:14:49,113 | epoch: [16/30] iter: [347/391] loss_D: 1.3885 loss_G: 0.6907 +2018-11-15 09:14:53,088 | epoch: [16/30] iter: [348/391] loss_D: 1.3885 loss_G: 0.6896 +2018-11-15 09:14:57,233 | epoch: [16/30] iter: [349/391] loss_D: 1.3907 loss_G: 0.6905 +2018-11-15 09:15:02,677 | epoch: [16/30] iter: [350/391] loss_D: 1.3888 loss_G: 0.6898 +2018-11-15 09:15:09,916 | epoch: [16/30] iter: [351/391] loss_D: 1.3874 loss_G: 0.6906 +2018-11-15 09:15:16,657 | epoch: [16/30] iter: [352/391] loss_D: 1.3891 loss_G: 0.6914 +2018-11-15 09:15:23,299 | epoch: [16/30] iter: [353/391] loss_D: 1.3911 loss_G: 0.6905 +2018-11-15 09:15:30,591 | epoch: [16/30] iter: [354/391] loss_D: 1.3876 loss_G: 0.6932 +2018-11-15 09:15:37,515 | epoch: [16/30] iter: [355/391] loss_D: 1.3879 loss_G: 0.6949 +2018-11-15 09:15:44,650 | epoch: [16/30] iter: [356/391] loss_D: 1.3903 loss_G: 0.6944 +2018-11-15 09:15:51,522 | epoch: [16/30] iter: [357/391] loss_D: 1.3880 loss_G: 0.6960 +2018-11-15 09:15:58,986 | epoch: [16/30] iter: [358/391] loss_D: 1.3866 loss_G: 0.6940 +2018-11-15 09:16:03,908 | epoch: [16/30] iter: [359/391] loss_D: 1.3879 loss_G: 0.6943 +2018-11-15 09:16:08,077 | epoch: [16/30] iter: [360/391] loss_D: 1.3868 loss_G: 0.6943 +2018-11-15 09:16:12,245 | epoch: [16/30] iter: [361/391] loss_D: 1.3876 loss_G: 0.6944 +2018-11-15 09:16:16,376 | epoch: [16/30] iter: [362/391] loss_D: 1.3861 loss_G: 0.6952 +2018-11-15 09:16:20,348 | epoch: [16/30] iter: [363/391] loss_D: 1.3851 loss_G: 0.6934 +2018-11-15 09:16:24,785 | epoch: [16/30] iter: [364/391] loss_D: 1.3855 loss_G: 0.6941 +2018-11-15 09:16:32,095 | epoch: [16/30] iter: [365/391] loss_D: 1.3858 loss_G: 0.6935 +2018-11-15 09:16:39,487 | epoch: [16/30] iter: [366/391] loss_D: 1.3857 loss_G: 0.6939 +2018-11-15 09:16:46,435 | epoch: [16/30] iter: [367/391] loss_D: 1.3851 loss_G: 0.6932 +2018-11-15 09:16:53,527 | epoch: [16/30] iter: [368/391] loss_D: 1.3853 loss_G: 0.6939 +2018-11-15 09:17:00,578 | epoch: [16/30] iter: [369/391] loss_D: 1.3856 loss_G: 0.6944 +2018-11-15 09:17:07,434 | epoch: [16/30] iter: [370/391] loss_D: 1.3854 loss_G: 0.6939 +2018-11-15 09:17:14,282 | epoch: [16/30] iter: [371/391] loss_D: 1.3852 loss_G: 0.6941 +2018-11-15 09:17:21,502 | epoch: [16/30] iter: [372/391] loss_D: 1.3852 loss_G: 0.6942 +2018-11-15 09:17:28,421 | epoch: [16/30] iter: [373/391] loss_D: 1.3844 loss_G: 0.6953 +2018-11-15 09:17:35,079 | epoch: [16/30] iter: [374/391] loss_D: 1.3845 loss_G: 0.6937 +2018-11-15 09:17:39,921 | epoch: [16/30] iter: [375/391] loss_D: 1.3844 loss_G: 0.6935 +2018-11-15 09:17:44,004 | epoch: [16/30] iter: [376/391] loss_D: 1.3850 loss_G: 0.6937 +2018-11-15 09:17:48,162 | epoch: [16/30] iter: [377/391] loss_D: 1.3833 loss_G: 0.6940 +2018-11-15 09:17:52,020 | epoch: [16/30] iter: [378/391] loss_D: 1.3850 loss_G: 0.6941 +2018-11-15 09:17:56,197 | epoch: [16/30] iter: [379/391] loss_D: 1.3865 loss_G: 0.6931 +2018-11-15 09:18:00,325 | epoch: [16/30] iter: [380/391] loss_D: 1.3839 loss_G: 0.6954 +2018-11-15 09:18:04,376 | epoch: [16/30] iter: [381/391] loss_D: 1.3845 loss_G: 0.6945 +2018-11-15 09:18:08,482 | epoch: [16/30] iter: [382/391] loss_D: 1.3839 loss_G: 0.6936 +2018-11-15 09:18:13,049 | epoch: [16/30] iter: [383/391] loss_D: 1.3859 loss_G: 0.6955 +2018-11-15 09:18:19,953 | epoch: [16/30] iter: [384/391] loss_D: 1.3845 loss_G: 0.6939 +2018-11-15 09:18:26,670 | epoch: [16/30] iter: [385/391] loss_D: 1.3852 loss_G: 0.6947 +2018-11-15 09:18:33,350 | epoch: [16/30] iter: [386/391] loss_D: 1.3840 loss_G: 0.6944 +2018-11-15 09:18:40,365 | epoch: [16/30] iter: [387/391] loss_D: 1.3873 loss_G: 0.6933 +2018-11-15 09:18:47,231 | epoch: [16/30] iter: [388/391] loss_D: 1.3899 loss_G: 0.6926 +2018-11-15 09:18:53,774 | epoch: [16/30] iter: [389/391] loss_D: 1.3862 loss_G: 0.6918 +2018-11-15 09:18:58,207 | epoch: [16/30] iter: [390/391] loss_D: 1.3896 loss_G: 0.6924 +2018-11-15 09:20:53,069 | epoch: [17/30] iter: [0/391] loss_D: 1.3880 loss_G: 0.6915 +2018-11-15 09:20:57,118 | epoch: [17/30] iter: [1/391] loss_D: 1.3890 loss_G: 0.6931 +2018-11-15 09:21:01,305 | epoch: [17/30] iter: [2/391] loss_D: 1.3867 loss_G: 0.6941 +2018-11-15 09:21:05,206 | epoch: [17/30] iter: [3/391] loss_D: 1.3891 loss_G: 0.6931 +2018-11-15 09:21:09,820 | epoch: [17/30] iter: [4/391] loss_D: 1.3876 loss_G: 0.6935 +2018-11-15 09:21:17,449 | epoch: [17/30] iter: [5/391] loss_D: 1.3882 loss_G: 0.6932 +2018-11-15 09:21:24,123 | epoch: [17/30] iter: [6/391] loss_D: 1.3879 loss_G: 0.6922 +2018-11-15 09:21:31,054 | epoch: [17/30] iter: [7/391] loss_D: 1.3895 loss_G: 0.6916 +2018-11-15 09:21:38,366 | epoch: [17/30] iter: [8/391] loss_D: 1.3867 loss_G: 0.6928 +2018-11-15 09:21:45,446 | epoch: [17/30] iter: [9/391] loss_D: 1.3889 loss_G: 0.6951 +2018-11-15 09:21:52,381 | epoch: [17/30] iter: [10/391] loss_D: 1.3875 loss_G: 0.6940 +2018-11-15 09:21:59,458 | epoch: [17/30] iter: [11/391] loss_D: 1.3872 loss_G: 0.6951 +2018-11-15 09:22:06,083 | epoch: [17/30] iter: [12/391] loss_D: 1.3893 loss_G: 0.6944 +2018-11-15 09:22:13,330 | epoch: [17/30] iter: [13/391] loss_D: 1.3884 loss_G: 0.6950 +2018-11-15 09:22:20,307 | epoch: [17/30] iter: [14/391] loss_D: 1.3873 loss_G: 0.6945 +2018-11-15 09:22:27,467 | epoch: [17/30] iter: [15/391] loss_D: 1.3854 loss_G: 0.6951 +2018-11-15 09:22:34,438 | epoch: [17/30] iter: [16/391] loss_D: 1.3865 loss_G: 0.6946 +2018-11-15 09:22:41,071 | epoch: [17/30] iter: [17/391] loss_D: 1.3857 loss_G: 0.6943 +2018-11-15 09:22:48,107 | epoch: [17/30] iter: [18/391] loss_D: 1.3858 loss_G: 0.6941 +2018-11-15 09:22:54,880 | epoch: [17/30] iter: [19/391] loss_D: 1.3874 loss_G: 0.6943 +2018-11-15 09:23:01,761 | epoch: [17/30] iter: [20/391] loss_D: 1.3850 loss_G: 0.6953 +2018-11-15 09:23:09,041 | epoch: [17/30] iter: [21/391] loss_D: 1.3852 loss_G: 0.6944 +2018-11-15 09:23:16,048 | epoch: [17/30] iter: [22/391] loss_D: 1.3840 loss_G: 0.6963 +2018-11-15 09:23:20,737 | epoch: [17/30] iter: [23/391] loss_D: 1.3864 loss_G: 0.6974 +2018-11-15 09:23:24,840 | epoch: [17/30] iter: [24/391] loss_D: 1.3864 loss_G: 0.6967 +2018-11-15 09:23:28,909 | epoch: [17/30] iter: [25/391] loss_D: 1.3858 loss_G: 0.6950 +2018-11-15 09:23:33,023 | epoch: [17/30] iter: [26/391] loss_D: 1.3882 loss_G: 0.6924 +2018-11-15 09:23:37,355 | epoch: [17/30] iter: [27/391] loss_D: 1.3867 loss_G: 0.6920 +2018-11-15 09:23:41,210 | epoch: [17/30] iter: [28/391] loss_D: 1.3889 loss_G: 0.6920 +2018-11-15 09:23:45,235 | epoch: [17/30] iter: [29/391] loss_D: 1.3870 loss_G: 0.6910 +2018-11-15 09:23:49,319 | epoch: [17/30] iter: [30/391] loss_D: 1.3868 loss_G: 0.6915 +2018-11-15 09:23:53,244 | epoch: [17/30] iter: [31/391] loss_D: 1.3883 loss_G: 0.6922 +2018-11-15 09:23:57,674 | epoch: [17/30] iter: [32/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 09:24:04,869 | epoch: [17/30] iter: [33/391] loss_D: 1.3847 loss_G: 0.6935 +2018-11-15 09:24:12,211 | epoch: [17/30] iter: [34/391] loss_D: 1.3852 loss_G: 0.6927 +2018-11-15 09:24:19,427 | epoch: [17/30] iter: [35/391] loss_D: 1.3855 loss_G: 0.6937 +2018-11-15 09:24:26,787 | epoch: [17/30] iter: [36/391] loss_D: 1.3824 loss_G: 0.6945 +2018-11-15 09:24:33,770 | epoch: [17/30] iter: [37/391] loss_D: 1.3836 loss_G: 0.6941 +2018-11-15 09:24:40,559 | epoch: [17/30] iter: [38/391] loss_D: 1.3866 loss_G: 0.6911 +2018-11-15 09:24:47,270 | epoch: [17/30] iter: [39/391] loss_D: 1.3858 loss_G: 0.6938 +2018-11-15 09:24:54,466 | epoch: [17/30] iter: [40/391] loss_D: 1.3847 loss_G: 0.6929 +2018-11-15 09:25:01,514 | epoch: [17/30] iter: [41/391] loss_D: 1.3879 loss_G: 0.6930 +2018-11-15 09:25:08,398 | epoch: [17/30] iter: [42/391] loss_D: 1.3888 loss_G: 0.6919 +2018-11-15 09:25:15,351 | epoch: [17/30] iter: [43/391] loss_D: 1.3900 loss_G: 0.6943 +2018-11-15 09:25:22,009 | epoch: [17/30] iter: [44/391] loss_D: 1.3873 loss_G: 0.6938 +2018-11-15 09:25:28,742 | epoch: [17/30] iter: [45/391] loss_D: 1.3901 loss_G: 0.6954 +2018-11-15 09:25:35,829 | epoch: [17/30] iter: [46/391] loss_D: 1.3921 loss_G: 0.6973 +2018-11-15 09:25:40,716 | epoch: [17/30] iter: [47/391] loss_D: 1.3881 loss_G: 0.6975 +2018-11-15 09:25:44,685 | epoch: [17/30] iter: [48/391] loss_D: 1.3873 loss_G: 0.6962 +2018-11-15 09:25:48,613 | epoch: [17/30] iter: [49/391] loss_D: 1.3875 loss_G: 0.6954 +2018-11-15 09:25:52,736 | epoch: [17/30] iter: [50/391] loss_D: 1.3856 loss_G: 0.6950 +2018-11-15 09:25:56,835 | epoch: [17/30] iter: [51/391] loss_D: 1.3849 loss_G: 0.6940 +2018-11-15 09:26:00,986 | epoch: [17/30] iter: [52/391] loss_D: 1.3849 loss_G: 0.6932 +2018-11-15 09:26:07,999 | epoch: [17/30] iter: [53/391] loss_D: 1.3860 loss_G: 0.6934 +2018-11-15 09:26:15,298 | epoch: [17/30] iter: [54/391] loss_D: 1.3854 loss_G: 0.6934 +2018-11-15 09:26:22,385 | epoch: [17/30] iter: [55/391] loss_D: 1.3854 loss_G: 0.6937 +2018-11-15 09:26:29,438 | epoch: [17/30] iter: [56/391] loss_D: 1.3851 loss_G: 0.6951 +2018-11-15 09:26:36,621 | epoch: [17/30] iter: [57/391] loss_D: 1.3856 loss_G: 0.6955 +2018-11-15 09:26:43,699 | epoch: [17/30] iter: [58/391] loss_D: 1.3844 loss_G: 0.6957 +2018-11-15 09:26:50,930 | epoch: [17/30] iter: [59/391] loss_D: 1.3857 loss_G: 0.6949 +2018-11-15 09:26:57,662 | epoch: [17/30] iter: [60/391] loss_D: 1.3841 loss_G: 0.6943 +2018-11-15 09:27:04,595 | epoch: [17/30] iter: [61/391] loss_D: 1.3843 loss_G: 0.6943 +2018-11-15 09:27:11,294 | epoch: [17/30] iter: [62/391] loss_D: 1.3850 loss_G: 0.6952 +2018-11-15 09:27:18,368 | epoch: [17/30] iter: [63/391] loss_D: 1.3849 loss_G: 0.6941 +2018-11-15 09:27:25,202 | epoch: [17/30] iter: [64/391] loss_D: 1.3863 loss_G: 0.6943 +2018-11-15 09:27:32,001 | epoch: [17/30] iter: [65/391] loss_D: 1.3866 loss_G: 0.6930 +2018-11-15 09:27:39,151 | epoch: [17/30] iter: [66/391] loss_D: 1.3871 loss_G: 0.6930 +2018-11-15 09:27:43,876 | epoch: [17/30] iter: [67/391] loss_D: 1.3875 loss_G: 0.6919 +2018-11-15 09:27:47,945 | epoch: [17/30] iter: [68/391] loss_D: 1.3864 loss_G: 0.6928 +2018-11-15 09:27:52,100 | epoch: [17/30] iter: [69/391] loss_D: 1.3865 loss_G: 0.6925 +2018-11-15 09:27:55,980 | epoch: [17/30] iter: [70/391] loss_D: 1.3871 loss_G: 0.6923 +2018-11-15 09:27:59,858 | epoch: [17/30] iter: [71/391] loss_D: 1.3864 loss_G: 0.6928 +2018-11-15 09:28:04,146 | epoch: [17/30] iter: [72/391] loss_D: 1.3885 loss_G: 0.6928 +2018-11-15 09:28:08,031 | epoch: [17/30] iter: [73/391] loss_D: 1.3873 loss_G: 0.6928 +2018-11-15 09:28:11,915 | epoch: [17/30] iter: [74/391] loss_D: 1.3880 loss_G: 0.6933 +2018-11-15 09:28:16,061 | epoch: [17/30] iter: [75/391] loss_D: 1.3880 loss_G: 0.6925 +2018-11-15 09:28:20,229 | epoch: [17/30] iter: [76/391] loss_D: 1.3874 loss_G: 0.6925 +2018-11-15 09:28:24,488 | epoch: [17/30] iter: [77/391] loss_D: 1.3876 loss_G: 0.6925 +2018-11-15 09:28:28,804 | epoch: [17/30] iter: [78/391] loss_D: 1.3876 loss_G: 0.6929 +2018-11-15 09:28:35,723 | epoch: [17/30] iter: [79/391] loss_D: 1.3883 loss_G: 0.6929 +2018-11-15 09:28:43,026 | epoch: [17/30] iter: [80/391] loss_D: 1.3892 loss_G: 0.6920 +2018-11-15 09:28:50,038 | epoch: [17/30] iter: [81/391] loss_D: 1.3887 loss_G: 0.6920 +2018-11-15 09:28:57,082 | epoch: [17/30] iter: [82/391] loss_D: 1.3876 loss_G: 0.6916 +2018-11-15 09:29:04,299 | epoch: [17/30] iter: [83/391] loss_D: 1.3879 loss_G: 0.6929 +2018-11-15 09:29:11,107 | epoch: [17/30] iter: [84/391] loss_D: 1.3871 loss_G: 0.6928 +2018-11-15 09:29:18,082 | epoch: [17/30] iter: [85/391] loss_D: 1.3875 loss_G: 0.6934 +2018-11-15 09:29:24,677 | epoch: [17/30] iter: [86/391] loss_D: 1.3875 loss_G: 0.6931 +2018-11-15 09:29:31,607 | epoch: [17/30] iter: [87/391] loss_D: 1.3867 loss_G: 0.6932 +2018-11-15 09:29:38,586 | epoch: [17/30] iter: [88/391] loss_D: 1.3853 loss_G: 0.6936 +2018-11-15 09:29:45,226 | epoch: [17/30] iter: [89/391] loss_D: 1.3859 loss_G: 0.6935 +2018-11-15 09:29:52,286 | epoch: [17/30] iter: [90/391] loss_D: 1.3857 loss_G: 0.6930 +2018-11-15 09:29:59,169 | epoch: [17/30] iter: [91/391] loss_D: 1.3868 loss_G: 0.6929 +2018-11-15 09:30:05,884 | epoch: [17/30] iter: [92/391] loss_D: 1.3843 loss_G: 0.6926 +2018-11-15 09:30:10,192 | epoch: [17/30] iter: [93/391] loss_D: 1.3864 loss_G: 0.6924 +2018-11-15 09:30:14,127 | epoch: [17/30] iter: [94/391] loss_D: 1.3848 loss_G: 0.6932 +2018-11-15 09:30:18,173 | epoch: [17/30] iter: [95/391] loss_D: 1.3862 loss_G: 0.6939 +2018-11-15 09:30:22,329 | epoch: [17/30] iter: [96/391] loss_D: 1.3838 loss_G: 0.6943 +2018-11-15 09:30:26,602 | epoch: [17/30] iter: [97/391] loss_D: 1.3842 loss_G: 0.6928 +2018-11-15 09:30:31,539 | epoch: [17/30] iter: [98/391] loss_D: 1.3854 loss_G: 0.6932 +2018-11-15 09:30:38,164 | epoch: [17/30] iter: [99/391] loss_D: 1.3861 loss_G: 0.6959 +2018-11-15 09:32:40,358 | epoch: [17/30] iter: [100/391] loss_D: 1.3840 loss_G: 0.6943 +2018-11-15 09:32:44,485 | epoch: [17/30] iter: [101/391] loss_D: 1.3841 loss_G: 0.6955 +2018-11-15 09:32:48,346 | epoch: [17/30] iter: [102/391] loss_D: 1.3848 loss_G: 0.6946 +2018-11-15 09:32:52,435 | epoch: [17/30] iter: [103/391] loss_D: 1.3817 loss_G: 0.6942 +2018-11-15 09:32:56,639 | epoch: [17/30] iter: [104/391] loss_D: 1.3841 loss_G: 0.6947 +2018-11-15 09:33:02,948 | epoch: [17/30] iter: [105/391] loss_D: 1.3841 loss_G: 0.6936 +2018-11-15 09:33:08,602 | epoch: [17/30] iter: [106/391] loss_D: 1.3845 loss_G: 0.6940 +2018-11-15 09:33:13,479 | epoch: [17/30] iter: [107/391] loss_D: 1.3843 loss_G: 0.6951 +2018-11-15 09:33:19,347 | epoch: [17/30] iter: [108/391] loss_D: 1.3899 loss_G: 0.6940 +2018-11-15 09:33:23,886 | epoch: [17/30] iter: [109/391] loss_D: 1.3860 loss_G: 0.6982 +2018-11-15 09:33:28,511 | epoch: [17/30] iter: [110/391] loss_D: 1.3855 loss_G: 0.6987 +2018-11-15 09:33:32,577 | epoch: [17/30] iter: [111/391] loss_D: 1.3876 loss_G: 0.6992 +2018-11-15 09:33:37,260 | epoch: [17/30] iter: [112/391] loss_D: 1.3867 loss_G: 0.6975 +2018-11-15 09:33:44,803 | epoch: [17/30] iter: [113/391] loss_D: 1.3879 loss_G: 0.6978 +2018-11-15 09:33:49,747 | epoch: [17/30] iter: [114/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 09:33:54,196 | epoch: [17/30] iter: [115/391] loss_D: 1.3872 loss_G: 0.6932 +2018-11-15 09:33:58,827 | epoch: [17/30] iter: [116/391] loss_D: 1.3902 loss_G: 0.6914 +2018-11-15 09:34:03,028 | epoch: [17/30] iter: [117/391] loss_D: 1.3888 loss_G: 0.6919 +2018-11-15 09:34:09,041 | epoch: [17/30] iter: [118/391] loss_D: 1.3872 loss_G: 0.6918 +2018-11-15 09:34:14,933 | epoch: [17/30] iter: [119/391] loss_D: 1.3874 loss_G: 0.6921 +2018-11-15 09:34:20,665 | epoch: [17/30] iter: [120/391] loss_D: 1.3881 loss_G: 0.6912 +2018-11-15 09:34:25,888 | epoch: [17/30] iter: [121/391] loss_D: 1.3879 loss_G: 0.6922 +2018-11-15 09:34:31,810 | epoch: [17/30] iter: [122/391] loss_D: 1.3889 loss_G: 0.6934 +2018-11-15 09:34:36,136 | epoch: [17/30] iter: [123/391] loss_D: 1.3878 loss_G: 0.6921 +2018-11-15 09:34:40,709 | epoch: [17/30] iter: [124/391] loss_D: 1.3897 loss_G: 0.6934 +2018-11-15 09:34:47,572 | epoch: [17/30] iter: [125/391] loss_D: 1.3876 loss_G: 0.6932 +2018-11-15 09:34:53,205 | epoch: [17/30] iter: [126/391] loss_D: 1.3879 loss_G: 0.6952 +2018-11-15 09:34:57,513 | epoch: [17/30] iter: [127/391] loss_D: 1.3873 loss_G: 0.6959 +2018-11-15 09:35:02,044 | epoch: [17/30] iter: [128/391] loss_D: 1.3869 loss_G: 0.6948 +2018-11-15 09:35:06,433 | epoch: [17/30] iter: [129/391] loss_D: 1.3867 loss_G: 0.6943 +2018-11-15 09:35:11,265 | epoch: [17/30] iter: [130/391] loss_D: 1.3861 loss_G: 0.6949 +2018-11-15 09:35:15,633 | epoch: [17/30] iter: [131/391] loss_D: 1.3858 loss_G: 0.6943 +2018-11-15 09:35:22,611 | epoch: [17/30] iter: [132/391] loss_D: 1.3862 loss_G: 0.6931 +2018-11-15 09:35:27,959 | epoch: [17/30] iter: [133/391] loss_D: 1.3864 loss_G: 0.6940 +2018-11-15 09:35:32,428 | epoch: [17/30] iter: [134/391] loss_D: 1.3855 loss_G: 0.6937 +2018-11-15 09:35:36,815 | epoch: [17/30] iter: [135/391] loss_D: 1.3867 loss_G: 0.6929 +2018-11-15 09:35:41,053 | epoch: [17/30] iter: [136/391] loss_D: 1.3864 loss_G: 0.6930 +2018-11-15 09:35:46,298 | epoch: [17/30] iter: [137/391] loss_D: 1.3876 loss_G: 0.6923 +2018-11-15 09:35:53,347 | epoch: [17/30] iter: [138/391] loss_D: 1.3866 loss_G: 0.6924 +2018-11-15 09:35:57,858 | epoch: [17/30] iter: [139/391] loss_D: 1.3862 loss_G: 0.6919 +2018-11-15 09:36:03,822 | epoch: [17/30] iter: [140/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 09:36:08,244 | epoch: [17/30] iter: [141/391] loss_D: 1.3848 loss_G: 0.6933 +2018-11-15 09:36:12,588 | epoch: [17/30] iter: [142/391] loss_D: 1.3841 loss_G: 0.6942 +2018-11-15 09:36:16,814 | epoch: [17/30] iter: [143/391] loss_D: 1.3840 loss_G: 0.6929 +2018-11-15 09:36:20,811 | epoch: [17/30] iter: [144/391] loss_D: 1.3858 loss_G: 0.6936 +2018-11-15 09:36:25,016 | epoch: [17/30] iter: [145/391] loss_D: 1.3835 loss_G: 0.6940 +2018-11-15 09:36:31,123 | epoch: [17/30] iter: [146/391] loss_D: 1.3853 loss_G: 0.6934 +2018-11-15 09:36:37,428 | epoch: [17/30] iter: [147/391] loss_D: 1.3852 loss_G: 0.6925 +2018-11-15 09:36:41,838 | epoch: [17/30] iter: [148/391] loss_D: 1.3884 loss_G: 0.6929 +2018-11-15 09:36:46,296 | epoch: [17/30] iter: [149/391] loss_D: 1.3874 loss_G: 0.6938 +2018-11-15 09:36:51,037 | epoch: [17/30] iter: [150/391] loss_D: 1.3861 loss_G: 0.6936 +2018-11-15 09:36:55,422 | epoch: [17/30] iter: [151/391] loss_D: 1.3864 loss_G: 0.6924 +2018-11-15 09:37:01,802 | epoch: [17/30] iter: [152/391] loss_D: 1.3879 loss_G: 0.6941 +2018-11-15 09:37:07,778 | epoch: [17/30] iter: [153/391] loss_D: 1.3889 loss_G: 0.6936 +2018-11-15 09:37:12,021 | epoch: [17/30] iter: [154/391] loss_D: 1.3882 loss_G: 0.6927 +2018-11-15 09:37:16,632 | epoch: [17/30] iter: [155/391] loss_D: 1.3881 loss_G: 0.6935 +2018-11-15 09:37:20,976 | epoch: [17/30] iter: [156/391] loss_D: 1.3870 loss_G: 0.6941 +2018-11-15 09:37:25,369 | epoch: [17/30] iter: [157/391] loss_D: 1.3866 loss_G: 0.6945 +2018-11-15 09:37:32,836 | epoch: [17/30] iter: [158/391] loss_D: 1.3869 loss_G: 0.6937 +2018-11-15 09:37:37,965 | epoch: [17/30] iter: [159/391] loss_D: 1.3879 loss_G: 0.6930 +2018-11-15 09:37:43,844 | epoch: [17/30] iter: [160/391] loss_D: 1.3867 loss_G: 0.6932 +2018-11-15 09:37:49,974 | epoch: [17/30] iter: [161/391] loss_D: 1.3864 loss_G: 0.6936 +2018-11-15 09:37:55,140 | epoch: [17/30] iter: [162/391] loss_D: 1.3871 loss_G: 0.6938 +2018-11-15 09:38:00,927 | epoch: [17/30] iter: [163/391] loss_D: 1.3870 loss_G: 0.6944 +2018-11-15 09:38:07,214 | epoch: [17/30] iter: [164/391] loss_D: 1.3859 loss_G: 0.6933 +2018-11-15 09:38:13,141 | epoch: [17/30] iter: [165/391] loss_D: 1.3848 loss_G: 0.6936 +2018-11-15 09:38:18,004 | epoch: [17/30] iter: [166/391] loss_D: 1.3858 loss_G: 0.6938 +2018-11-15 09:38:23,990 | epoch: [17/30] iter: [167/391] loss_D: 1.3854 loss_G: 0.6941 +2018-11-15 09:38:28,128 | epoch: [17/30] iter: [168/391] loss_D: 1.3860 loss_G: 0.6951 +2018-11-15 09:38:32,303 | epoch: [17/30] iter: [169/391] loss_D: 1.3856 loss_G: 0.6934 +2018-11-15 09:38:36,515 | epoch: [17/30] iter: [170/391] loss_D: 1.3864 loss_G: 0.6949 +2018-11-15 09:38:41,100 | epoch: [17/30] iter: [171/391] loss_D: 1.3851 loss_G: 0.6954 +2018-11-15 09:38:48,719 | epoch: [17/30] iter: [172/391] loss_D: 1.3854 loss_G: 0.6952 +2018-11-15 09:38:53,541 | epoch: [17/30] iter: [173/391] loss_D: 1.3847 loss_G: 0.6940 +2018-11-15 09:38:57,731 | epoch: [17/30] iter: [174/391] loss_D: 1.3842 loss_G: 0.6958 +2018-11-15 09:39:03,019 | epoch: [17/30] iter: [175/391] loss_D: 1.3853 loss_G: 0.6945 +2018-11-15 09:39:10,371 | epoch: [17/30] iter: [176/391] loss_D: 1.3870 loss_G: 0.6932 +2018-11-15 09:39:15,616 | epoch: [17/30] iter: [177/391] loss_D: 1.3872 loss_G: 0.6929 +2018-11-15 09:39:20,915 | epoch: [17/30] iter: [178/391] loss_D: 1.3885 loss_G: 0.6940 +2018-11-15 09:39:25,196 | epoch: [17/30] iter: [179/391] loss_D: 1.3874 loss_G: 0.6927 +2018-11-15 09:39:30,123 | epoch: [17/30] iter: [180/391] loss_D: 1.3894 loss_G: 0.6920 +2018-11-15 09:39:37,500 | epoch: [17/30] iter: [181/391] loss_D: 1.3898 loss_G: 0.6915 +2018-11-15 09:39:42,190 | epoch: [17/30] iter: [182/391] loss_D: 1.3881 loss_G: 0.6917 +2018-11-15 09:39:46,590 | epoch: [17/30] iter: [183/391] loss_D: 1.3882 loss_G: 0.6920 +2018-11-15 09:39:52,729 | epoch: [17/30] iter: [184/391] loss_D: 1.3874 loss_G: 0.6922 +2018-11-15 09:39:59,225 | epoch: [17/30] iter: [185/391] loss_D: 1.3879 loss_G: 0.6929 +2018-11-15 09:40:05,034 | epoch: [17/30] iter: [186/391] loss_D: 1.3873 loss_G: 0.6930 +2018-11-15 09:40:10,253 | epoch: [17/30] iter: [187/391] loss_D: 1.3873 loss_G: 0.6930 +2018-11-15 09:40:16,085 | epoch: [17/30] iter: [188/391] loss_D: 1.3875 loss_G: 0.6943 +2018-11-15 09:40:21,951 | epoch: [17/30] iter: [189/391] loss_D: 1.3859 loss_G: 0.6945 +2018-11-15 09:40:27,366 | epoch: [17/30] iter: [190/391] loss_D: 1.3862 loss_G: 0.6940 +2018-11-15 09:40:32,718 | epoch: [17/30] iter: [191/391] loss_D: 1.3856 loss_G: 0.6940 +2018-11-15 09:40:36,748 | epoch: [17/30] iter: [192/391] loss_D: 1.3856 loss_G: 0.6939 +2018-11-15 09:40:40,916 | epoch: [17/30] iter: [193/391] loss_D: 1.3847 loss_G: 0.6941 +2018-11-15 09:40:45,097 | epoch: [17/30] iter: [194/391] loss_D: 1.3854 loss_G: 0.6938 +2018-11-15 09:40:49,230 | epoch: [17/30] iter: [195/391] loss_D: 1.3852 loss_G: 0.6941 +2018-11-15 09:40:53,526 | epoch: [17/30] iter: [196/391] loss_D: 1.3850 loss_G: 0.6941 +2018-11-15 09:40:59,603 | epoch: [17/30] iter: [197/391] loss_D: 1.3837 loss_G: 0.6941 +2018-11-15 09:41:05,557 | epoch: [17/30] iter: [198/391] loss_D: 1.3856 loss_G: 0.6942 +2018-11-15 09:41:10,138 | epoch: [17/30] iter: [199/391] loss_D: 1.3851 loss_G: 0.6931 +2018-11-15 09:43:03,032 | epoch: [17/30] iter: [200/391] loss_D: 1.3836 loss_G: 0.6935 +2018-11-15 09:43:07,196 | epoch: [17/30] iter: [201/391] loss_D: 1.3849 loss_G: 0.6929 +2018-11-15 09:43:12,819 | epoch: [17/30] iter: [202/391] loss_D: 1.3857 loss_G: 0.6929 +2018-11-15 09:43:19,433 | epoch: [17/30] iter: [203/391] loss_D: 1.3877 loss_G: 0.6921 +2018-11-15 09:43:25,946 | epoch: [17/30] iter: [204/391] loss_D: 1.3880 loss_G: 0.6917 +2018-11-15 09:43:32,923 | epoch: [17/30] iter: [205/391] loss_D: 1.3892 loss_G: 0.6928 +2018-11-15 09:43:39,825 | epoch: [17/30] iter: [206/391] loss_D: 1.3878 loss_G: 0.6935 +2018-11-15 09:43:46,915 | epoch: [17/30] iter: [207/391] loss_D: 1.3873 loss_G: 0.6958 +2018-11-15 09:43:54,154 | epoch: [17/30] iter: [208/391] loss_D: 1.3867 loss_G: 0.6948 +2018-11-15 09:44:01,358 | epoch: [17/30] iter: [209/391] loss_D: 1.3862 loss_G: 0.6952 +2018-11-15 09:44:08,255 | epoch: [17/30] iter: [210/391] loss_D: 1.3847 loss_G: 0.6950 +2018-11-15 09:44:15,161 | epoch: [17/30] iter: [211/391] loss_D: 1.3849 loss_G: 0.6959 +2018-11-15 09:44:21,968 | epoch: [17/30] iter: [212/391] loss_D: 1.3855 loss_G: 0.6955 +2018-11-15 09:44:29,319 | epoch: [17/30] iter: [213/391] loss_D: 1.3856 loss_G: 0.6956 +2018-11-15 09:44:36,286 | epoch: [17/30] iter: [214/391] loss_D: 1.3842 loss_G: 0.6965 +2018-11-15 09:44:43,053 | epoch: [17/30] iter: [215/391] loss_D: 1.3853 loss_G: 0.6953 +2018-11-15 09:44:50,049 | epoch: [17/30] iter: [216/391] loss_D: 1.3857 loss_G: 0.6956 +2018-11-15 09:44:57,094 | epoch: [17/30] iter: [217/391] loss_D: 1.3872 loss_G: 0.6921 +2018-11-15 09:45:04,104 | epoch: [17/30] iter: [218/391] loss_D: 1.3873 loss_G: 0.6923 +2018-11-15 09:45:09,338 | epoch: [17/30] iter: [219/391] loss_D: 1.3890 loss_G: 0.6920 +2018-11-15 09:45:13,491 | epoch: [17/30] iter: [220/391] loss_D: 1.3876 loss_G: 0.6907 +2018-11-15 09:45:17,710 | epoch: [17/30] iter: [221/391] loss_D: 1.3868 loss_G: 0.6917 +2018-11-15 09:45:21,566 | epoch: [17/30] iter: [222/391] loss_D: 1.3871 loss_G: 0.6915 +2018-11-15 09:45:25,695 | epoch: [17/30] iter: [223/391] loss_D: 1.3869 loss_G: 0.6919 +2018-11-15 09:45:30,043 | epoch: [17/30] iter: [224/391] loss_D: 1.3870 loss_G: 0.6927 +2018-11-15 09:45:36,842 | epoch: [17/30] iter: [225/391] loss_D: 1.3873 loss_G: 0.6927 +2018-11-15 09:45:44,035 | epoch: [17/30] iter: [226/391] loss_D: 1.3851 loss_G: 0.6927 +2018-11-15 09:45:51,011 | epoch: [17/30] iter: [227/391] loss_D: 1.3865 loss_G: 0.6934 +2018-11-15 09:45:57,588 | epoch: [17/30] iter: [228/391] loss_D: 1.3871 loss_G: 0.6925 +2018-11-15 09:46:04,623 | epoch: [17/30] iter: [229/391] loss_D: 1.3849 loss_G: 0.6944 +2018-11-15 09:46:11,577 | epoch: [17/30] iter: [230/391] loss_D: 1.3848 loss_G: 0.6926 +2018-11-15 09:46:19,002 | epoch: [17/30] iter: [231/391] loss_D: 1.3854 loss_G: 0.6927 +2018-11-15 09:46:25,840 | epoch: [17/30] iter: [232/391] loss_D: 1.3856 loss_G: 0.6943 +2018-11-15 09:46:32,859 | epoch: [17/30] iter: [233/391] loss_D: 1.3871 loss_G: 0.6925 +2018-11-15 09:46:39,897 | epoch: [17/30] iter: [234/391] loss_D: 1.3860 loss_G: 0.6932 +2018-11-15 09:46:47,059 | epoch: [17/30] iter: [235/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 09:46:54,143 | epoch: [17/30] iter: [236/391] loss_D: 1.3874 loss_G: 0.6907 +2018-11-15 09:47:00,651 | epoch: [17/30] iter: [237/391] loss_D: 1.3892 loss_G: 0.6922 +2018-11-15 09:47:07,528 | epoch: [17/30] iter: [238/391] loss_D: 1.3879 loss_G: 0.6922 +2018-11-15 09:47:14,263 | epoch: [17/30] iter: [239/391] loss_D: 1.3892 loss_G: 0.6922 +2018-11-15 09:47:20,878 | epoch: [17/30] iter: [240/391] loss_D: 1.3886 loss_G: 0.6941 +2018-11-15 09:47:27,571 | epoch: [17/30] iter: [241/391] loss_D: 1.3878 loss_G: 0.6950 +2018-11-15 09:47:34,569 | epoch: [17/30] iter: [242/391] loss_D: 1.3895 loss_G: 0.6936 +2018-11-15 09:47:41,658 | epoch: [17/30] iter: [243/391] loss_D: 1.3877 loss_G: 0.6950 +2018-11-15 09:47:47,921 | epoch: [17/30] iter: [244/391] loss_D: 1.3873 loss_G: 0.6955 +2018-11-15 09:47:52,008 | epoch: [17/30] iter: [245/391] loss_D: 1.3868 loss_G: 0.6966 +2018-11-15 09:47:55,925 | epoch: [17/30] iter: [246/391] loss_D: 1.3847 loss_G: 0.6957 +2018-11-15 09:48:00,003 | epoch: [17/30] iter: [247/391] loss_D: 1.3857 loss_G: 0.6969 +2018-11-15 09:48:04,001 | epoch: [17/30] iter: [248/391] loss_D: 1.3858 loss_G: 0.6962 +2018-11-15 09:48:08,087 | epoch: [17/30] iter: [249/391] loss_D: 1.3859 loss_G: 0.6955 +2018-11-15 09:48:13,654 | epoch: [17/30] iter: [250/391] loss_D: 1.3866 loss_G: 0.6941 +2018-11-15 09:48:20,920 | epoch: [17/30] iter: [251/391] loss_D: 1.3864 loss_G: 0.6959 +2018-11-15 09:48:27,865 | epoch: [17/30] iter: [252/391] loss_D: 1.3845 loss_G: 0.6961 +2018-11-15 09:48:34,834 | epoch: [17/30] iter: [253/391] loss_D: 1.3864 loss_G: 0.6943 +2018-11-15 09:48:42,320 | epoch: [17/30] iter: [254/391] loss_D: 1.3857 loss_G: 0.6942 +2018-11-15 09:48:49,273 | epoch: [17/30] iter: [255/391] loss_D: 1.3876 loss_G: 0.6944 +2018-11-15 09:48:56,037 | epoch: [17/30] iter: [256/391] loss_D: 1.3879 loss_G: 0.6936 +2018-11-15 09:49:02,968 | epoch: [17/30] iter: [257/391] loss_D: 1.3877 loss_G: 0.6925 +2018-11-15 09:49:09,749 | epoch: [17/30] iter: [258/391] loss_D: 1.3863 loss_G: 0.6930 +2018-11-15 09:49:16,391 | epoch: [17/30] iter: [259/391] loss_D: 1.3874 loss_G: 0.6928 +2018-11-15 09:49:23,157 | epoch: [17/30] iter: [260/391] loss_D: 1.3862 loss_G: 0.6916 +2018-11-15 09:49:29,890 | epoch: [17/30] iter: [261/391] loss_D: 1.3880 loss_G: 0.6914 +2018-11-15 09:49:36,850 | epoch: [17/30] iter: [262/391] loss_D: 1.3881 loss_G: 0.6924 +2018-11-15 09:49:43,716 | epoch: [17/30] iter: [263/391] loss_D: 1.3865 loss_G: 0.6928 +2018-11-15 09:49:49,031 | epoch: [17/30] iter: [264/391] loss_D: 1.3857 loss_G: 0.6930 +2018-11-15 09:49:53,120 | epoch: [17/30] iter: [265/391] loss_D: 1.3864 loss_G: 0.6933 +2018-11-15 09:49:57,064 | epoch: [17/30] iter: [266/391] loss_D: 1.3874 loss_G: 0.6934 +2018-11-15 09:50:00,991 | epoch: [17/30] iter: [267/391] loss_D: 1.3864 loss_G: 0.6929 +2018-11-15 09:50:04,908 | epoch: [17/30] iter: [268/391] loss_D: 1.3862 loss_G: 0.6927 +2018-11-15 09:50:08,965 | epoch: [17/30] iter: [269/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 09:50:12,896 | epoch: [17/30] iter: [270/391] loss_D: 1.3860 loss_G: 0.6922 +2018-11-15 09:50:19,153 | epoch: [17/30] iter: [271/391] loss_D: 1.3881 loss_G: 0.6922 +2018-11-15 09:50:26,198 | epoch: [17/30] iter: [272/391] loss_D: 1.3865 loss_G: 0.6939 +2018-11-15 09:50:33,098 | epoch: [17/30] iter: [273/391] loss_D: 1.3875 loss_G: 0.6931 +2018-11-15 09:50:39,970 | epoch: [17/30] iter: [274/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 09:50:46,714 | epoch: [17/30] iter: [275/391] loss_D: 1.3869 loss_G: 0.6928 +2018-11-15 09:50:53,895 | epoch: [17/30] iter: [276/391] loss_D: 1.3873 loss_G: 0.6940 +2018-11-15 09:51:00,762 | epoch: [17/30] iter: [277/391] loss_D: 1.3866 loss_G: 0.6936 +2018-11-15 09:51:07,790 | epoch: [17/30] iter: [278/391] loss_D: 1.3869 loss_G: 0.6944 +2018-11-15 09:51:15,337 | epoch: [17/30] iter: [279/391] loss_D: 1.3866 loss_G: 0.6938 +2018-11-15 09:51:22,336 | epoch: [17/30] iter: [280/391] loss_D: 1.3876 loss_G: 0.6938 +2018-11-15 09:51:29,303 | epoch: [17/30] iter: [281/391] loss_D: 1.3875 loss_G: 0.6945 +2018-11-15 09:51:36,046 | epoch: [17/30] iter: [282/391] loss_D: 1.3874 loss_G: 0.6957 +2018-11-15 09:51:42,893 | epoch: [17/30] iter: [283/391] loss_D: 1.3861 loss_G: 0.6954 +2018-11-15 09:51:49,966 | epoch: [17/30] iter: [284/391] loss_D: 1.3868 loss_G: 0.6946 +2018-11-15 09:51:56,106 | epoch: [17/30] iter: [285/391] loss_D: 1.3875 loss_G: 0.6940 +2018-11-15 09:52:00,232 | epoch: [17/30] iter: [286/391] loss_D: 1.3850 loss_G: 0.6946 +2018-11-15 09:52:04,189 | epoch: [17/30] iter: [287/391] loss_D: 1.3862 loss_G: 0.6942 +2018-11-15 09:52:08,273 | epoch: [17/30] iter: [288/391] loss_D: 1.3846 loss_G: 0.6945 +2018-11-15 09:52:12,522 | epoch: [17/30] iter: [289/391] loss_D: 1.3866 loss_G: 0.6936 +2018-11-15 09:52:16,614 | epoch: [17/30] iter: [290/391] loss_D: 1.3870 loss_G: 0.6935 +2018-11-15 09:52:22,573 | epoch: [17/30] iter: [291/391] loss_D: 1.3862 loss_G: 0.6935 +2018-11-15 09:52:29,189 | epoch: [17/30] iter: [292/391] loss_D: 1.3857 loss_G: 0.6934 +2018-11-15 09:52:35,890 | epoch: [17/30] iter: [293/391] loss_D: 1.3851 loss_G: 0.6930 +2018-11-15 09:52:42,598 | epoch: [17/30] iter: [294/391] loss_D: 1.3851 loss_G: 0.6942 +2018-11-15 09:52:49,914 | epoch: [17/30] iter: [295/391] loss_D: 1.3868 loss_G: 0.6938 +2018-11-15 09:52:56,990 | epoch: [17/30] iter: [296/391] loss_D: 1.3853 loss_G: 0.6937 +2018-11-15 09:53:03,788 | epoch: [17/30] iter: [297/391] loss_D: 1.3861 loss_G: 0.6938 +2018-11-15 09:53:10,950 | epoch: [17/30] iter: [298/391] loss_D: 1.3860 loss_G: 0.6928 +2018-11-15 09:53:17,570 | epoch: [17/30] iter: [299/391] loss_D: 1.3861 loss_G: 0.6937 +2018-11-15 09:55:10,285 | epoch: [17/30] iter: [300/391] loss_D: 1.3852 loss_G: 0.6940 +2018-11-15 09:55:14,483 | epoch: [17/30] iter: [301/391] loss_D: 1.3851 loss_G: 0.6938 +2018-11-15 09:55:18,494 | epoch: [17/30] iter: [302/391] loss_D: 1.3864 loss_G: 0.6931 +2018-11-15 09:55:23,145 | epoch: [17/30] iter: [303/391] loss_D: 1.3858 loss_G: 0.6926 +2018-11-15 09:55:29,992 | epoch: [17/30] iter: [304/391] loss_D: 1.3856 loss_G: 0.6931 +2018-11-15 09:55:36,478 | epoch: [17/30] iter: [305/391] loss_D: 1.3855 loss_G: 0.6931 +2018-11-15 09:55:42,923 | epoch: [17/30] iter: [306/391] loss_D: 1.3873 loss_G: 0.6941 +2018-11-15 09:55:49,823 | epoch: [17/30] iter: [307/391] loss_D: 1.3861 loss_G: 0.6938 +2018-11-15 09:55:56,414 | epoch: [17/30] iter: [308/391] loss_D: 1.3859 loss_G: 0.6935 +2018-11-15 09:56:03,544 | epoch: [17/30] iter: [309/391] loss_D: 1.3873 loss_G: 0.6939 +2018-11-15 09:56:10,579 | epoch: [17/30] iter: [310/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 09:56:17,296 | epoch: [17/30] iter: [311/391] loss_D: 1.3849 loss_G: 0.6932 +2018-11-15 09:56:21,910 | epoch: [17/30] iter: [312/391] loss_D: 1.3859 loss_G: 0.6934 +2018-11-15 09:56:26,209 | epoch: [17/30] iter: [313/391] loss_D: 1.3849 loss_G: 0.6936 +2018-11-15 09:56:30,183 | epoch: [17/30] iter: [314/391] loss_D: 1.3852 loss_G: 0.6939 +2018-11-15 09:56:34,166 | epoch: [17/30] iter: [315/391] loss_D: 1.3855 loss_G: 0.6938 +2018-11-15 09:56:38,378 | epoch: [17/30] iter: [316/391] loss_D: 1.3846 loss_G: 0.6937 +2018-11-15 09:56:42,746 | epoch: [17/30] iter: [317/391] loss_D: 1.3849 loss_G: 0.6946 +2018-11-15 09:56:50,028 | epoch: [17/30] iter: [318/391] loss_D: 1.3862 loss_G: 0.6939 +2018-11-15 09:56:56,876 | epoch: [17/30] iter: [319/391] loss_D: 1.3846 loss_G: 0.6942 +2018-11-15 09:57:03,418 | epoch: [17/30] iter: [320/391] loss_D: 1.3836 loss_G: 0.6939 +2018-11-15 09:57:10,511 | epoch: [17/30] iter: [321/391] loss_D: 1.3841 loss_G: 0.6938 +2018-11-15 09:57:17,765 | epoch: [17/30] iter: [322/391] loss_D: 1.3844 loss_G: 0.6934 +2018-11-15 09:57:24,622 | epoch: [17/30] iter: [323/391] loss_D: 1.3848 loss_G: 0.6935 +2018-11-15 09:57:31,498 | epoch: [17/30] iter: [324/391] loss_D: 1.3839 loss_G: 0.6934 +2018-11-15 09:57:38,917 | epoch: [17/30] iter: [325/391] loss_D: 1.3844 loss_G: 0.6933 +2018-11-15 09:57:46,227 | epoch: [17/30] iter: [326/391] loss_D: 1.3839 loss_G: 0.6932 +2018-11-15 09:57:53,285 | epoch: [17/30] iter: [327/391] loss_D: 1.3841 loss_G: 0.6948 +2018-11-15 09:58:00,427 | epoch: [17/30] iter: [328/391] loss_D: 1.3843 loss_G: 0.6926 +2018-11-15 09:58:07,612 | epoch: [17/30] iter: [329/391] loss_D: 1.3858 loss_G: 0.6927 +2018-11-15 09:58:14,590 | epoch: [17/30] iter: [330/391] loss_D: 1.3881 loss_G: 0.6932 +2018-11-15 09:58:21,471 | epoch: [17/30] iter: [331/391] loss_D: 1.3851 loss_G: 0.6938 +2018-11-15 09:58:26,313 | epoch: [17/30] iter: [332/391] loss_D: 1.3902 loss_G: 0.6923 +2018-11-15 09:58:30,128 | epoch: [17/30] iter: [333/391] loss_D: 1.3898 loss_G: 0.6947 +2018-11-15 09:58:34,397 | epoch: [17/30] iter: [334/391] loss_D: 1.3851 loss_G: 0.7002 +2018-11-15 09:58:38,673 | epoch: [17/30] iter: [335/391] loss_D: 1.3850 loss_G: 0.7038 +2018-11-15 09:58:42,799 | epoch: [17/30] iter: [336/391] loss_D: 1.3812 loss_G: 0.7082 +2018-11-15 09:58:47,368 | epoch: [17/30] iter: [337/391] loss_D: 1.3790 loss_G: 0.7042 +2018-11-15 09:58:54,106 | epoch: [17/30] iter: [338/391] loss_D: 1.3815 loss_G: 0.7064 +2018-11-15 09:59:00,666 | epoch: [17/30] iter: [339/391] loss_D: 1.3835 loss_G: 0.6993 +2018-11-15 09:59:08,137 | epoch: [17/30] iter: [340/391] loss_D: 1.3831 loss_G: 0.6986 +2018-11-15 09:59:15,422 | epoch: [17/30] iter: [341/391] loss_D: 1.3890 loss_G: 0.6914 +2018-11-15 09:59:22,446 | epoch: [17/30] iter: [342/391] loss_D: 1.3914 loss_G: 0.6902 +2018-11-15 09:59:29,798 | epoch: [17/30] iter: [343/391] loss_D: 1.3875 loss_G: 0.6896 +2018-11-15 09:59:36,171 | epoch: [17/30] iter: [344/391] loss_D: 1.3896 loss_G: 0.6896 +2018-11-15 09:59:40,231 | epoch: [17/30] iter: [345/391] loss_D: 1.3884 loss_G: 0.6928 +2018-11-15 09:59:44,568 | epoch: [17/30] iter: [346/391] loss_D: 1.3921 loss_G: 0.6914 +2018-11-15 09:59:48,662 | epoch: [17/30] iter: [347/391] loss_D: 1.3885 loss_G: 0.6929 +2018-11-15 09:59:52,730 | epoch: [17/30] iter: [348/391] loss_D: 1.3860 loss_G: 0.6932 +2018-11-15 09:59:56,686 | epoch: [17/30] iter: [349/391] loss_D: 1.3878 loss_G: 0.6913 +2018-11-15 10:00:01,877 | epoch: [17/30] iter: [350/391] loss_D: 1.3872 loss_G: 0.6925 +2018-11-15 10:00:08,913 | epoch: [17/30] iter: [351/391] loss_D: 1.3884 loss_G: 0.6926 +2018-11-15 10:00:16,268 | epoch: [17/30] iter: [352/391] loss_D: 1.3888 loss_G: 0.6916 +2018-11-15 10:00:23,444 | epoch: [17/30] iter: [353/391] loss_D: 1.3886 loss_G: 0.6920 +2018-11-15 10:00:30,930 | epoch: [17/30] iter: [354/391] loss_D: 1.3890 loss_G: 0.6929 +2018-11-15 10:00:37,867 | epoch: [17/30] iter: [355/391] loss_D: 1.3888 loss_G: 0.6936 +2018-11-15 10:00:45,118 | epoch: [17/30] iter: [356/391] loss_D: 1.3894 loss_G: 0.6929 +2018-11-15 10:00:51,870 | epoch: [17/30] iter: [357/391] loss_D: 1.3900 loss_G: 0.6914 +2018-11-15 10:00:58,895 | epoch: [17/30] iter: [358/391] loss_D: 1.3881 loss_G: 0.6942 +2018-11-15 10:01:06,038 | epoch: [17/30] iter: [359/391] loss_D: 1.3871 loss_G: 0.6952 +2018-11-15 10:01:12,954 | epoch: [17/30] iter: [360/391] loss_D: 1.3869 loss_G: 0.6965 +2018-11-15 10:01:20,125 | epoch: [17/30] iter: [361/391] loss_D: 1.3857 loss_G: 0.6957 +2018-11-15 10:01:27,388 | epoch: [17/30] iter: [362/391] loss_D: 1.3862 loss_G: 0.6966 +2018-11-15 10:01:34,351 | epoch: [17/30] iter: [363/391] loss_D: 1.3862 loss_G: 0.6958 +2018-11-15 10:01:41,347 | epoch: [17/30] iter: [364/391] loss_D: 1.3863 loss_G: 0.6950 +2018-11-15 10:01:45,914 | epoch: [17/30] iter: [365/391] loss_D: 1.3856 loss_G: 0.6945 +2018-11-15 10:01:49,925 | epoch: [17/30] iter: [366/391] loss_D: 1.3864 loss_G: 0.6942 +2018-11-15 10:01:53,842 | epoch: [17/30] iter: [367/391] loss_D: 1.3867 loss_G: 0.6941 +2018-11-15 10:01:57,881 | epoch: [17/30] iter: [368/391] loss_D: 1.3885 loss_G: 0.6935 +2018-11-15 10:02:02,030 | epoch: [17/30] iter: [369/391] loss_D: 1.3867 loss_G: 0.6943 +2018-11-15 10:02:06,240 | epoch: [17/30] iter: [370/391] loss_D: 1.3889 loss_G: 0.6927 +2018-11-15 10:02:10,503 | epoch: [17/30] iter: [371/391] loss_D: 1.3868 loss_G: 0.6928 +2018-11-15 10:02:14,670 | epoch: [17/30] iter: [372/391] loss_D: 1.3881 loss_G: 0.6925 +2018-11-15 10:02:18,881 | epoch: [17/30] iter: [373/391] loss_D: 1.3872 loss_G: 0.6928 +2018-11-15 10:02:23,099 | epoch: [17/30] iter: [374/391] loss_D: 1.3868 loss_G: 0.6943 +2018-11-15 10:02:27,815 | epoch: [17/30] iter: [375/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 10:02:34,958 | epoch: [17/30] iter: [376/391] loss_D: 1.3874 loss_G: 0.6939 +2018-11-15 10:02:41,963 | epoch: [17/30] iter: [377/391] loss_D: 1.3855 loss_G: 0.6949 +2018-11-15 10:02:48,986 | epoch: [17/30] iter: [378/391] loss_D: 1.3870 loss_G: 0.6939 +2018-11-15 10:02:56,068 | epoch: [17/30] iter: [379/391] loss_D: 1.3864 loss_G: 0.6953 +2018-11-15 10:03:03,113 | epoch: [17/30] iter: [380/391] loss_D: 1.3860 loss_G: 0.6968 +2018-11-15 10:03:09,706 | epoch: [17/30] iter: [381/391] loss_D: 1.3836 loss_G: 0.6953 +2018-11-15 10:03:16,739 | epoch: [17/30] iter: [382/391] loss_D: 1.3856 loss_G: 0.6944 +2018-11-15 10:03:24,031 | epoch: [17/30] iter: [383/391] loss_D: 1.3842 loss_G: 0.6948 +2018-11-15 10:03:31,362 | epoch: [17/30] iter: [384/391] loss_D: 1.3843 loss_G: 0.6941 +2018-11-15 10:03:38,431 | epoch: [17/30] iter: [385/391] loss_D: 1.3849 loss_G: 0.6927 +2018-11-15 10:03:45,102 | epoch: [17/30] iter: [386/391] loss_D: 1.3858 loss_G: 0.6938 +2018-11-15 10:03:51,655 | epoch: [17/30] iter: [387/391] loss_D: 1.3863 loss_G: 0.6948 +2018-11-15 10:03:59,082 | epoch: [17/30] iter: [388/391] loss_D: 1.3862 loss_G: 0.6965 +2018-11-15 10:04:06,025 | epoch: [17/30] iter: [389/391] loss_D: 1.3876 loss_G: 0.6952 +2018-11-15 10:04:10,484 | epoch: [17/30] iter: [390/391] loss_D: 1.3853 loss_G: 0.6972 +2018-11-15 10:04:17,994 | epoch: [18/30] iter: [0/391] loss_D: 1.3852 loss_G: 0.6959 +2018-11-15 10:04:24,899 | epoch: [18/30] iter: [1/391] loss_D: 1.3854 loss_G: 0.6953 +2018-11-15 10:04:31,797 | epoch: [18/30] iter: [2/391] loss_D: 1.3855 loss_G: 0.6970 +2018-11-15 10:04:38,614 | epoch: [18/30] iter: [3/391] loss_D: 1.3838 loss_G: 0.6948 +2018-11-15 10:04:45,570 | epoch: [18/30] iter: [4/391] loss_D: 1.3852 loss_G: 0.6941 +2018-11-15 10:04:52,523 | epoch: [18/30] iter: [5/391] loss_D: 1.3858 loss_G: 0.6930 +2018-11-15 10:04:58,987 | epoch: [18/30] iter: [6/391] loss_D: 1.3865 loss_G: 0.6925 +2018-11-15 10:05:05,513 | epoch: [18/30] iter: [7/391] loss_D: 1.3880 loss_G: 0.6929 +2018-11-15 10:05:12,921 | epoch: [18/30] iter: [8/391] loss_D: 1.3840 loss_G: 0.6926 +2018-11-15 10:06:59,123 | epoch: [18/30] iter: [9/391] loss_D: 1.3886 loss_G: 0.6951 +2018-11-15 10:07:03,166 | epoch: [18/30] iter: [10/391] loss_D: 1.3879 loss_G: 0.6947 +2018-11-15 10:07:07,333 | epoch: [18/30] iter: [11/391] loss_D: 1.3823 loss_G: 0.6962 +2018-11-15 10:07:12,253 | epoch: [18/30] iter: [12/391] loss_D: 1.3863 loss_G: 0.6949 +2018-11-15 10:07:19,405 | epoch: [18/30] iter: [13/391] loss_D: 1.3855 loss_G: 0.6956 +2018-11-15 10:07:26,163 | epoch: [18/30] iter: [14/391] loss_D: 1.3847 loss_G: 0.6980 +2018-11-15 10:07:32,667 | epoch: [18/30] iter: [15/391] loss_D: 1.3860 loss_G: 0.6979 +2018-11-15 10:07:39,483 | epoch: [18/30] iter: [16/391] loss_D: 1.3865 loss_G: 0.6945 +2018-11-15 10:07:46,871 | epoch: [18/30] iter: [17/391] loss_D: 1.3888 loss_G: 0.6978 +2018-11-15 10:07:54,198 | epoch: [18/30] iter: [18/391] loss_D: 1.3846 loss_G: 0.7000 +2018-11-15 10:08:00,802 | epoch: [18/30] iter: [19/391] loss_D: 1.3864 loss_G: 0.6959 +2018-11-15 10:08:07,615 | epoch: [18/30] iter: [20/391] loss_D: 1.3908 loss_G: 0.6931 +2018-11-15 10:08:14,856 | epoch: [18/30] iter: [21/391] loss_D: 1.3945 loss_G: 0.6910 +2018-11-15 10:08:21,891 | epoch: [18/30] iter: [22/391] loss_D: 1.3895 loss_G: 0.6902 +2018-11-15 10:08:28,982 | epoch: [18/30] iter: [23/391] loss_D: 1.3871 loss_G: 0.6905 +2018-11-15 10:08:35,945 | epoch: [18/30] iter: [24/391] loss_D: 1.3859 loss_G: 0.6925 +2018-11-15 10:08:43,276 | epoch: [18/30] iter: [25/391] loss_D: 1.3848 loss_G: 0.6939 +2018-11-15 10:08:49,802 | epoch: [18/30] iter: [26/391] loss_D: 1.3833 loss_G: 0.6945 +2018-11-15 10:08:54,611 | epoch: [18/30] iter: [27/391] loss_D: 1.3828 loss_G: 0.6951 +2018-11-15 10:08:58,742 | epoch: [18/30] iter: [28/391] loss_D: 1.3829 loss_G: 0.6945 +2018-11-15 10:09:02,605 | epoch: [18/30] iter: [29/391] loss_D: 1.3839 loss_G: 0.6947 +2018-11-15 10:09:06,616 | epoch: [18/30] iter: [30/391] loss_D: 1.3881 loss_G: 0.6897 +2018-11-15 10:09:10,770 | epoch: [18/30] iter: [31/391] loss_D: 1.3868 loss_G: 0.6899 +2018-11-15 10:09:14,984 | epoch: [18/30] iter: [32/391] loss_D: 1.3905 loss_G: 0.6965 +2018-11-15 10:09:18,920 | epoch: [18/30] iter: [33/391] loss_D: 1.3850 loss_G: 0.7025 +2018-11-15 10:09:22,915 | epoch: [18/30] iter: [34/391] loss_D: 1.3804 loss_G: 0.7075 +2018-11-15 10:09:27,288 | epoch: [18/30] iter: [35/391] loss_D: 1.3800 loss_G: 0.7085 +2018-11-15 10:09:34,385 | epoch: [18/30] iter: [36/391] loss_D: 1.3844 loss_G: 0.7010 +2018-11-15 10:09:41,787 | epoch: [18/30] iter: [37/391] loss_D: 1.3871 loss_G: 0.6944 +2018-11-15 10:09:48,454 | epoch: [18/30] iter: [38/391] loss_D: 1.3862 loss_G: 0.6919 +2018-11-15 10:09:55,727 | epoch: [18/30] iter: [39/391] loss_D: 1.3819 loss_G: 0.6931 +2018-11-15 10:10:03,074 | epoch: [18/30] iter: [40/391] loss_D: 1.3795 loss_G: 0.6911 +2018-11-15 10:10:10,061 | epoch: [18/30] iter: [41/391] loss_D: 1.3830 loss_G: 0.6888 +2018-11-15 10:10:17,324 | epoch: [18/30] iter: [42/391] loss_D: 1.3849 loss_G: 0.6842 +2018-11-15 10:10:24,182 | epoch: [18/30] iter: [43/391] loss_D: 1.3923 loss_G: 0.6862 +2018-11-15 10:10:31,015 | epoch: [18/30] iter: [44/391] loss_D: 1.3941 loss_G: 0.6917 +2018-11-15 10:10:38,130 | epoch: [18/30] iter: [45/391] loss_D: 1.3896 loss_G: 0.6961 +2018-11-15 10:10:44,641 | epoch: [18/30] iter: [46/391] loss_D: 1.3943 loss_G: 0.6970 +2018-11-15 10:10:51,791 | epoch: [18/30] iter: [47/391] loss_D: 1.3908 loss_G: 0.7006 +2018-11-15 10:10:58,775 | epoch: [18/30] iter: [48/391] loss_D: 1.3908 loss_G: 0.7004 +2018-11-15 10:11:06,062 | epoch: [18/30] iter: [49/391] loss_D: 1.3896 loss_G: 0.6977 +2018-11-15 10:11:12,987 | epoch: [18/30] iter: [50/391] loss_D: 1.3873 loss_G: 0.6980 +2018-11-15 10:11:20,195 | epoch: [18/30] iter: [51/391] loss_D: 1.3871 loss_G: 0.6963 +2018-11-15 10:11:26,898 | epoch: [18/30] iter: [52/391] loss_D: 1.3863 loss_G: 0.6949 +2018-11-15 10:11:34,002 | epoch: [18/30] iter: [53/391] loss_D: 1.3870 loss_G: 0.6948 +2018-11-15 10:11:40,830 | epoch: [18/30] iter: [54/391] loss_D: 1.3852 loss_G: 0.6932 +2018-11-15 10:11:47,516 | epoch: [18/30] iter: [55/391] loss_D: 1.3861 loss_G: 0.6938 +2018-11-15 10:11:54,731 | epoch: [18/30] iter: [56/391] loss_D: 1.3873 loss_G: 0.6938 +2018-11-15 10:11:59,390 | epoch: [18/30] iter: [57/391] loss_D: 1.3865 loss_G: 0.6935 +2018-11-15 10:12:03,512 | epoch: [18/30] iter: [58/391] loss_D: 1.3869 loss_G: 0.6946 +2018-11-15 10:12:07,562 | epoch: [18/30] iter: [59/391] loss_D: 1.3866 loss_G: 0.6947 +2018-11-15 10:12:11,575 | epoch: [18/30] iter: [60/391] loss_D: 1.3853 loss_G: 0.6953 +2018-11-15 10:12:15,487 | epoch: [18/30] iter: [61/391] loss_D: 1.3840 loss_G: 0.6970 +2018-11-15 10:12:19,506 | epoch: [18/30] iter: [62/391] loss_D: 1.3835 loss_G: 0.6981 +2018-11-15 10:12:23,904 | epoch: [18/30] iter: [63/391] loss_D: 1.3850 loss_G: 0.6986 +2018-11-15 10:12:30,541 | epoch: [18/30] iter: [64/391] loss_D: 1.3849 loss_G: 0.6971 +2018-11-15 10:12:37,211 | epoch: [18/30] iter: [65/391] loss_D: 1.3867 loss_G: 0.6959 +2018-11-15 10:12:44,728 | epoch: [18/30] iter: [66/391] loss_D: 1.3850 loss_G: 0.6966 +2018-11-15 10:12:51,801 | epoch: [18/30] iter: [67/391] loss_D: 1.3882 loss_G: 0.6942 +2018-11-15 10:12:58,931 | epoch: [18/30] iter: [68/391] loss_D: 1.3919 loss_G: 0.6910 +2018-11-15 10:13:05,725 | epoch: [18/30] iter: [69/391] loss_D: 1.3891 loss_G: 0.6916 +2018-11-15 10:13:12,749 | epoch: [18/30] iter: [70/391] loss_D: 1.3898 loss_G: 0.6905 +2018-11-15 10:13:19,786 | epoch: [18/30] iter: [71/391] loss_D: 1.3883 loss_G: 0.6905 +2018-11-15 10:13:27,083 | epoch: [18/30] iter: [72/391] loss_D: 1.3873 loss_G: 0.6917 +2018-11-15 10:13:34,473 | epoch: [18/30] iter: [73/391] loss_D: 1.3883 loss_G: 0.6919 +2018-11-15 10:13:41,873 | epoch: [18/30] iter: [74/391] loss_D: 1.3852 loss_G: 0.6918 +2018-11-15 10:13:48,936 | epoch: [18/30] iter: [75/391] loss_D: 1.3871 loss_G: 0.6924 +2018-11-15 10:13:55,939 | epoch: [18/30] iter: [76/391] loss_D: 1.3860 loss_G: 0.6929 +2018-11-15 10:14:03,199 | epoch: [18/30] iter: [77/391] loss_D: 1.3846 loss_G: 0.6936 +2018-11-15 10:14:10,315 | epoch: [18/30] iter: [78/391] loss_D: 1.3861 loss_G: 0.6928 +2018-11-15 10:14:16,996 | epoch: [18/30] iter: [79/391] loss_D: 1.3862 loss_G: 0.6934 +2018-11-15 10:14:23,922 | epoch: [18/30] iter: [80/391] loss_D: 1.3867 loss_G: 0.6942 +2018-11-15 10:14:27,956 | epoch: [18/30] iter: [81/391] loss_D: 1.3847 loss_G: 0.6939 +2018-11-15 10:14:32,164 | epoch: [18/30] iter: [82/391] loss_D: 1.3851 loss_G: 0.6943 +2018-11-15 10:14:36,158 | epoch: [18/30] iter: [83/391] loss_D: 1.3837 loss_G: 0.6942 +2018-11-15 10:14:40,189 | epoch: [18/30] iter: [84/391] loss_D: 1.3846 loss_G: 0.6936 +2018-11-15 10:14:44,303 | epoch: [18/30] iter: [85/391] loss_D: 1.3851 loss_G: 0.6936 +2018-11-15 10:14:48,340 | epoch: [18/30] iter: [86/391] loss_D: 1.3858 loss_G: 0.6929 +2018-11-15 10:14:52,534 | epoch: [18/30] iter: [87/391] loss_D: 1.3864 loss_G: 0.6922 +2018-11-15 10:14:56,726 | epoch: [18/30] iter: [88/391] loss_D: 1.3855 loss_G: 0.6922 +2018-11-15 10:15:00,887 | epoch: [18/30] iter: [89/391] loss_D: 1.3870 loss_G: 0.6924 +2018-11-15 10:15:06,095 | epoch: [18/30] iter: [90/391] loss_D: 1.3867 loss_G: 0.6924 +2018-11-15 10:15:13,368 | epoch: [18/30] iter: [91/391] loss_D: 1.3876 loss_G: 0.6925 +2018-11-15 10:15:19,970 | epoch: [18/30] iter: [92/391] loss_D: 1.3867 loss_G: 0.6936 +2018-11-15 10:15:27,389 | epoch: [18/30] iter: [93/391] loss_D: 1.3871 loss_G: 0.6930 +2018-11-15 10:15:34,275 | epoch: [18/30] iter: [94/391] loss_D: 1.3890 loss_G: 0.6921 +2018-11-15 10:15:41,515 | epoch: [18/30] iter: [95/391] loss_D: 1.3872 loss_G: 0.6932 +2018-11-15 10:15:48,586 | epoch: [18/30] iter: [96/391] loss_D: 1.3876 loss_G: 0.6911 +2018-11-15 10:15:55,190 | epoch: [18/30] iter: [97/391] loss_D: 1.3879 loss_G: 0.6922 +2018-11-15 10:16:02,209 | epoch: [18/30] iter: [98/391] loss_D: 1.3904 loss_G: 0.6921 +2018-11-15 10:16:09,322 | epoch: [18/30] iter: [99/391] loss_D: 1.3901 loss_G: 0.6925 +2018-11-15 10:16:16,394 | epoch: [18/30] iter: [100/391] loss_D: 1.3897 loss_G: 0.6935 +2018-11-15 10:16:23,418 | epoch: [18/30] iter: [101/391] loss_D: 1.3903 loss_G: 0.6936 +2018-11-15 10:16:30,305 | epoch: [18/30] iter: [102/391] loss_D: 1.3893 loss_G: 0.6947 +2018-11-15 10:16:37,132 | epoch: [18/30] iter: [103/391] loss_D: 1.3871 loss_G: 0.6946 +2018-11-15 10:16:44,102 | epoch: [18/30] iter: [104/391] loss_D: 1.3883 loss_G: 0.6943 +2018-11-15 10:16:51,494 | epoch: [18/30] iter: [105/391] loss_D: 1.3877 loss_G: 0.6940 +2018-11-15 10:16:58,718 | epoch: [18/30] iter: [106/391] loss_D: 1.3861 loss_G: 0.6936 +2018-11-15 10:17:05,481 | epoch: [18/30] iter: [107/391] loss_D: 1.3867 loss_G: 0.6936 +2018-11-15 10:17:12,378 | epoch: [18/30] iter: [108/391] loss_D: 1.3856 loss_G: 0.6933 +2018-11-15 10:19:05,980 | epoch: [18/30] iter: [109/391] loss_D: 1.3858 loss_G: 0.6935 +2018-11-15 10:19:10,222 | epoch: [18/30] iter: [110/391] loss_D: 1.3858 loss_G: 0.6932 +2018-11-15 10:19:14,443 | epoch: [18/30] iter: [111/391] loss_D: 1.3862 loss_G: 0.6935 +2018-11-15 10:19:18,550 | epoch: [18/30] iter: [112/391] loss_D: 1.3846 loss_G: 0.6931 +2018-11-15 10:19:24,781 | epoch: [18/30] iter: [113/391] loss_D: 1.3860 loss_G: 0.6928 +2018-11-15 10:19:31,783 | epoch: [18/30] iter: [114/391] loss_D: 1.3855 loss_G: 0.6932 +2018-11-15 10:19:39,079 | epoch: [18/30] iter: [115/391] loss_D: 1.3858 loss_G: 0.6930 +2018-11-15 10:19:45,674 | epoch: [18/30] iter: [116/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 10:19:52,672 | epoch: [18/30] iter: [117/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 10:19:59,860 | epoch: [18/30] iter: [118/391] loss_D: 1.3861 loss_G: 0.6939 +2018-11-15 10:20:06,798 | epoch: [18/30] iter: [119/391] loss_D: 1.3860 loss_G: 0.6934 +2018-11-15 10:20:13,827 | epoch: [18/30] iter: [120/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 10:20:20,962 | epoch: [18/30] iter: [121/391] loss_D: 1.3857 loss_G: 0.6944 +2018-11-15 10:20:27,946 | epoch: [18/30] iter: [122/391] loss_D: 1.3851 loss_G: 0.6953 +2018-11-15 10:20:35,187 | epoch: [18/30] iter: [123/391] loss_D: 1.3834 loss_G: 0.6940 +2018-11-15 10:20:42,441 | epoch: [18/30] iter: [124/391] loss_D: 1.3844 loss_G: 0.6939 +2018-11-15 10:20:49,381 | epoch: [18/30] iter: [125/391] loss_D: 1.3846 loss_G: 0.6948 +2018-11-15 10:20:56,335 | epoch: [18/30] iter: [126/391] loss_D: 1.3850 loss_G: 0.6938 +2018-11-15 10:21:02,960 | epoch: [18/30] iter: [127/391] loss_D: 1.3827 loss_G: 0.6961 +2018-11-15 10:21:09,331 | epoch: [18/30] iter: [128/391] loss_D: 1.3844 loss_G: 0.6947 +2018-11-15 10:21:13,296 | epoch: [18/30] iter: [129/391] loss_D: 1.3856 loss_G: 0.6948 +2018-11-15 10:21:17,423 | epoch: [18/30] iter: [130/391] loss_D: 1.3844 loss_G: 0.6947 +2018-11-15 10:21:21,546 | epoch: [18/30] iter: [131/391] loss_D: 1.3853 loss_G: 0.6944 +2018-11-15 10:21:25,542 | epoch: [18/30] iter: [132/391] loss_D: 1.3856 loss_G: 0.6927 +2018-11-15 10:21:29,719 | epoch: [18/30] iter: [133/391] loss_D: 1.3850 loss_G: 0.6943 +2018-11-15 10:21:35,536 | epoch: [18/30] iter: [134/391] loss_D: 1.3871 loss_G: 0.6931 +2018-11-15 10:21:42,727 | epoch: [18/30] iter: [135/391] loss_D: 1.3862 loss_G: 0.6941 +2018-11-15 10:21:49,686 | epoch: [18/30] iter: [136/391] loss_D: 1.3860 loss_G: 0.6949 +2018-11-15 10:21:56,589 | epoch: [18/30] iter: [137/391] loss_D: 1.3842 loss_G: 0.6943 +2018-11-15 10:22:03,419 | epoch: [18/30] iter: [138/391] loss_D: 1.3864 loss_G: 0.6945 +2018-11-15 10:22:10,215 | epoch: [18/30] iter: [139/391] loss_D: 1.3878 loss_G: 0.6948 +2018-11-15 10:22:17,378 | epoch: [18/30] iter: [140/391] loss_D: 1.3870 loss_G: 0.6930 +2018-11-15 10:22:24,423 | epoch: [18/30] iter: [141/391] loss_D: 1.3868 loss_G: 0.6925 +2018-11-15 10:22:31,503 | epoch: [18/30] iter: [142/391] loss_D: 1.3876 loss_G: 0.6938 +2018-11-15 10:22:38,350 | epoch: [18/30] iter: [143/391] loss_D: 1.3877 loss_G: 0.6929 +2018-11-15 10:22:45,189 | epoch: [18/30] iter: [144/391] loss_D: 1.3884 loss_G: 0.6931 +2018-11-15 10:22:52,015 | epoch: [18/30] iter: [145/391] loss_D: 1.3882 loss_G: 0.6937 +2018-11-15 10:22:59,558 | epoch: [18/30] iter: [146/391] loss_D: 1.3882 loss_G: 0.6930 +2018-11-15 10:23:06,514 | epoch: [18/30] iter: [147/391] loss_D: 1.3865 loss_G: 0.6936 +2018-11-15 10:23:13,672 | epoch: [18/30] iter: [148/391] loss_D: 1.3880 loss_G: 0.6933 +2018-11-15 10:23:18,748 | epoch: [18/30] iter: [149/391] loss_D: 1.3876 loss_G: 0.6924 +2018-11-15 10:23:23,025 | epoch: [18/30] iter: [150/391] loss_D: 1.3867 loss_G: 0.6929 +2018-11-15 10:23:27,049 | epoch: [18/30] iter: [151/391] loss_D: 1.3859 loss_G: 0.6938 +2018-11-15 10:23:31,117 | epoch: [18/30] iter: [152/391] loss_D: 1.3860 loss_G: 0.6933 +2018-11-15 10:23:35,389 | epoch: [18/30] iter: [153/391] loss_D: 1.3875 loss_G: 0.6933 +2018-11-15 10:23:39,428 | epoch: [18/30] iter: [154/391] loss_D: 1.3867 loss_G: 0.6930 +2018-11-15 10:23:43,600 | epoch: [18/30] iter: [155/391] loss_D: 1.3858 loss_G: 0.6931 +2018-11-15 10:23:47,516 | epoch: [18/30] iter: [156/391] loss_D: 1.3860 loss_G: 0.6930 +2018-11-15 10:23:51,792 | epoch: [18/30] iter: [157/391] loss_D: 1.3873 loss_G: 0.6930 +2018-11-15 10:23:55,734 | epoch: [18/30] iter: [158/391] loss_D: 1.3875 loss_G: 0.6944 +2018-11-15 10:24:00,009 | epoch: [18/30] iter: [159/391] loss_D: 1.3860 loss_G: 0.6938 +2018-11-15 10:24:07,230 | epoch: [18/30] iter: [160/391] loss_D: 1.3865 loss_G: 0.6935 +2018-11-15 10:24:14,351 | epoch: [18/30] iter: [161/391] loss_D: 1.3877 loss_G: 0.6942 +2018-11-15 10:24:21,363 | epoch: [18/30] iter: [162/391] loss_D: 1.3867 loss_G: 0.6941 +2018-11-15 10:24:28,354 | epoch: [18/30] iter: [163/391] loss_D: 1.3866 loss_G: 0.6930 +2018-11-15 10:24:35,296 | epoch: [18/30] iter: [164/391] loss_D: 1.3868 loss_G: 0.6948 +2018-11-15 10:24:42,913 | epoch: [18/30] iter: [165/391] loss_D: 1.3867 loss_G: 0.6944 +2018-11-15 10:24:49,861 | epoch: [18/30] iter: [166/391] loss_D: 1.3862 loss_G: 0.6943 +2018-11-15 10:24:56,543 | epoch: [18/30] iter: [167/391] loss_D: 1.3870 loss_G: 0.6950 +2018-11-15 10:25:03,226 | epoch: [18/30] iter: [168/391] loss_D: 1.3861 loss_G: 0.6944 +2018-11-15 10:25:10,458 | epoch: [18/30] iter: [169/391] loss_D: 1.3852 loss_G: 0.6945 +2018-11-15 10:25:17,685 | epoch: [18/30] iter: [170/391] loss_D: 1.3854 loss_G: 0.6940 +2018-11-15 10:25:25,119 | epoch: [18/30] iter: [171/391] loss_D: 1.3862 loss_G: 0.6936 +2018-11-15 10:25:31,997 | epoch: [18/30] iter: [172/391] loss_D: 1.3861 loss_G: 0.6939 +2018-11-15 10:25:39,027 | epoch: [18/30] iter: [173/391] loss_D: 1.3860 loss_G: 0.6944 +2018-11-15 10:25:43,544 | epoch: [18/30] iter: [174/391] loss_D: 1.3859 loss_G: 0.6953 +2018-11-15 10:25:47,356 | epoch: [18/30] iter: [175/391] loss_D: 1.3849 loss_G: 0.6945 +2018-11-15 10:25:51,552 | epoch: [18/30] iter: [176/391] loss_D: 1.3851 loss_G: 0.6947 +2018-11-15 10:25:55,497 | epoch: [18/30] iter: [177/391] loss_D: 1.3854 loss_G: 0.6938 +2018-11-15 10:25:59,619 | epoch: [18/30] iter: [178/391] loss_D: 1.3854 loss_G: 0.6950 +2018-11-15 10:26:03,736 | epoch: [18/30] iter: [179/391] loss_D: 1.3848 loss_G: 0.6941 +2018-11-15 10:26:07,865 | epoch: [18/30] iter: [180/391] loss_D: 1.3858 loss_G: 0.6943 +2018-11-15 10:26:11,924 | epoch: [18/30] iter: [181/391] loss_D: 1.3866 loss_G: 0.6943 +2018-11-15 10:26:15,978 | epoch: [18/30] iter: [182/391] loss_D: 1.3873 loss_G: 0.6936 +2018-11-15 10:26:20,379 | epoch: [18/30] iter: [183/391] loss_D: 1.3855 loss_G: 0.6927 +2018-11-15 10:26:26,938 | epoch: [18/30] iter: [184/391] loss_D: 1.3870 loss_G: 0.6931 +2018-11-15 10:26:34,210 | epoch: [18/30] iter: [185/391] loss_D: 1.3870 loss_G: 0.6918 +2018-11-15 10:26:40,979 | epoch: [18/30] iter: [186/391] loss_D: 1.3879 loss_G: 0.6924 +2018-11-15 10:26:48,197 | epoch: [18/30] iter: [187/391] loss_D: 1.3884 loss_G: 0.6920 +2018-11-15 10:26:55,099 | epoch: [18/30] iter: [188/391] loss_D: 1.3874 loss_G: 0.6915 +2018-11-15 10:27:02,610 | epoch: [18/30] iter: [189/391] loss_D: 1.3876 loss_G: 0.6909 +2018-11-15 10:27:09,779 | epoch: [18/30] iter: [190/391] loss_D: 1.3880 loss_G: 0.6921 +2018-11-15 10:27:16,887 | epoch: [18/30] iter: [191/391] loss_D: 1.3877 loss_G: 0.6927 +2018-11-15 10:27:23,906 | epoch: [18/30] iter: [192/391] loss_D: 1.3869 loss_G: 0.6930 +2018-11-15 10:27:31,377 | epoch: [18/30] iter: [193/391] loss_D: 1.3865 loss_G: 0.6938 +2018-11-15 10:27:38,631 | epoch: [18/30] iter: [194/391] loss_D: 1.3862 loss_G: 0.6933 +2018-11-15 10:27:45,225 | epoch: [18/30] iter: [195/391] loss_D: 1.3871 loss_G: 0.6935 +2018-11-15 10:27:52,340 | epoch: [18/30] iter: [196/391] loss_D: 1.3872 loss_G: 0.6930 +2018-11-15 10:27:59,559 | epoch: [18/30] iter: [197/391] loss_D: 1.3865 loss_G: 0.6933 +2018-11-15 10:28:06,661 | epoch: [18/30] iter: [198/391] loss_D: 1.3847 loss_G: 0.6932 +2018-11-15 10:28:13,605 | epoch: [18/30] iter: [199/391] loss_D: 1.3866 loss_G: 0.6932 +2018-11-15 10:28:20,493 | epoch: [18/30] iter: [200/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-15 10:28:24,618 | epoch: [18/30] iter: [201/391] loss_D: 1.3854 loss_G: 0.6937 +2018-11-15 10:28:28,740 | epoch: [18/30] iter: [202/391] loss_D: 1.3867 loss_G: 0.6938 +2018-11-15 10:28:32,666 | epoch: [18/30] iter: [203/391] loss_D: 1.3871 loss_G: 0.6937 +2018-11-15 10:28:36,492 | epoch: [18/30] iter: [204/391] loss_D: 1.3848 loss_G: 0.6937 +2018-11-15 10:28:40,465 | epoch: [18/30] iter: [205/391] loss_D: 1.3855 loss_G: 0.6940 +2018-11-15 10:28:45,110 | epoch: [18/30] iter: [206/391] loss_D: 1.3854 loss_G: 0.6943 +2018-11-15 10:28:51,883 | epoch: [18/30] iter: [207/391] loss_D: 1.3863 loss_G: 0.6943 +2018-11-15 10:28:58,939 | epoch: [18/30] iter: [208/391] loss_D: 1.3860 loss_G: 0.6946 +2018-11-15 10:31:02,869 | epoch: [18/30] iter: [209/391] loss_D: 1.3861 loss_G: 0.6940 +2018-11-15 10:31:07,088 | epoch: [18/30] iter: [210/391] loss_D: 1.3856 loss_G: 0.6935 +2018-11-15 10:31:11,197 | epoch: [18/30] iter: [211/391] loss_D: 1.3853 loss_G: 0.6932 +2018-11-15 10:31:17,613 | epoch: [18/30] iter: [212/391] loss_D: 1.3869 loss_G: 0.6920 +2018-11-15 10:31:24,478 | epoch: [18/30] iter: [213/391] loss_D: 1.3845 loss_G: 0.6939 +2018-11-15 10:31:31,754 | epoch: [18/30] iter: [214/391] loss_D: 1.3883 loss_G: 0.6912 +2018-11-15 10:31:38,650 | epoch: [18/30] iter: [215/391] loss_D: 1.3858 loss_G: 0.6931 +2018-11-15 10:31:45,213 | epoch: [18/30] iter: [216/391] loss_D: 1.3877 loss_G: 0.6938 +2018-11-15 10:31:52,511 | epoch: [18/30] iter: [217/391] loss_D: 1.3872 loss_G: 0.6929 +2018-11-15 10:31:59,256 | epoch: [18/30] iter: [218/391] loss_D: 1.3878 loss_G: 0.6950 +2018-11-15 10:32:06,652 | epoch: [18/30] iter: [219/391] loss_D: 1.3870 loss_G: 0.6939 +2018-11-15 10:32:13,453 | epoch: [18/30] iter: [220/391] loss_D: 1.3863 loss_G: 0.6939 +2018-11-15 10:32:20,935 | epoch: [18/30] iter: [221/391] loss_D: 1.3867 loss_G: 0.6931 +2018-11-15 10:32:27,806 | epoch: [18/30] iter: [222/391] loss_D: 1.3882 loss_G: 0.6931 +2018-11-15 10:32:34,415 | epoch: [18/30] iter: [223/391] loss_D: 1.3864 loss_G: 0.6936 +2018-11-15 10:32:41,956 | epoch: [18/30] iter: [224/391] loss_D: 1.3876 loss_G: 0.6937 +2018-11-15 10:32:48,980 | epoch: [18/30] iter: [225/391] loss_D: 1.3871 loss_G: 0.6941 +2018-11-15 10:32:56,294 | epoch: [18/30] iter: [226/391] loss_D: 1.3870 loss_G: 0.6930 +2018-11-15 10:33:03,413 | epoch: [18/30] iter: [227/391] loss_D: 1.3866 loss_G: 0.6926 +2018-11-15 10:33:07,882 | epoch: [18/30] iter: [228/391] loss_D: 1.3863 loss_G: 0.6933 +2018-11-15 10:33:12,114 | epoch: [18/30] iter: [229/391] loss_D: 1.3867 loss_G: 0.6930 +2018-11-15 10:33:16,223 | epoch: [18/30] iter: [230/391] loss_D: 1.3861 loss_G: 0.6925 +2018-11-15 10:33:20,363 | epoch: [18/30] iter: [231/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 10:33:24,447 | epoch: [18/30] iter: [232/391] loss_D: 1.3861 loss_G: 0.6931 +2018-11-15 10:33:28,563 | epoch: [18/30] iter: [233/391] loss_D: 1.3864 loss_G: 0.6937 +2018-11-15 10:33:32,585 | epoch: [18/30] iter: [234/391] loss_D: 1.3863 loss_G: 0.6937 +2018-11-15 10:33:39,535 | epoch: [18/30] iter: [235/391] loss_D: 1.3870 loss_G: 0.6941 +2018-11-15 10:33:45,994 | epoch: [18/30] iter: [236/391] loss_D: 1.3856 loss_G: 0.6938 +2018-11-15 10:33:52,958 | epoch: [18/30] iter: [237/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 10:33:59,870 | epoch: [18/30] iter: [238/391] loss_D: 1.3861 loss_G: 0.6936 +2018-11-15 10:34:06,577 | epoch: [18/30] iter: [239/391] loss_D: 1.3864 loss_G: 0.6935 +2018-11-15 10:34:13,746 | epoch: [18/30] iter: [240/391] loss_D: 1.3863 loss_G: 0.6937 +2018-11-15 10:34:20,853 | epoch: [18/30] iter: [241/391] loss_D: 1.3865 loss_G: 0.6936 +2018-11-15 10:34:28,197 | epoch: [18/30] iter: [242/391] loss_D: 1.3854 loss_G: 0.6935 +2018-11-15 10:34:35,496 | epoch: [18/30] iter: [243/391] loss_D: 1.3860 loss_G: 0.6931 +2018-11-15 10:34:42,582 | epoch: [18/30] iter: [244/391] loss_D: 1.3870 loss_G: 0.6942 +2018-11-15 10:34:49,720 | epoch: [18/30] iter: [245/391] loss_D: 1.3856 loss_G: 0.6937 +2018-11-15 10:34:56,655 | epoch: [18/30] iter: [246/391] loss_D: 1.3855 loss_G: 0.6940 +2018-11-15 10:35:03,786 | epoch: [18/30] iter: [247/391] loss_D: 1.3855 loss_G: 0.6939 +2018-11-15 10:35:10,423 | epoch: [18/30] iter: [248/391] loss_D: 1.3856 loss_G: 0.6933 +2018-11-15 10:35:17,379 | epoch: [18/30] iter: [249/391] loss_D: 1.3873 loss_G: 0.6934 +2018-11-15 10:35:21,292 | epoch: [18/30] iter: [250/391] loss_D: 1.3857 loss_G: 0.6941 +2018-11-15 10:35:25,114 | epoch: [18/30] iter: [251/391] loss_D: 1.3860 loss_G: 0.6939 +2018-11-15 10:35:29,337 | epoch: [18/30] iter: [252/391] loss_D: 1.3843 loss_G: 0.6938 +2018-11-15 10:35:33,426 | epoch: [18/30] iter: [253/391] loss_D: 1.3852 loss_G: 0.6927 +2018-11-15 10:35:37,642 | epoch: [18/30] iter: [254/391] loss_D: 1.3846 loss_G: 0.6932 +2018-11-15 10:35:41,746 | epoch: [18/30] iter: [255/391] loss_D: 1.3872 loss_G: 0.6928 +2018-11-15 10:35:45,862 | epoch: [18/30] iter: [256/391] loss_D: 1.3871 loss_G: 0.6937 +2018-11-15 10:35:50,182 | epoch: [18/30] iter: [257/391] loss_D: 1.3864 loss_G: 0.6940 +2018-11-15 10:35:55,820 | epoch: [18/30] iter: [258/391] loss_D: 1.3866 loss_G: 0.6941 +2018-11-15 10:36:02,809 | epoch: [18/30] iter: [259/391] loss_D: 1.3859 loss_G: 0.6936 +2018-11-15 10:36:09,738 | epoch: [18/30] iter: [260/391] loss_D: 1.3868 loss_G: 0.6936 +2018-11-15 10:36:17,068 | epoch: [18/30] iter: [261/391] loss_D: 1.3853 loss_G: 0.6935 +2018-11-15 10:36:24,015 | epoch: [18/30] iter: [262/391] loss_D: 1.3855 loss_G: 0.6935 +2018-11-15 10:36:30,964 | epoch: [18/30] iter: [263/391] loss_D: 1.3871 loss_G: 0.6931 +2018-11-15 10:36:38,182 | epoch: [18/30] iter: [264/391] loss_D: 1.3855 loss_G: 0.6933 +2018-11-15 10:36:45,388 | epoch: [18/30] iter: [265/391] loss_D: 1.3869 loss_G: 0.6928 +2018-11-15 10:36:52,352 | epoch: [18/30] iter: [266/391] loss_D: 1.3874 loss_G: 0.6932 +2018-11-15 10:36:59,474 | epoch: [18/30] iter: [267/391] loss_D: 1.3862 loss_G: 0.6925 +2018-11-15 10:37:06,519 | epoch: [18/30] iter: [268/391] loss_D: 1.3875 loss_G: 0.6922 +2018-11-15 10:37:14,010 | epoch: [18/30] iter: [269/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 10:37:21,301 | epoch: [18/30] iter: [270/391] loss_D: 1.3884 loss_G: 0.6929 +2018-11-15 10:37:28,380 | epoch: [18/30] iter: [271/391] loss_D: 1.3880 loss_G: 0.6929 +2018-11-15 10:37:35,545 | epoch: [18/30] iter: [272/391] loss_D: 1.3872 loss_G: 0.6931 +2018-11-15 10:37:40,120 | epoch: [18/30] iter: [273/391] loss_D: 1.3878 loss_G: 0.6927 +2018-11-15 10:37:44,200 | epoch: [18/30] iter: [274/391] loss_D: 1.3870 loss_G: 0.6926 +2018-11-15 10:37:48,241 | epoch: [18/30] iter: [275/391] loss_D: 1.3887 loss_G: 0.6930 +2018-11-15 10:37:52,376 | epoch: [18/30] iter: [276/391] loss_D: 1.3873 loss_G: 0.6945 +2018-11-15 10:37:56,642 | epoch: [18/30] iter: [277/391] loss_D: 1.3877 loss_G: 0.6934 +2018-11-15 10:38:00,700 | epoch: [18/30] iter: [278/391] loss_D: 1.3873 loss_G: 0.6940 +2018-11-15 10:38:04,834 | epoch: [18/30] iter: [279/391] loss_D: 1.3872 loss_G: 0.6937 +2018-11-15 10:38:08,786 | epoch: [18/30] iter: [280/391] loss_D: 1.3861 loss_G: 0.6936 +2018-11-15 10:38:16,244 | epoch: [18/30] iter: [281/391] loss_D: 1.3865 loss_G: 0.6927 +2018-11-15 10:38:23,451 | epoch: [18/30] iter: [282/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 10:38:30,517 | epoch: [18/30] iter: [283/391] loss_D: 1.3870 loss_G: 0.6934 +2018-11-15 10:38:37,609 | epoch: [18/30] iter: [284/391] loss_D: 1.3867 loss_G: 0.6934 +2018-11-15 10:38:44,267 | epoch: [18/30] iter: [285/391] loss_D: 1.3851 loss_G: 0.6937 +2018-11-15 10:38:51,302 | epoch: [18/30] iter: [286/391] loss_D: 1.3861 loss_G: 0.6939 +2018-11-15 10:38:58,112 | epoch: [18/30] iter: [287/391] loss_D: 1.3858 loss_G: 0.6931 +2018-11-15 10:39:04,934 | epoch: [18/30] iter: [288/391] loss_D: 1.3855 loss_G: 0.6938 +2018-11-15 10:39:11,920 | epoch: [18/30] iter: [289/391] loss_D: 1.3859 loss_G: 0.6951 +2018-11-15 10:39:19,334 | epoch: [18/30] iter: [290/391] loss_D: 1.3857 loss_G: 0.6937 +2018-11-15 10:39:25,824 | epoch: [18/30] iter: [291/391] loss_D: 1.3852 loss_G: 0.6939 +2018-11-15 10:39:32,886 | epoch: [18/30] iter: [292/391] loss_D: 1.3841 loss_G: 0.6944 +2018-11-15 10:39:39,765 | epoch: [18/30] iter: [293/391] loss_D: 1.3848 loss_G: 0.6945 +2018-11-15 10:39:44,377 | epoch: [18/30] iter: [294/391] loss_D: 1.3860 loss_G: 0.6940 +2018-11-15 10:39:48,428 | epoch: [18/30] iter: [295/391] loss_D: 1.3872 loss_G: 0.6932 +2018-11-15 10:39:52,613 | epoch: [18/30] iter: [296/391] loss_D: 1.3863 loss_G: 0.6934 +2018-11-15 10:39:56,796 | epoch: [18/30] iter: [297/391] loss_D: 1.3872 loss_G: 0.6924 +2018-11-15 10:40:01,116 | epoch: [18/30] iter: [298/391] loss_D: 1.3863 loss_G: 0.6925 +2018-11-15 10:40:05,150 | epoch: [18/30] iter: [299/391] loss_D: 1.3867 loss_G: 0.6923 +2018-11-15 10:40:09,226 | epoch: [18/30] iter: [300/391] loss_D: 1.3854 loss_G: 0.6930 +2018-11-15 10:40:13,647 | epoch: [18/30] iter: [301/391] loss_D: 1.3864 loss_G: 0.6925 +2018-11-15 10:40:17,781 | epoch: [18/30] iter: [302/391] loss_D: 1.3855 loss_G: 0.6931 +2018-11-15 10:40:22,704 | epoch: [18/30] iter: [303/391] loss_D: 1.3856 loss_G: 0.6932 +2018-11-15 10:40:28,072 | epoch: [18/30] iter: [304/391] loss_D: 1.3865 loss_G: 0.6930 +2018-11-15 10:40:32,523 | epoch: [18/30] iter: [305/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 10:40:36,921 | epoch: [18/30] iter: [306/391] loss_D: 1.3850 loss_G: 0.6931 +2018-11-15 10:40:44,193 | epoch: [18/30] iter: [307/391] loss_D: 1.3852 loss_G: 0.6931 +2018-11-15 10:40:49,291 | epoch: [18/30] iter: [308/391] loss_D: 1.3864 loss_G: 0.6928 +2018-11-15 10:42:43,199 | epoch: [18/30] iter: [309/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 10:42:50,016 | epoch: [18/30] iter: [310/391] loss_D: 1.3863 loss_G: 0.6938 +2018-11-15 10:42:57,201 | epoch: [18/30] iter: [311/391] loss_D: 1.3862 loss_G: 0.6933 +2018-11-15 10:43:04,151 | epoch: [18/30] iter: [312/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 10:43:11,198 | epoch: [18/30] iter: [313/391] loss_D: 1.3860 loss_G: 0.6944 +2018-11-15 10:43:17,961 | epoch: [18/30] iter: [314/391] loss_D: 1.3858 loss_G: 0.6931 +2018-11-15 10:43:24,655 | epoch: [18/30] iter: [315/391] loss_D: 1.3856 loss_G: 0.6936 +2018-11-15 10:43:31,437 | epoch: [18/30] iter: [316/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 10:43:38,077 | epoch: [18/30] iter: [317/391] loss_D: 1.3870 loss_G: 0.6926 +2018-11-15 10:43:45,400 | epoch: [18/30] iter: [318/391] loss_D: 1.3853 loss_G: 0.6940 +2018-11-15 10:43:52,570 | epoch: [18/30] iter: [319/391] loss_D: 1.3854 loss_G: 0.6929 +2018-11-15 10:43:59,383 | epoch: [18/30] iter: [320/391] loss_D: 1.3861 loss_G: 0.6933 +2018-11-15 10:44:06,584 | epoch: [18/30] iter: [321/391] loss_D: 1.3863 loss_G: 0.6926 +2018-11-15 10:44:13,500 | epoch: [18/30] iter: [322/391] loss_D: 1.3870 loss_G: 0.6932 +2018-11-15 10:44:17,658 | epoch: [18/30] iter: [323/391] loss_D: 1.3858 loss_G: 0.6932 +2018-11-15 10:44:21,685 | epoch: [18/30] iter: [324/391] loss_D: 1.3870 loss_G: 0.6929 +2018-11-15 10:44:25,955 | epoch: [18/30] iter: [325/391] loss_D: 1.3862 loss_G: 0.6934 +2018-11-15 10:44:30,133 | epoch: [18/30] iter: [326/391] loss_D: 1.3868 loss_G: 0.6926 +2018-11-15 10:44:34,020 | epoch: [18/30] iter: [327/391] loss_D: 1.3867 loss_G: 0.6935 +2018-11-15 10:44:38,114 | epoch: [18/30] iter: [328/391] loss_D: 1.3870 loss_G: 0.6928 +2018-11-15 10:44:42,281 | epoch: [18/30] iter: [329/391] loss_D: 1.3861 loss_G: 0.6929 +2018-11-15 10:44:46,325 | epoch: [18/30] iter: [330/391] loss_D: 1.3870 loss_G: 0.6932 +2018-11-15 10:44:50,374 | epoch: [18/30] iter: [331/391] loss_D: 1.3871 loss_G: 0.6933 +2018-11-15 10:44:54,690 | epoch: [18/30] iter: [332/391] loss_D: 1.3869 loss_G: 0.6933 +2018-11-15 10:45:00,293 | epoch: [18/30] iter: [333/391] loss_D: 1.3859 loss_G: 0.6931 +2018-11-15 10:45:06,937 | epoch: [18/30] iter: [334/391] loss_D: 1.3873 loss_G: 0.6935 +2018-11-15 10:45:13,974 | epoch: [18/30] iter: [335/391] loss_D: 1.3877 loss_G: 0.6933 +2018-11-15 10:45:21,073 | epoch: [18/30] iter: [336/391] loss_D: 1.3865 loss_G: 0.6940 +2018-11-15 10:45:28,450 | epoch: [18/30] iter: [337/391] loss_D: 1.3861 loss_G: 0.6941 +2018-11-15 10:45:36,068 | epoch: [18/30] iter: [338/391] loss_D: 1.3867 loss_G: 0.6937 +2018-11-15 10:45:42,907 | epoch: [18/30] iter: [339/391] loss_D: 1.3860 loss_G: 0.6937 +2018-11-15 10:45:50,096 | epoch: [18/30] iter: [340/391] loss_D: 1.3862 loss_G: 0.6938 +2018-11-15 10:45:57,249 | epoch: [18/30] iter: [341/391] loss_D: 1.3872 loss_G: 0.6939 +2018-11-15 10:46:04,422 | epoch: [18/30] iter: [342/391] loss_D: 1.3862 loss_G: 0.6940 +2018-11-15 10:46:11,531 | epoch: [18/30] iter: [343/391] loss_D: 1.3856 loss_G: 0.6948 +2018-11-15 10:46:18,395 | epoch: [18/30] iter: [344/391] loss_D: 1.3861 loss_G: 0.6942 +2018-11-15 10:46:25,338 | epoch: [18/30] iter: [345/391] loss_D: 1.3865 loss_G: 0.6940 +2018-11-15 10:46:32,506 | epoch: [18/30] iter: [346/391] loss_D: 1.3857 loss_G: 0.6940 +2018-11-15 10:46:39,674 | epoch: [18/30] iter: [347/391] loss_D: 1.3862 loss_G: 0.6945 +2018-11-15 10:46:46,831 | epoch: [18/30] iter: [348/391] loss_D: 1.3855 loss_G: 0.6944 +2018-11-15 10:46:54,033 | epoch: [18/30] iter: [349/391] loss_D: 1.3866 loss_G: 0.6944 +2018-11-15 10:47:00,847 | epoch: [18/30] iter: [350/391] loss_D: 1.3863 loss_G: 0.6943 +2018-11-15 10:47:08,168 | epoch: [18/30] iter: [351/391] loss_D: 1.3855 loss_G: 0.6943 +2018-11-15 10:47:14,773 | epoch: [18/30] iter: [352/391] loss_D: 1.3849 loss_G: 0.6949 +2018-11-15 10:47:21,839 | epoch: [18/30] iter: [353/391] loss_D: 1.3857 loss_G: 0.6944 +2018-11-15 10:47:29,063 | epoch: [18/30] iter: [354/391] loss_D: 1.3859 loss_G: 0.6940 +2018-11-15 10:47:35,098 | epoch: [18/30] iter: [355/391] loss_D: 1.3862 loss_G: 0.6939 +2018-11-15 10:47:39,365 | epoch: [18/30] iter: [356/391] loss_D: 1.3849 loss_G: 0.6944 +2018-11-15 10:47:43,316 | epoch: [18/30] iter: [357/391] loss_D: 1.3847 loss_G: 0.6943 +2018-11-15 10:47:47,476 | epoch: [18/30] iter: [358/391] loss_D: 1.3859 loss_G: 0.6934 +2018-11-15 10:47:51,688 | epoch: [18/30] iter: [359/391] loss_D: 1.3864 loss_G: 0.6933 +2018-11-15 10:47:55,869 | epoch: [18/30] iter: [360/391] loss_D: 1.3866 loss_G: 0.6941 +2018-11-15 10:48:00,116 | epoch: [18/30] iter: [361/391] loss_D: 1.3864 loss_G: 0.6939 +2018-11-15 10:48:04,576 | epoch: [18/30] iter: [362/391] loss_D: 1.3862 loss_G: 0.6938 +2018-11-15 10:48:08,826 | epoch: [18/30] iter: [363/391] loss_D: 1.3871 loss_G: 0.6936 +2018-11-15 10:48:12,969 | epoch: [18/30] iter: [364/391] loss_D: 1.3867 loss_G: 0.6928 +2018-11-15 10:48:17,146 | epoch: [18/30] iter: [365/391] loss_D: 1.3873 loss_G: 0.6930 +2018-11-15 10:48:22,975 | epoch: [18/30] iter: [366/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 10:48:28,815 | epoch: [18/30] iter: [367/391] loss_D: 1.3866 loss_G: 0.6928 +2018-11-15 10:48:33,927 | epoch: [18/30] iter: [368/391] loss_D: 1.3868 loss_G: 0.6934 +2018-11-15 10:48:39,676 | epoch: [18/30] iter: [369/391] loss_D: 1.3869 loss_G: 0.6929 +2018-11-15 10:48:45,783 | epoch: [18/30] iter: [370/391] loss_D: 1.3871 loss_G: 0.6934 +2018-11-15 10:48:50,226 | epoch: [18/30] iter: [371/391] loss_D: 1.3868 loss_G: 0.6931 +2018-11-15 10:48:54,582 | epoch: [18/30] iter: [372/391] loss_D: 1.3853 loss_G: 0.6931 +2018-11-15 10:49:00,532 | epoch: [18/30] iter: [373/391] loss_D: 1.3865 loss_G: 0.6930 +2018-11-15 10:49:07,290 | epoch: [18/30] iter: [374/391] loss_D: 1.3868 loss_G: 0.6930 +2018-11-15 10:49:13,324 | epoch: [18/30] iter: [375/391] loss_D: 1.3872 loss_G: 0.6926 +2018-11-15 10:49:18,203 | epoch: [18/30] iter: [376/391] loss_D: 1.3868 loss_G: 0.6934 +2018-11-15 10:49:24,190 | epoch: [18/30] iter: [377/391] loss_D: 1.3863 loss_G: 0.6926 +2018-11-15 10:49:30,339 | epoch: [18/30] iter: [378/391] loss_D: 1.3866 loss_G: 0.6925 +2018-11-15 10:49:34,766 | epoch: [18/30] iter: [379/391] loss_D: 1.3864 loss_G: 0.6924 +2018-11-15 10:49:39,255 | epoch: [18/30] iter: [380/391] loss_D: 1.3865 loss_G: 0.6931 +2018-11-15 10:49:45,572 | epoch: [18/30] iter: [381/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 10:49:51,351 | epoch: [18/30] iter: [382/391] loss_D: 1.3859 loss_G: 0.6935 +2018-11-15 10:49:57,290 | epoch: [18/30] iter: [383/391] loss_D: 1.3852 loss_G: 0.6931 +2018-11-15 10:50:02,159 | epoch: [18/30] iter: [384/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-15 10:50:06,543 | epoch: [18/30] iter: [385/391] loss_D: 1.3860 loss_G: 0.6932 +2018-11-15 10:50:10,973 | epoch: [18/30] iter: [386/391] loss_D: 1.3860 loss_G: 0.6936 +2018-11-15 10:50:15,381 | epoch: [18/30] iter: [387/391] loss_D: 1.3856 loss_G: 0.6941 +2018-11-15 10:50:22,060 | epoch: [18/30] iter: [388/391] loss_D: 1.3865 loss_G: 0.6939 +2018-11-15 10:50:27,931 | epoch: [18/30] iter: [389/391] loss_D: 1.3858 loss_G: 0.6934 +2018-11-15 10:50:30,680 | epoch: [18/30] iter: [390/391] loss_D: 1.3854 loss_G: 0.6937 +2018-11-15 10:50:35,724 | epoch: [19/30] iter: [0/391] loss_D: 1.3868 loss_G: 0.6936 +2018-11-15 10:50:40,474 | epoch: [19/30] iter: [1/391] loss_D: 1.3851 loss_G: 0.6933 +2018-11-15 10:50:45,101 | epoch: [19/30] iter: [2/391] loss_D: 1.3860 loss_G: 0.6939 +2018-11-15 10:50:52,169 | epoch: [19/30] iter: [3/391] loss_D: 1.3861 loss_G: 0.6936 +2018-11-15 10:50:57,237 | epoch: [19/30] iter: [4/391] loss_D: 1.3858 loss_G: 0.6937 +2018-11-15 10:51:03,125 | epoch: [19/30] iter: [5/391] loss_D: 1.3858 loss_G: 0.6935 +2018-11-15 10:51:08,630 | epoch: [19/30] iter: [6/391] loss_D: 1.3863 loss_G: 0.6931 +2018-11-15 10:51:13,769 | epoch: [19/30] iter: [7/391] loss_D: 1.3859 loss_G: 0.6938 +2018-11-15 10:51:19,842 | epoch: [19/30] iter: [8/391] loss_D: 1.3871 loss_G: 0.6931 +2018-11-15 10:51:24,263 | epoch: [19/30] iter: [9/391] loss_D: 1.3867 loss_G: 0.6938 +2018-11-15 10:51:28,650 | epoch: [19/30] iter: [10/391] loss_D: 1.3863 loss_G: 0.6940 +2018-11-15 10:51:32,954 | epoch: [19/30] iter: [11/391] loss_D: 1.3864 loss_G: 0.6928 +2018-11-15 10:51:36,978 | epoch: [19/30] iter: [12/391] loss_D: 1.3869 loss_G: 0.6932 +2018-11-15 10:51:41,190 | epoch: [19/30] iter: [13/391] loss_D: 1.3879 loss_G: 0.6933 +2018-11-15 10:51:47,513 | epoch: [19/30] iter: [14/391] loss_D: 1.3873 loss_G: 0.6926 +2018-11-15 10:51:53,212 | epoch: [19/30] iter: [15/391] loss_D: 1.3868 loss_G: 0.6928 +2018-11-15 10:51:58,230 | epoch: [19/30] iter: [16/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 10:52:03,765 | epoch: [19/30] iter: [17/391] loss_D: 1.3870 loss_G: 0.6928 +2018-11-15 10:53:57,149 | epoch: [19/30] iter: [18/391] loss_D: 1.3868 loss_G: 0.6934 +2018-11-15 10:54:01,289 | epoch: [19/30] iter: [19/391] loss_D: 1.3872 loss_G: 0.6936 +2018-11-15 10:54:05,238 | epoch: [19/30] iter: [20/391] loss_D: 1.3867 loss_G: 0.6936 +2018-11-15 10:54:09,371 | epoch: [19/30] iter: [21/391] loss_D: 1.3869 loss_G: 0.6940 +2018-11-15 10:54:15,772 | epoch: [19/30] iter: [22/391] loss_D: 1.3868 loss_G: 0.6939 +2018-11-15 10:54:23,026 | epoch: [19/30] iter: [23/391] loss_D: 1.3859 loss_G: 0.6942 +2018-11-15 10:54:29,878 | epoch: [19/30] iter: [24/391] loss_D: 1.3859 loss_G: 0.6939 +2018-11-15 10:54:36,757 | epoch: [19/30] iter: [25/391] loss_D: 1.3870 loss_G: 0.6942 +2018-11-15 10:54:44,199 | epoch: [19/30] iter: [26/391] loss_D: 1.3869 loss_G: 0.6938 +2018-11-15 10:54:51,390 | epoch: [19/30] iter: [27/391] loss_D: 1.3852 loss_G: 0.6944 +2018-11-15 10:54:58,285 | epoch: [19/30] iter: [28/391] loss_D: 1.3845 loss_G: 0.6941 +2018-11-15 10:55:05,390 | epoch: [19/30] iter: [29/391] loss_D: 1.3854 loss_G: 0.6940 +2018-11-15 10:55:12,893 | epoch: [19/30] iter: [30/391] loss_D: 1.3853 loss_G: 0.6938 +2018-11-15 10:55:19,894 | epoch: [19/30] iter: [31/391] loss_D: 1.3857 loss_G: 0.6939 +2018-11-15 10:55:27,020 | epoch: [19/30] iter: [32/391] loss_D: 1.3847 loss_G: 0.6944 +2018-11-15 10:55:33,740 | epoch: [19/30] iter: [33/391] loss_D: 1.3857 loss_G: 0.6944 +2018-11-15 10:55:40,955 | epoch: [19/30] iter: [34/391] loss_D: 1.3852 loss_G: 0.6948 +2018-11-15 10:55:47,750 | epoch: [19/30] iter: [35/391] loss_D: 1.3859 loss_G: 0.6937 +2018-11-15 10:55:54,539 | epoch: [19/30] iter: [36/391] loss_D: 1.3853 loss_G: 0.6947 +2018-11-15 10:55:58,634 | epoch: [19/30] iter: [37/391] loss_D: 1.3846 loss_G: 0.6941 +2018-11-15 10:56:02,575 | epoch: [19/30] iter: [38/391] loss_D: 1.3851 loss_G: 0.6943 +2018-11-15 10:56:06,446 | epoch: [19/30] iter: [39/391] loss_D: 1.3858 loss_G: 0.6944 +2018-11-15 10:56:10,603 | epoch: [19/30] iter: [40/391] loss_D: 1.3851 loss_G: 0.6933 +2018-11-15 10:56:14,803 | epoch: [19/30] iter: [41/391] loss_D: 1.3857 loss_G: 0.6930 +2018-11-15 10:56:19,858 | epoch: [19/30] iter: [42/391] loss_D: 1.3866 loss_G: 0.6936 +2018-11-15 10:56:26,876 | epoch: [19/30] iter: [43/391] loss_D: 1.3852 loss_G: 0.6934 +2018-11-15 10:56:33,477 | epoch: [19/30] iter: [44/391] loss_D: 1.3866 loss_G: 0.6939 +2018-11-15 10:56:40,383 | epoch: [19/30] iter: [45/391] loss_D: 1.3862 loss_G: 0.6928 +2018-11-15 10:56:47,720 | epoch: [19/30] iter: [46/391] loss_D: 1.3867 loss_G: 0.6932 +2018-11-15 10:56:54,547 | epoch: [19/30] iter: [47/391] loss_D: 1.3856 loss_G: 0.6925 +2018-11-15 10:57:01,432 | epoch: [19/30] iter: [48/391] loss_D: 1.3872 loss_G: 0.6932 +2018-11-15 10:57:08,307 | epoch: [19/30] iter: [49/391] loss_D: 1.3866 loss_G: 0.6938 +2018-11-15 10:57:15,166 | epoch: [19/30] iter: [50/391] loss_D: 1.3871 loss_G: 0.6929 +2018-11-15 10:57:22,174 | epoch: [19/30] iter: [51/391] loss_D: 1.3879 loss_G: 0.6929 +2018-11-15 10:57:28,762 | epoch: [19/30] iter: [52/391] loss_D: 1.3886 loss_G: 0.6927 +2018-11-15 10:57:33,593 | epoch: [19/30] iter: [53/391] loss_D: 1.3874 loss_G: 0.6923 +2018-11-15 10:57:37,624 | epoch: [19/30] iter: [54/391] loss_D: 1.3868 loss_G: 0.6927 +2018-11-15 10:57:41,690 | epoch: [19/30] iter: [55/391] loss_D: 1.3866 loss_G: 0.6926 +2018-11-15 10:57:45,612 | epoch: [19/30] iter: [56/391] loss_D: 1.3869 loss_G: 0.6932 +2018-11-15 10:57:49,747 | epoch: [19/30] iter: [57/391] loss_D: 1.3873 loss_G: 0.6922 +2018-11-15 10:57:54,179 | epoch: [19/30] iter: [58/391] loss_D: 1.3867 loss_G: 0.6931 +2018-11-15 10:58:01,349 | epoch: [19/30] iter: [59/391] loss_D: 1.3874 loss_G: 0.6924 +2018-11-15 10:58:08,246 | epoch: [19/30] iter: [60/391] loss_D: 1.3876 loss_G: 0.6929 +2018-11-15 10:58:15,545 | epoch: [19/30] iter: [61/391] loss_D: 1.3862 loss_G: 0.6936 +2018-11-15 10:58:22,639 | epoch: [19/30] iter: [62/391] loss_D: 1.3867 loss_G: 0.6924 +2018-11-15 10:58:29,675 | epoch: [19/30] iter: [63/391] loss_D: 1.3868 loss_G: 0.6927 +2018-11-15 10:58:37,123 | epoch: [19/30] iter: [64/391] loss_D: 1.3868 loss_G: 0.6929 +2018-11-15 10:58:44,409 | epoch: [19/30] iter: [65/391] loss_D: 1.3856 loss_G: 0.6936 +2018-11-15 10:58:51,306 | epoch: [19/30] iter: [66/391] loss_D: 1.3858 loss_G: 0.6931 +2018-11-15 10:58:58,785 | epoch: [19/30] iter: [67/391] loss_D: 1.3858 loss_G: 0.6938 +2018-11-15 10:59:06,075 | epoch: [19/30] iter: [68/391] loss_D: 1.3852 loss_G: 0.6941 +2018-11-15 10:59:13,456 | epoch: [19/30] iter: [69/391] loss_D: 1.3846 loss_G: 0.6938 +2018-11-15 10:59:20,328 | epoch: [19/30] iter: [70/391] loss_D: 1.3849 loss_G: 0.6937 +2018-11-15 10:59:26,966 | epoch: [19/30] iter: [71/391] loss_D: 1.3847 loss_G: 0.6945 +2018-11-15 10:59:33,872 | epoch: [19/30] iter: [72/391] loss_D: 1.3843 loss_G: 0.6945 +2018-11-15 10:59:38,060 | epoch: [19/30] iter: [73/391] loss_D: 1.3848 loss_G: 0.6940 +2018-11-15 10:59:42,060 | epoch: [19/30] iter: [74/391] loss_D: 1.3851 loss_G: 0.6941 +2018-11-15 10:59:46,126 | epoch: [19/30] iter: [75/391] loss_D: 1.3855 loss_G: 0.6937 +2018-11-15 10:59:50,076 | epoch: [19/30] iter: [76/391] loss_D: 1.3849 loss_G: 0.6939 +2018-11-15 10:59:53,899 | epoch: [19/30] iter: [77/391] loss_D: 1.3839 loss_G: 0.6935 +2018-11-15 10:59:58,150 | epoch: [19/30] iter: [78/391] loss_D: 1.3856 loss_G: 0.6938 +2018-11-15 11:00:05,216 | epoch: [19/30] iter: [79/391] loss_D: 1.3847 loss_G: 0.6928 +2018-11-15 11:00:12,207 | epoch: [19/30] iter: [80/391] loss_D: 1.3860 loss_G: 0.6936 +2018-11-15 11:00:19,430 | epoch: [19/30] iter: [81/391] loss_D: 1.3861 loss_G: 0.6934 +2018-11-15 11:00:26,239 | epoch: [19/30] iter: [82/391] loss_D: 1.3842 loss_G: 0.6941 +2018-11-15 11:00:33,169 | epoch: [19/30] iter: [83/391] loss_D: 1.3859 loss_G: 0.6933 +2018-11-15 11:00:39,999 | epoch: [19/30] iter: [84/391] loss_D: 1.3851 loss_G: 0.6936 +2018-11-15 11:00:47,040 | epoch: [19/30] iter: [85/391] loss_D: 1.3853 loss_G: 0.6935 +2018-11-15 11:00:53,867 | epoch: [19/30] iter: [86/391] loss_D: 1.3851 loss_G: 0.6937 +2018-11-15 11:01:00,890 | epoch: [19/30] iter: [87/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 11:01:07,439 | epoch: [19/30] iter: [88/391] loss_D: 1.3858 loss_G: 0.6946 +2018-11-15 11:01:14,688 | epoch: [19/30] iter: [89/391] loss_D: 1.3838 loss_G: 0.6934 +2018-11-15 11:01:21,685 | epoch: [19/30] iter: [90/391] loss_D: 1.3840 loss_G: 0.6939 +2018-11-15 11:01:28,444 | epoch: [19/30] iter: [91/391] loss_D: 1.3840 loss_G: 0.6936 +2018-11-15 11:01:33,253 | epoch: [19/30] iter: [92/391] loss_D: 1.3865 loss_G: 0.6938 +2018-11-15 11:01:37,384 | epoch: [19/30] iter: [93/391] loss_D: 1.3853 loss_G: 0.6914 +2018-11-15 11:01:41,380 | epoch: [19/30] iter: [94/391] loss_D: 1.3884 loss_G: 0.6916 +2018-11-15 11:01:45,374 | epoch: [19/30] iter: [95/391] loss_D: 1.3906 loss_G: 0.6881 +2018-11-15 11:01:49,490 | epoch: [19/30] iter: [96/391] loss_D: 1.3893 loss_G: 0.6912 +2018-11-15 11:01:53,713 | epoch: [19/30] iter: [97/391] loss_D: 1.3911 loss_G: 0.6918 +2018-11-15 11:01:58,024 | epoch: [19/30] iter: [98/391] loss_D: 1.3885 loss_G: 0.6963 +2018-11-15 11:02:04,931 | epoch: [19/30] iter: [99/391] loss_D: 1.3856 loss_G: 0.7006 +2018-11-15 11:02:12,301 | epoch: [19/30] iter: [100/391] loss_D: 1.3842 loss_G: 0.7014 +2018-11-15 11:02:19,180 | epoch: [19/30] iter: [101/391] loss_D: 1.3843 loss_G: 0.7006 +2018-11-15 11:02:26,616 | epoch: [19/30] iter: [102/391] loss_D: 1.3844 loss_G: 0.6979 +2018-11-15 11:02:33,483 | epoch: [19/30] iter: [103/391] loss_D: 1.3874 loss_G: 0.6942 +2018-11-15 11:02:40,432 | epoch: [19/30] iter: [104/391] loss_D: 1.3905 loss_G: 0.6929 +2018-11-15 11:02:47,226 | epoch: [19/30] iter: [105/391] loss_D: 1.3865 loss_G: 0.6936 +2018-11-15 11:02:54,079 | epoch: [19/30] iter: [106/391] loss_D: 1.3880 loss_G: 0.6934 +2018-11-15 11:03:00,929 | epoch: [19/30] iter: [107/391] loss_D: 1.3877 loss_G: 0.6939 +2018-11-15 11:03:08,308 | epoch: [19/30] iter: [108/391] loss_D: 1.3891 loss_G: 0.6935 +2018-11-15 11:03:15,540 | epoch: [19/30] iter: [109/391] loss_D: 1.3870 loss_G: 0.6944 +2018-11-15 11:03:22,613 | epoch: [19/30] iter: [110/391] loss_D: 1.3863 loss_G: 0.6951 +2018-11-15 11:03:29,708 | epoch: [19/30] iter: [111/391] loss_D: 1.3865 loss_G: 0.6943 +2018-11-15 11:03:36,293 | epoch: [19/30] iter: [112/391] loss_D: 1.3876 loss_G: 0.6938 +2018-11-15 11:03:43,017 | epoch: [19/30] iter: [113/391] loss_D: 1.3887 loss_G: 0.6942 +2018-11-15 11:03:46,915 | epoch: [19/30] iter: [114/391] loss_D: 1.3875 loss_G: 0.6927 +2018-11-15 11:03:50,799 | epoch: [19/30] iter: [115/391] loss_D: 1.3864 loss_G: 0.6926 +2018-11-15 11:03:54,949 | epoch: [19/30] iter: [116/391] loss_D: 1.3877 loss_G: 0.6920 +2018-11-15 11:03:58,801 | epoch: [19/30] iter: [117/391] loss_D: 1.3886 loss_G: 0.6928 +2018-11-15 11:05:49,286 | epoch: [19/30] iter: [118/391] loss_D: 1.3871 loss_G: 0.6926 +2018-11-15 11:05:53,367 | epoch: [19/30] iter: [119/391] loss_D: 1.3871 loss_G: 0.6935 +2018-11-15 11:05:57,376 | epoch: [19/30] iter: [120/391] loss_D: 1.3858 loss_G: 0.6939 +2018-11-15 11:06:01,589 | epoch: [19/30] iter: [121/391] loss_D: 1.3858 loss_G: 0.6946 +2018-11-15 11:06:08,045 | epoch: [19/30] iter: [122/391] loss_D: 1.3862 loss_G: 0.6945 +2018-11-15 11:06:15,030 | epoch: [19/30] iter: [123/391] loss_D: 1.3872 loss_G: 0.6942 +2018-11-15 11:06:21,828 | epoch: [19/30] iter: [124/391] loss_D: 1.3872 loss_G: 0.6936 +2018-11-15 11:06:29,039 | epoch: [19/30] iter: [125/391] loss_D: 1.3862 loss_G: 0.6939 +2018-11-15 11:06:35,915 | epoch: [19/30] iter: [126/391] loss_D: 1.3887 loss_G: 0.6928 +2018-11-15 11:06:42,381 | epoch: [19/30] iter: [127/391] loss_D: 1.3869 loss_G: 0.6931 +2018-11-15 11:06:49,484 | epoch: [19/30] iter: [128/391] loss_D: 1.3888 loss_G: 0.6927 +2018-11-15 11:06:57,086 | epoch: [19/30] iter: [129/391] loss_D: 1.3886 loss_G: 0.6920 +2018-11-15 11:07:04,145 | epoch: [19/30] iter: [130/391] loss_D: 1.3890 loss_G: 0.6938 +2018-11-15 11:07:11,044 | epoch: [19/30] iter: [131/391] loss_D: 1.3869 loss_G: 0.6941 +2018-11-15 11:07:18,103 | epoch: [19/30] iter: [132/391] loss_D: 1.3859 loss_G: 0.6938 +2018-11-15 11:07:24,880 | epoch: [19/30] iter: [133/391] loss_D: 1.3848 loss_G: 0.6951 +2018-11-15 11:07:32,316 | epoch: [19/30] iter: [134/391] loss_D: 1.3857 loss_G: 0.6954 +2018-11-15 11:07:39,045 | epoch: [19/30] iter: [135/391] loss_D: 1.3849 loss_G: 0.6944 +2018-11-15 11:07:45,813 | epoch: [19/30] iter: [136/391] loss_D: 1.3855 loss_G: 0.6926 +2018-11-15 11:07:52,982 | epoch: [19/30] iter: [137/391] loss_D: 1.3851 loss_G: 0.6927 +2018-11-15 11:07:59,979 | epoch: [19/30] iter: [138/391] loss_D: 1.3847 loss_G: 0.6930 +2018-11-15 11:08:06,869 | epoch: [19/30] iter: [139/391] loss_D: 1.3856 loss_G: 0.6921 +2018-11-15 11:08:13,739 | epoch: [19/30] iter: [140/391] loss_D: 1.3849 loss_G: 0.6925 +2018-11-15 11:08:20,862 | epoch: [19/30] iter: [141/391] loss_D: 1.3857 loss_G: 0.6932 +2018-11-15 11:08:27,947 | epoch: [19/30] iter: [142/391] loss_D: 1.3863 loss_G: 0.6932 +2018-11-15 11:08:35,144 | epoch: [19/30] iter: [143/391] loss_D: 1.3855 loss_G: 0.6935 +2018-11-15 11:08:42,183 | epoch: [19/30] iter: [144/391] loss_D: 1.3869 loss_G: 0.6947 +2018-11-15 11:08:49,138 | epoch: [19/30] iter: [145/391] loss_D: 1.3852 loss_G: 0.6940 +2018-11-15 11:08:56,066 | epoch: [19/30] iter: [146/391] loss_D: 1.3864 loss_G: 0.6937 +2018-11-15 11:09:03,026 | epoch: [19/30] iter: [147/391] loss_D: 1.3853 loss_G: 0.6944 +2018-11-15 11:09:09,476 | epoch: [19/30] iter: [148/391] loss_D: 1.3849 loss_G: 0.6942 +2018-11-15 11:09:13,798 | epoch: [19/30] iter: [149/391] loss_D: 1.3847 loss_G: 0.6933 +2018-11-15 11:09:18,016 | epoch: [19/30] iter: [150/391] loss_D: 1.3850 loss_G: 0.6937 +2018-11-15 11:09:22,247 | epoch: [19/30] iter: [151/391] loss_D: 1.3841 loss_G: 0.6941 +2018-11-15 11:09:26,176 | epoch: [19/30] iter: [152/391] loss_D: 1.3838 loss_G: 0.6950 +2018-11-15 11:09:30,305 | epoch: [19/30] iter: [153/391] loss_D: 1.3850 loss_G: 0.6950 +2018-11-15 11:09:34,388 | epoch: [19/30] iter: [154/391] loss_D: 1.3847 loss_G: 0.6940 +2018-11-15 11:09:38,646 | epoch: [19/30] iter: [155/391] loss_D: 1.3832 loss_G: 0.6922 +2018-11-15 11:09:45,823 | epoch: [19/30] iter: [156/391] loss_D: 1.3856 loss_G: 0.6935 +2018-11-15 11:09:52,797 | epoch: [19/30] iter: [157/391] loss_D: 1.3874 loss_G: 0.6935 +2018-11-15 11:09:59,887 | epoch: [19/30] iter: [158/391] loss_D: 1.3861 loss_G: 0.6941 +2018-11-15 11:10:06,604 | epoch: [19/30] iter: [159/391] loss_D: 1.3866 loss_G: 0.6950 +2018-11-15 11:10:13,384 | epoch: [19/30] iter: [160/391] loss_D: 1.3864 loss_G: 0.6958 +2018-11-15 11:10:20,262 | epoch: [19/30] iter: [161/391] loss_D: 1.3842 loss_G: 0.6937 +2018-11-15 11:10:27,002 | epoch: [19/30] iter: [162/391] loss_D: 1.3854 loss_G: 0.6953 +2018-11-15 11:10:33,664 | epoch: [19/30] iter: [163/391] loss_D: 1.3860 loss_G: 0.6950 +2018-11-15 11:10:40,333 | epoch: [19/30] iter: [164/391] loss_D: 1.3844 loss_G: 0.6949 +2018-11-15 11:10:47,122 | epoch: [19/30] iter: [165/391] loss_D: 1.3854 loss_G: 0.6934 +2018-11-15 11:10:54,529 | epoch: [19/30] iter: [166/391] loss_D: 1.3859 loss_G: 0.6935 +2018-11-15 11:11:01,533 | epoch: [19/30] iter: [167/391] loss_D: 1.3867 loss_G: 0.6928 +2018-11-15 11:11:08,463 | epoch: [19/30] iter: [168/391] loss_D: 1.3878 loss_G: 0.6926 +2018-11-15 11:11:15,419 | epoch: [19/30] iter: [169/391] loss_D: 1.3867 loss_G: 0.6923 +2018-11-15 11:11:22,582 | epoch: [19/30] iter: [170/391] loss_D: 1.3862 loss_G: 0.6924 +2018-11-15 11:11:29,947 | epoch: [19/30] iter: [171/391] loss_D: 1.3886 loss_G: 0.6919 +2018-11-15 11:11:36,825 | epoch: [19/30] iter: [172/391] loss_D: 1.3885 loss_G: 0.6926 +2018-11-15 11:11:43,828 | epoch: [19/30] iter: [173/391] loss_D: 1.3877 loss_G: 0.6926 +2018-11-15 11:11:50,904 | epoch: [19/30] iter: [174/391] loss_D: 1.3874 loss_G: 0.6936 +2018-11-15 11:11:57,773 | epoch: [19/30] iter: [175/391] loss_D: 1.3868 loss_G: 0.6922 +2018-11-15 11:12:04,669 | epoch: [19/30] iter: [176/391] loss_D: 1.3875 loss_G: 0.6937 +2018-11-15 11:12:11,889 | epoch: [19/30] iter: [177/391] loss_D: 1.3865 loss_G: 0.6928 +2018-11-15 11:12:19,002 | epoch: [19/30] iter: [178/391] loss_D: 1.3873 loss_G: 0.6919 +2018-11-15 11:12:25,460 | epoch: [19/30] iter: [179/391] loss_D: 1.3880 loss_G: 0.6945 +2018-11-15 11:12:32,491 | epoch: [19/30] iter: [180/391] loss_D: 1.3849 loss_G: 0.6948 +2018-11-15 11:12:39,228 | epoch: [19/30] iter: [181/391] loss_D: 1.3868 loss_G: 0.6954 +2018-11-15 11:12:45,875 | epoch: [19/30] iter: [182/391] loss_D: 1.3858 loss_G: 0.6957 +2018-11-15 11:12:53,084 | epoch: [19/30] iter: [183/391] loss_D: 1.3864 loss_G: 0.6941 +2018-11-15 11:13:00,672 | epoch: [19/30] iter: [184/391] loss_D: 1.3859 loss_G: 0.6940 +2018-11-15 11:13:07,899 | epoch: [19/30] iter: [185/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 11:13:14,792 | epoch: [19/30] iter: [186/391] loss_D: 1.3862 loss_G: 0.6941 +2018-11-15 11:13:21,515 | epoch: [19/30] iter: [187/391] loss_D: 1.3856 loss_G: 0.6923 +2018-11-15 11:13:28,995 | epoch: [19/30] iter: [188/391] loss_D: 1.3849 loss_G: 0.6943 +2018-11-15 11:13:37,849 | epoch: [19/30] iter: [189/391] loss_D: 1.3848 loss_G: 0.6941 +2018-11-15 11:13:48,797 | epoch: [19/30] iter: [190/391] loss_D: 1.3872 loss_G: 0.6936 +2018-11-15 11:14:00,596 | epoch: [19/30] iter: [191/391] loss_D: 1.3862 loss_G: 0.6945 +2018-11-15 11:14:09,472 | epoch: [19/30] iter: [192/391] loss_D: 1.3858 loss_G: 0.6932 +2018-11-15 11:14:17,571 | epoch: [19/30] iter: [193/391] loss_D: 1.3852 loss_G: 0.6940 +2018-11-15 11:14:25,511 | epoch: [19/30] iter: [194/391] loss_D: 1.3863 loss_G: 0.6939 +2018-11-15 11:14:30,819 | epoch: [19/30] iter: [195/391] loss_D: 1.3856 loss_G: 0.6950 +2018-11-15 11:14:36,682 | epoch: [19/30] iter: [196/391] loss_D: 1.3867 loss_G: 0.6939 +2018-11-15 11:14:42,822 | epoch: [19/30] iter: [197/391] loss_D: 1.3868 loss_G: 0.6931 +2018-11-15 11:14:48,195 | epoch: [19/30] iter: [198/391] loss_D: 1.3860 loss_G: 0.6944 +2018-11-15 11:14:57,353 | epoch: [19/30] iter: [199/391] loss_D: 1.3860 loss_G: 0.6947 +2018-11-15 11:15:03,647 | epoch: [19/30] iter: [200/391] loss_D: 1.3855 loss_G: 0.6945 +2018-11-15 11:15:09,457 | epoch: [19/30] iter: [201/391] loss_D: 1.3858 loss_G: 0.6939 +2018-11-15 11:15:14,522 | epoch: [19/30] iter: [202/391] loss_D: 1.3867 loss_G: 0.6930 +2018-11-15 11:15:22,657 | epoch: [19/30] iter: [203/391] loss_D: 1.3859 loss_G: 0.6941 +2018-11-15 11:15:30,465 | epoch: [19/30] iter: [204/391] loss_D: 1.3857 loss_G: 0.6925 +2018-11-15 11:15:38,010 | epoch: [19/30] iter: [205/391] loss_D: 1.3857 loss_G: 0.6926 +2018-11-15 11:15:43,310 | epoch: [19/30] iter: [206/391] loss_D: 1.3865 loss_G: 0.6925 +2018-11-15 11:15:51,667 | epoch: [19/30] iter: [207/391] loss_D: 1.3862 loss_G: 0.6926 +2018-11-15 11:15:58,781 | epoch: [19/30] iter: [208/391] loss_D: 1.3870 loss_G: 0.6923 +2018-11-15 11:16:04,090 | epoch: [19/30] iter: [209/391] loss_D: 1.3879 loss_G: 0.6919 +2018-11-15 11:16:09,366 | epoch: [19/30] iter: [210/391] loss_D: 1.3891 loss_G: 0.6918 +2018-11-15 11:16:16,510 | epoch: [19/30] iter: [211/391] loss_D: 1.3898 loss_G: 0.6925 +2018-11-15 11:16:24,642 | epoch: [19/30] iter: [212/391] loss_D: 1.3884 loss_G: 0.6923 +2018-11-15 11:16:32,128 | epoch: [19/30] iter: [213/391] loss_D: 1.3887 loss_G: 0.6953 +2018-11-15 11:16:39,612 | epoch: [19/30] iter: [214/391] loss_D: 1.3872 loss_G: 0.6945 +2018-11-15 11:16:45,467 | epoch: [19/30] iter: [215/391] loss_D: 1.3863 loss_G: 0.6930 +2018-11-15 11:16:49,957 | epoch: [19/30] iter: [216/391] loss_D: 1.3875 loss_G: 0.6936 +2018-11-15 11:16:55,199 | epoch: [19/30] iter: [217/391] loss_D: 1.3873 loss_G: 0.6931 +2018-11-15 11:19:17,227 | epoch: [19/30] iter: [218/391] loss_D: 1.3869 loss_G: 0.6931 +2018-11-15 11:19:23,396 | epoch: [19/30] iter: [219/391] loss_D: 1.3853 loss_G: 0.6937 +2018-11-15 11:19:28,625 | epoch: [19/30] iter: [220/391] loss_D: 1.3866 loss_G: 0.6943 +2018-11-15 11:19:33,940 | epoch: [19/30] iter: [221/391] loss_D: 1.3868 loss_G: 0.6937 +2018-11-15 11:19:39,746 | epoch: [19/30] iter: [222/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-15 11:19:45,403 | epoch: [19/30] iter: [223/391] loss_D: 1.3859 loss_G: 0.6934 +2018-11-15 11:19:50,740 | epoch: [19/30] iter: [224/391] loss_D: 1.3869 loss_G: 0.6936 +2018-11-15 11:19:58,930 | epoch: [19/30] iter: [225/391] loss_D: 1.3856 loss_G: 0.6939 +2018-11-15 11:20:10,004 | epoch: [19/30] iter: [226/391] loss_D: 1.3870 loss_G: 0.6946 +2018-11-15 11:20:17,633 | epoch: [19/30] iter: [227/391] loss_D: 1.3850 loss_G: 0.6945 +2018-11-15 11:20:24,794 | epoch: [19/30] iter: [228/391] loss_D: 1.3865 loss_G: 0.6938 +2018-11-15 11:20:31,655 | epoch: [19/30] iter: [229/391] loss_D: 1.3841 loss_G: 0.6941 +2018-11-15 11:20:37,165 | epoch: [19/30] iter: [230/391] loss_D: 1.3857 loss_G: 0.6935 +2018-11-15 11:20:47,117 | epoch: [19/30] iter: [231/391] loss_D: 1.3851 loss_G: 0.6938 +2018-11-15 11:20:57,909 | epoch: [19/30] iter: [232/391] loss_D: 1.3859 loss_G: 0.6938 +2018-11-15 11:21:05,082 | epoch: [19/30] iter: [233/391] loss_D: 1.3871 loss_G: 0.6937 +2018-11-15 11:21:10,231 | epoch: [19/30] iter: [234/391] loss_D: 1.3865 loss_G: 0.6934 +2018-11-15 11:21:18,045 | epoch: [19/30] iter: [235/391] loss_D: 1.3862 loss_G: 0.6927 +2018-11-15 11:21:25,245 | epoch: [19/30] iter: [236/391] loss_D: 1.3866 loss_G: 0.6939 +2018-11-15 11:21:30,604 | epoch: [19/30] iter: [237/391] loss_D: 1.3852 loss_G: 0.6949 +2018-11-15 11:21:36,024 | epoch: [19/30] iter: [238/391] loss_D: 1.3851 loss_G: 0.6949 +2018-11-15 11:21:42,034 | epoch: [19/30] iter: [239/391] loss_D: 1.3863 loss_G: 0.6936 +2018-11-15 11:21:47,373 | epoch: [19/30] iter: [240/391] loss_D: 1.3852 loss_G: 0.6942 +2018-11-15 11:21:52,760 | epoch: [19/30] iter: [241/391] loss_D: 1.3874 loss_G: 0.6938 +2018-11-15 11:21:58,774 | epoch: [19/30] iter: [242/391] loss_D: 1.3853 loss_G: 0.6944 +2018-11-15 11:22:04,508 | epoch: [19/30] iter: [243/391] loss_D: 1.3866 loss_G: 0.6936 +2018-11-15 11:22:09,337 | epoch: [19/30] iter: [244/391] loss_D: 1.3863 loss_G: 0.6938 +2018-11-15 11:22:15,382 | epoch: [19/30] iter: [245/391] loss_D: 1.3868 loss_G: 0.6939 +2018-11-15 11:22:21,415 | epoch: [19/30] iter: [246/391] loss_D: 1.3874 loss_G: 0.6932 +2018-11-15 11:22:26,465 | epoch: [19/30] iter: [247/391] loss_D: 1.3877 loss_G: 0.6922 +2018-11-15 11:22:32,313 | epoch: [19/30] iter: [248/391] loss_D: 1.3863 loss_G: 0.6925 +2018-11-15 11:22:38,543 | epoch: [19/30] iter: [249/391] loss_D: 1.3874 loss_G: 0.6935 +2018-11-15 11:22:44,501 | epoch: [19/30] iter: [250/391] loss_D: 1.3865 loss_G: 0.6935 +2018-11-15 11:22:49,737 | epoch: [19/30] iter: [251/391] loss_D: 1.3879 loss_G: 0.6926 +2018-11-15 11:22:57,878 | epoch: [19/30] iter: [252/391] loss_D: 1.3852 loss_G: 0.6948 +2018-11-15 11:23:05,292 | epoch: [19/30] iter: [253/391] loss_D: 1.3857 loss_G: 0.6926 +2018-11-15 11:23:10,529 | epoch: [19/30] iter: [254/391] loss_D: 1.3853 loss_G: 0.6940 +2018-11-15 11:23:18,351 | epoch: [19/30] iter: [255/391] loss_D: 1.3863 loss_G: 0.6946 +2018-11-15 11:23:25,846 | epoch: [19/30] iter: [256/391] loss_D: 1.3870 loss_G: 0.6939 +2018-11-15 11:23:33,298 | epoch: [19/30] iter: [257/391] loss_D: 1.3877 loss_G: 0.6938 +2018-11-15 11:23:38,235 | epoch: [19/30] iter: [258/391] loss_D: 1.3877 loss_G: 0.6931 +2018-11-15 11:23:43,813 | epoch: [19/30] iter: [259/391] loss_D: 1.3867 loss_G: 0.6919 +2018-11-15 11:23:51,323 | epoch: [19/30] iter: [260/391] loss_D: 1.3855 loss_G: 0.6926 +2018-11-15 11:23:59,230 | epoch: [19/30] iter: [261/391] loss_D: 1.3870 loss_G: 0.6920 +2018-11-15 11:24:04,692 | epoch: [19/30] iter: [262/391] loss_D: 1.3870 loss_G: 0.6927 +2018-11-15 11:24:10,689 | epoch: [19/30] iter: [263/391] loss_D: 1.3854 loss_G: 0.6925 +2018-11-15 11:24:16,618 | epoch: [19/30] iter: [264/391] loss_D: 1.3859 loss_G: 0.6938 +2018-11-15 11:24:25,265 | epoch: [19/30] iter: [265/391] loss_D: 1.3867 loss_G: 0.6934 +2018-11-15 11:24:31,294 | epoch: [19/30] iter: [266/391] loss_D: 1.3856 loss_G: 0.6920 +2018-11-15 11:24:37,646 | epoch: [19/30] iter: [267/391] loss_D: 1.3849 loss_G: 0.6926 +2018-11-15 11:24:46,163 | epoch: [19/30] iter: [268/391] loss_D: 1.3853 loss_G: 0.6940 +2018-11-15 11:24:53,634 | epoch: [19/30] iter: [269/391] loss_D: 1.3854 loss_G: 0.6931 +2018-11-15 11:24:59,577 | epoch: [19/30] iter: [270/391] loss_D: 1.3859 loss_G: 0.6941 +2018-11-15 11:25:05,645 | epoch: [19/30] iter: [271/391] loss_D: 1.3851 loss_G: 0.6941 +2018-11-15 11:25:10,810 | epoch: [19/30] iter: [272/391] loss_D: 1.3855 loss_G: 0.6933 +2018-11-15 11:25:16,460 | epoch: [19/30] iter: [273/391] loss_D: 1.3845 loss_G: 0.6921 +2018-11-15 11:25:22,694 | epoch: [19/30] iter: [274/391] loss_D: 1.3847 loss_G: 0.6929 +2018-11-15 11:25:28,482 | epoch: [19/30] iter: [275/391] loss_D: 1.3837 loss_G: 0.6945 +2018-11-15 11:25:36,942 | epoch: [19/30] iter: [276/391] loss_D: 1.3867 loss_G: 0.6937 +2018-11-15 11:25:43,225 | epoch: [19/30] iter: [277/391] loss_D: 1.3861 loss_G: 0.6946 +2018-11-15 11:25:49,135 | epoch: [19/30] iter: [278/391] loss_D: 1.3858 loss_G: 0.6929 +2018-11-15 11:25:54,170 | epoch: [19/30] iter: [279/391] loss_D: 1.3862 loss_G: 0.6921 +2018-11-15 11:26:02,655 | epoch: [19/30] iter: [280/391] loss_D: 1.3867 loss_G: 0.6940 +2018-11-15 11:26:09,618 | epoch: [19/30] iter: [281/391] loss_D: 1.3859 loss_G: 0.6939 +2018-11-15 11:26:14,508 | epoch: [19/30] iter: [282/391] loss_D: 1.3866 loss_G: 0.6947 +2018-11-15 11:26:22,899 | epoch: [19/30] iter: [283/391] loss_D: 1.3866 loss_G: 0.6940 +2018-11-15 11:26:29,719 | epoch: [19/30] iter: [284/391] loss_D: 1.3892 loss_G: 0.6918 +2018-11-15 11:26:35,224 | epoch: [19/30] iter: [285/391] loss_D: 1.3870 loss_G: 0.6937 +2018-11-15 11:26:40,520 | epoch: [19/30] iter: [286/391] loss_D: 1.3890 loss_G: 0.6935 +2018-11-15 11:26:44,904 | epoch: [19/30] iter: [287/391] loss_D: 1.3870 loss_G: 0.6932 +2018-11-15 11:26:50,173 | epoch: [19/30] iter: [288/391] loss_D: 1.3887 loss_G: 0.6932 +2018-11-15 11:26:57,602 | epoch: [19/30] iter: [289/391] loss_D: 1.3871 loss_G: 0.6933 +2018-11-15 11:27:07,186 | epoch: [19/30] iter: [290/391] loss_D: 1.3879 loss_G: 0.6936 +2018-11-15 11:27:15,258 | epoch: [19/30] iter: [291/391] loss_D: 1.3869 loss_G: 0.6949 +2018-11-15 11:27:20,615 | epoch: [19/30] iter: [292/391] loss_D: 1.3880 loss_G: 0.6932 +2018-11-15 11:27:26,681 | epoch: [19/30] iter: [293/391] loss_D: 1.3882 loss_G: 0.6932 +2018-11-15 11:27:32,225 | epoch: [19/30] iter: [294/391] loss_D: 1.3860 loss_G: 0.6937 +2018-11-15 11:27:40,433 | epoch: [19/30] iter: [295/391] loss_D: 1.3871 loss_G: 0.6931 +2018-11-15 11:27:49,172 | epoch: [19/30] iter: [296/391] loss_D: 1.3873 loss_G: 0.6941 +2018-11-15 11:27:55,411 | epoch: [19/30] iter: [297/391] loss_D: 1.3878 loss_G: 0.6937 +2018-11-15 11:28:01,463 | epoch: [19/30] iter: [298/391] loss_D: 1.3863 loss_G: 0.6934 +2018-11-15 11:28:09,726 | epoch: [19/30] iter: [299/391] loss_D: 1.3868 loss_G: 0.6939 +2018-11-15 11:28:15,686 | epoch: [19/30] iter: [300/391] loss_D: 1.3863 loss_G: 0.6934 +2018-11-15 11:28:21,865 | epoch: [19/30] iter: [301/391] loss_D: 1.3859 loss_G: 0.6940 +2018-11-15 11:28:27,070 | epoch: [19/30] iter: [302/391] loss_D: 1.3878 loss_G: 0.6929 +2018-11-15 11:28:35,233 | epoch: [19/30] iter: [303/391] loss_D: 1.3864 loss_G: 0.6933 +2018-11-15 11:28:43,153 | epoch: [19/30] iter: [304/391] loss_D: 1.3879 loss_G: 0.6927 +2018-11-15 11:28:50,336 | epoch: [19/30] iter: [305/391] loss_D: 1.3863 loss_G: 0.6924 +2018-11-15 11:28:55,792 | epoch: [19/30] iter: [306/391] loss_D: 1.3862 loss_G: 0.6937 +2018-11-15 11:29:04,057 | epoch: [19/30] iter: [307/391] loss_D: 1.3863 loss_G: 0.6940 +2018-11-15 11:29:11,104 | epoch: [19/30] iter: [308/391] loss_D: 1.3857 loss_G: 0.6927 +2018-11-15 11:29:18,136 | epoch: [19/30] iter: [309/391] loss_D: 1.3852 loss_G: 0.6935 +2018-11-15 11:29:23,158 | epoch: [19/30] iter: [310/391] loss_D: 1.3858 loss_G: 0.6939 +2018-11-15 11:29:33,058 | epoch: [19/30] iter: [311/391] loss_D: 1.3855 loss_G: 0.6946 +2018-11-15 11:29:43,869 | epoch: [19/30] iter: [312/391] loss_D: 1.3869 loss_G: 0.6935 +2018-11-15 11:29:50,866 | epoch: [19/30] iter: [313/391] loss_D: 1.3866 loss_G: 0.6933 +2018-11-15 11:29:56,999 | epoch: [19/30] iter: [314/391] loss_D: 1.3848 loss_G: 0.6932 +2018-11-15 11:30:05,843 | epoch: [19/30] iter: [315/391] loss_D: 1.3861 loss_G: 0.6941 +2018-11-15 11:30:11,726 | epoch: [19/30] iter: [316/391] loss_D: 1.3848 loss_G: 0.6927 +2018-11-15 11:30:16,214 | epoch: [19/30] iter: [317/391] loss_D: 1.3852 loss_G: 0.6933 +2018-11-15 11:33:00,216 | epoch: [19/30] iter: [318/391] loss_D: 1.3865 loss_G: 0.6947 +2018-11-15 11:33:07,750 | epoch: [19/30] iter: [319/391] loss_D: 1.3873 loss_G: 0.6942 +2018-11-15 11:33:16,717 | epoch: [19/30] iter: [320/391] loss_D: 1.3877 loss_G: 0.6942 +2018-11-15 11:33:25,796 | epoch: [19/30] iter: [321/391] loss_D: 1.3856 loss_G: 0.6940 +2018-11-15 11:33:35,225 | epoch: [19/30] iter: [322/391] loss_D: 1.3866 loss_G: 0.6941 +2018-11-15 11:33:44,895 | epoch: [19/30] iter: [323/391] loss_D: 1.3844 loss_G: 0.6950 +2018-11-15 11:33:54,231 | epoch: [19/30] iter: [324/391] loss_D: 1.3864 loss_G: 0.6945 +2018-11-15 11:34:03,394 | epoch: [19/30] iter: [325/391] loss_D: 1.3853 loss_G: 0.6940 +2018-11-15 11:34:13,083 | epoch: [19/30] iter: [326/391] loss_D: 1.3845 loss_G: 0.6940 +2018-11-15 11:34:22,363 | epoch: [19/30] iter: [327/391] loss_D: 1.3852 loss_G: 0.6948 +2018-11-15 11:34:32,482 | epoch: [19/30] iter: [328/391] loss_D: 1.3841 loss_G: 0.6939 +2018-11-15 11:34:42,419 | epoch: [19/30] iter: [329/391] loss_D: 1.3852 loss_G: 0.6938 +2018-11-15 11:34:51,798 | epoch: [19/30] iter: [330/391] loss_D: 1.3858 loss_G: 0.6930 +2018-11-15 11:35:00,726 | epoch: [19/30] iter: [331/391] loss_D: 1.3846 loss_G: 0.6942 +2018-11-15 11:35:10,634 | epoch: [19/30] iter: [332/391] loss_D: 1.3846 loss_G: 0.6946 +2018-11-15 11:35:20,009 | epoch: [19/30] iter: [333/391] loss_D: 1.3846 loss_G: 0.6936 +2018-11-15 11:35:29,200 | epoch: [19/30] iter: [334/391] loss_D: 1.3873 loss_G: 0.6936 +2018-11-15 11:35:38,843 | epoch: [19/30] iter: [335/391] loss_D: 1.3845 loss_G: 0.6934 +2018-11-15 11:35:48,146 | epoch: [19/30] iter: [336/391] loss_D: 1.3871 loss_G: 0.6920 +2018-11-15 11:35:57,781 | epoch: [19/30] iter: [337/391] loss_D: 1.3872 loss_G: 0.6914 +2018-11-15 11:36:07,541 | epoch: [19/30] iter: [338/391] loss_D: 1.3866 loss_G: 0.6921 +2018-11-15 11:36:17,166 | epoch: [19/30] iter: [339/391] loss_D: 1.3877 loss_G: 0.6912 +2018-11-15 11:36:27,207 | epoch: [19/30] iter: [340/391] loss_D: 1.3894 loss_G: 0.6909 +2018-11-15 11:36:37,198 | epoch: [19/30] iter: [341/391] loss_D: 1.3888 loss_G: 0.6923 +2018-11-15 11:36:46,851 | epoch: [19/30] iter: [342/391] loss_D: 1.3884 loss_G: 0.6926 +2018-11-15 11:36:56,589 | epoch: [19/30] iter: [343/391] loss_D: 1.3880 loss_G: 0.6924 +2018-11-15 11:37:06,616 | epoch: [19/30] iter: [344/391] loss_D: 1.3884 loss_G: 0.6927 +2018-11-15 11:37:16,163 | epoch: [19/30] iter: [345/391] loss_D: 1.3876 loss_G: 0.6927 +2018-11-15 11:37:25,746 | epoch: [19/30] iter: [346/391] loss_D: 1.3899 loss_G: 0.6926 +2018-11-15 11:37:35,141 | epoch: [19/30] iter: [347/391] loss_D: 1.3883 loss_G: 0.6926 +2018-11-15 11:37:44,538 | epoch: [19/30] iter: [348/391] loss_D: 1.3884 loss_G: 0.6931 +2018-11-15 11:37:54,039 | epoch: [19/30] iter: [349/391] loss_D: 1.3886 loss_G: 0.6928 +2018-11-15 11:38:03,333 | epoch: [19/30] iter: [350/391] loss_D: 1.3886 loss_G: 0.6928 +2018-11-15 11:38:12,671 | epoch: [19/30] iter: [351/391] loss_D: 1.3883 loss_G: 0.6925 +2018-11-15 11:38:22,210 | epoch: [19/30] iter: [352/391] loss_D: 1.3879 loss_G: 0.6922 +2018-11-15 11:38:32,174 | epoch: [19/30] iter: [353/391] loss_D: 1.3883 loss_G: 0.6928 +2018-11-15 11:38:41,710 | epoch: [19/30] iter: [354/391] loss_D: 1.3875 loss_G: 0.6935 +2018-11-15 11:38:51,400 | epoch: [19/30] iter: [355/391] loss_D: 1.3877 loss_G: 0.6928 +2018-11-15 11:39:00,745 | epoch: [19/30] iter: [356/391] loss_D: 1.3874 loss_G: 0.6933 +2018-11-15 11:39:10,892 | epoch: [19/30] iter: [357/391] loss_D: 1.3868 loss_G: 0.6931 +2018-11-15 11:39:20,521 | epoch: [19/30] iter: [358/391] loss_D: 1.3871 loss_G: 0.6935 +2018-11-15 11:39:30,180 | epoch: [19/30] iter: [359/391] loss_D: 1.3873 loss_G: 0.6947 +2018-11-15 11:39:39,719 | epoch: [19/30] iter: [360/391] loss_D: 1.3864 loss_G: 0.6928 +2018-11-15 11:39:48,698 | epoch: [19/30] iter: [361/391] loss_D: 1.3865 loss_G: 0.6949 +2018-11-15 11:39:58,135 | epoch: [19/30] iter: [362/391] loss_D: 1.3870 loss_G: 0.6937 +2018-11-15 11:40:07,461 | epoch: [19/30] iter: [363/391] loss_D: 1.3848 loss_G: 0.6946 +2018-11-15 11:40:17,116 | epoch: [19/30] iter: [364/391] loss_D: 1.3869 loss_G: 0.6944 +2018-11-15 11:40:26,775 | epoch: [19/30] iter: [365/391] loss_D: 1.3859 loss_G: 0.6940 +2018-11-15 11:40:36,433 | epoch: [19/30] iter: [366/391] loss_D: 1.3850 loss_G: 0.6944 +2018-11-15 11:40:45,686 | epoch: [19/30] iter: [367/391] loss_D: 1.3855 loss_G: 0.6937 +2018-11-15 11:40:55,001 | epoch: [19/30] iter: [368/391] loss_D: 1.3843 loss_G: 0.6954 +2018-11-15 11:41:03,938 | epoch: [19/30] iter: [369/391] loss_D: 1.3868 loss_G: 0.6940 +2018-11-15 11:41:13,005 | epoch: [19/30] iter: [370/391] loss_D: 1.3860 loss_G: 0.6937 +2018-11-15 11:41:22,253 | epoch: [19/30] iter: [371/391] loss_D: 1.3850 loss_G: 0.6940 +2018-11-15 11:41:31,528 | epoch: [19/30] iter: [372/391] loss_D: 1.3854 loss_G: 0.6945 +2018-11-15 11:41:40,742 | epoch: [19/30] iter: [373/391] loss_D: 1.3844 loss_G: 0.6934 +2018-11-15 11:41:49,882 | epoch: [19/30] iter: [374/391] loss_D: 1.3844 loss_G: 0.6936 +2018-11-15 11:41:59,235 | epoch: [19/30] iter: [375/391] loss_D: 1.3844 loss_G: 0.6943 +2018-11-15 11:42:08,900 | epoch: [19/30] iter: [376/391] loss_D: 1.3869 loss_G: 0.6939 +2018-11-15 11:42:18,799 | epoch: [19/30] iter: [377/391] loss_D: 1.3864 loss_G: 0.6949 +2018-11-15 11:42:28,195 | epoch: [19/30] iter: [378/391] loss_D: 1.3846 loss_G: 0.6941 +2018-11-15 11:42:37,700 | epoch: [19/30] iter: [379/391] loss_D: 1.3857 loss_G: 0.6938 +2018-11-15 11:42:47,480 | epoch: [19/30] iter: [380/391] loss_D: 1.3851 loss_G: 0.6939 +2018-11-15 11:42:57,208 | epoch: [19/30] iter: [381/391] loss_D: 1.3856 loss_G: 0.6938 +2018-11-15 11:43:06,496 | epoch: [19/30] iter: [382/391] loss_D: 1.3848 loss_G: 0.6934 +2018-11-15 11:43:10,640 | epoch: [19/30] iter: [383/391] loss_D: 1.3866 loss_G: 0.6935 +2018-11-15 11:43:14,797 | epoch: [19/30] iter: [384/391] loss_D: 1.3832 loss_G: 0.6942 +2018-11-15 11:43:19,143 | epoch: [19/30] iter: [385/391] loss_D: 1.3849 loss_G: 0.6932 +2018-11-15 11:43:23,357 | epoch: [19/30] iter: [386/391] loss_D: 1.3866 loss_G: 0.6935 +2018-11-15 11:43:27,532 | epoch: [19/30] iter: [387/391] loss_D: 1.3860 loss_G: 0.6926 +2018-11-15 11:43:32,994 | epoch: [19/30] iter: [388/391] loss_D: 1.3858 loss_G: 0.6944 +2018-11-15 11:43:39,539 | epoch: [19/30] iter: [389/391] loss_D: 1.3875 loss_G: 0.6943 +2018-11-15 11:43:43,883 | epoch: [19/30] iter: [390/391] loss_D: 1.3867 loss_G: 0.6954 +2018-11-15 11:43:51,186 | epoch: [20/30] iter: [0/391] loss_D: 1.3858 loss_G: 0.6943 +2018-11-15 11:43:58,354 | epoch: [20/30] iter: [1/391] loss_D: 1.3885 loss_G: 0.6948 +2018-11-15 11:44:05,394 | epoch: [20/30] iter: [2/391] loss_D: 1.3858 loss_G: 0.6945 +2018-11-15 11:44:12,322 | epoch: [20/30] iter: [3/391] loss_D: 1.3871 loss_G: 0.6948 +2018-11-15 11:44:19,435 | epoch: [20/30] iter: [4/391] loss_D: 1.3868 loss_G: 0.6938 +2018-11-15 11:44:26,725 | epoch: [20/30] iter: [5/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 11:44:33,463 | epoch: [20/30] iter: [6/391] loss_D: 1.3857 loss_G: 0.6938 +2018-11-15 11:44:40,357 | epoch: [20/30] iter: [7/391] loss_D: 1.3872 loss_G: 0.6926 +2018-11-15 11:44:47,667 | epoch: [20/30] iter: [8/391] loss_D: 1.3870 loss_G: 0.6931 +2018-11-15 11:44:54,947 | epoch: [20/30] iter: [9/391] loss_D: 1.3871 loss_G: 0.6931 +2018-11-15 11:45:01,746 | epoch: [20/30] iter: [10/391] loss_D: 1.3875 loss_G: 0.6923 +2018-11-15 11:45:08,681 | epoch: [20/30] iter: [11/391] loss_D: 1.3877 loss_G: 0.6926 +2018-11-15 11:45:15,815 | epoch: [20/30] iter: [12/391] loss_D: 1.3869 loss_G: 0.6922 +2018-11-15 11:45:22,509 | epoch: [20/30] iter: [13/391] loss_D: 1.3880 loss_G: 0.6925 +2018-11-15 11:45:29,323 | epoch: [20/30] iter: [14/391] loss_D: 1.3884 loss_G: 0.6917 +2018-11-15 11:45:36,584 | epoch: [20/30] iter: [15/391] loss_D: 1.3871 loss_G: 0.6926 +2018-11-15 11:45:43,508 | epoch: [20/30] iter: [16/391] loss_D: 1.3865 loss_G: 0.6924 +2018-11-15 11:45:50,208 | epoch: [20/30] iter: [17/391] loss_D: 1.3873 loss_G: 0.6927 +2018-11-15 11:45:57,191 | epoch: [20/30] iter: [18/391] loss_D: 1.3857 loss_G: 0.6928 +2018-11-15 11:46:04,424 | epoch: [20/30] iter: [19/391] loss_D: 1.3858 loss_G: 0.6927 +2018-11-15 11:46:11,469 | epoch: [20/30] iter: [20/391] loss_D: 1.3862 loss_G: 0.6929 +2018-11-15 11:46:18,459 | epoch: [20/30] iter: [21/391] loss_D: 1.3854 loss_G: 0.6928 +2018-11-15 11:46:25,622 | epoch: [20/30] iter: [22/391] loss_D: 1.3863 loss_G: 0.6929 +2018-11-15 11:46:32,119 | epoch: [20/30] iter: [23/391] loss_D: 1.3849 loss_G: 0.6934 +2018-11-15 11:46:38,782 | epoch: [20/30] iter: [24/391] loss_D: 1.3871 loss_G: 0.6926 +2018-11-15 11:46:45,697 | epoch: [20/30] iter: [25/391] loss_D: 1.3858 loss_G: 0.6947 +2018-11-15 11:46:52,689 | epoch: [20/30] iter: [26/391] loss_D: 1.3852 loss_G: 0.6939 +2018-11-15 11:49:31,331 | epoch: [20/30] iter: [27/391] loss_D: 1.3874 loss_G: 0.6922 +2018-11-15 11:49:35,384 | epoch: [20/30] iter: [28/391] loss_D: 1.3851 loss_G: 0.6941 +2018-11-15 11:49:39,527 | epoch: [20/30] iter: [29/391] loss_D: 1.3856 loss_G: 0.6937 +2018-11-15 11:49:44,371 | epoch: [20/30] iter: [30/391] loss_D: 1.3880 loss_G: 0.6943 +2018-11-15 11:49:51,264 | epoch: [20/30] iter: [31/391] loss_D: 1.3867 loss_G: 0.6936 +2018-11-15 11:49:58,261 | epoch: [20/30] iter: [32/391] loss_D: 1.3878 loss_G: 0.6941 +2018-11-15 11:50:05,048 | epoch: [20/30] iter: [33/391] loss_D: 1.3870 loss_G: 0.6936 +2018-11-15 11:50:12,278 | epoch: [20/30] iter: [34/391] loss_D: 1.3867 loss_G: 0.6940 +2018-11-15 11:50:19,213 | epoch: [20/30] iter: [35/391] loss_D: 1.3857 loss_G: 0.6936 +2018-11-15 11:50:25,898 | epoch: [20/30] iter: [36/391] loss_D: 1.3880 loss_G: 0.6929 +2018-11-15 11:50:32,927 | epoch: [20/30] iter: [37/391] loss_D: 1.3871 loss_G: 0.6932 +2018-11-15 11:50:39,920 | epoch: [20/30] iter: [38/391] loss_D: 1.3866 loss_G: 0.6944 +2018-11-15 11:50:46,818 | epoch: [20/30] iter: [39/391] loss_D: 1.3871 loss_G: 0.6927 +2018-11-15 11:50:53,827 | epoch: [20/30] iter: [40/391] loss_D: 1.3870 loss_G: 0.6934 +2018-11-15 11:51:00,789 | epoch: [20/30] iter: [41/391] loss_D: 1.3877 loss_G: 0.6928 +2018-11-15 11:51:07,634 | epoch: [20/30] iter: [42/391] loss_D: 1.3878 loss_G: 0.6927 +2018-11-15 11:51:14,572 | epoch: [20/30] iter: [43/391] loss_D: 1.3857 loss_G: 0.6924 +2018-11-15 11:51:21,905 | epoch: [20/30] iter: [44/391] loss_D: 1.3867 loss_G: 0.6934 +2018-11-15 11:51:29,166 | epoch: [20/30] iter: [45/391] loss_D: 1.3863 loss_G: 0.6934 +2018-11-15 11:51:36,331 | epoch: [20/30] iter: [46/391] loss_D: 1.3870 loss_G: 0.6933 +2018-11-15 11:51:43,082 | epoch: [20/30] iter: [47/391] loss_D: 1.3867 loss_G: 0.6927 +2018-11-15 11:51:49,978 | epoch: [20/30] iter: [48/391] loss_D: 1.3864 loss_G: 0.6930 +2018-11-15 11:51:56,692 | epoch: [20/30] iter: [49/391] loss_D: 1.3859 loss_G: 0.6930 +2018-11-15 11:52:03,733 | epoch: [20/30] iter: [50/391] loss_D: 1.3861 loss_G: 0.6935 +2018-11-15 11:52:10,834 | epoch: [20/30] iter: [51/391] loss_D: 1.3862 loss_G: 0.6936 +2018-11-15 11:52:18,251 | epoch: [20/30] iter: [52/391] loss_D: 1.3869 loss_G: 0.6931 +2018-11-15 11:52:25,295 | epoch: [20/30] iter: [53/391] loss_D: 1.3868 loss_G: 0.6927 +2018-11-15 11:52:32,223 | epoch: [20/30] iter: [54/391] loss_D: 1.3874 loss_G: 0.6929 +2018-11-15 11:52:39,546 | epoch: [20/30] iter: [55/391] loss_D: 1.3866 loss_G: 0.6925 +2018-11-15 11:52:46,472 | epoch: [20/30] iter: [56/391] loss_D: 1.3866 loss_G: 0.6926 +2018-11-15 11:52:53,714 | epoch: [20/30] iter: [57/391] loss_D: 1.3862 loss_G: 0.6923 +2018-11-15 11:53:00,852 | epoch: [20/30] iter: [58/391] loss_D: 1.3859 loss_G: 0.6938 +2018-11-15 11:53:07,738 | epoch: [20/30] iter: [59/391] loss_D: 1.3878 loss_G: 0.6930 +2018-11-15 11:53:14,549 | epoch: [20/30] iter: [60/391] loss_D: 1.3865 loss_G: 0.6934 +2018-11-15 11:53:21,861 | epoch: [20/30] iter: [61/391] loss_D: 1.3880 loss_G: 0.6925 +2018-11-15 11:53:28,930 | epoch: [20/30] iter: [62/391] loss_D: 1.3870 loss_G: 0.6928 +2018-11-15 11:53:36,002 | epoch: [20/30] iter: [63/391] loss_D: 1.3864 loss_G: 0.6924 +2018-11-15 11:53:43,190 | epoch: [20/30] iter: [64/391] loss_D: 1.3870 loss_G: 0.6919 +2018-11-15 11:53:50,443 | epoch: [20/30] iter: [65/391] loss_D: 1.3874 loss_G: 0.6926 +2018-11-15 11:53:57,172 | epoch: [20/30] iter: [66/391] loss_D: 1.3869 loss_G: 0.6922 +2018-11-15 11:54:03,852 | epoch: [20/30] iter: [67/391] loss_D: 1.3863 loss_G: 0.6922 +2018-11-15 11:54:11,190 | epoch: [20/30] iter: [68/391] loss_D: 1.3869 loss_G: 0.6939 +2018-11-15 11:54:18,289 | epoch: [20/30] iter: [69/391] loss_D: 1.3866 loss_G: 0.6940 +2018-11-15 11:54:25,631 | epoch: [20/30] iter: [70/391] loss_D: 1.3871 loss_G: 0.6938 +2018-11-15 11:54:32,339 | epoch: [20/30] iter: [71/391] loss_D: 1.3859 loss_G: 0.6941 +2018-11-15 11:54:39,117 | epoch: [20/30] iter: [72/391] loss_D: 1.3853 loss_G: 0.6939 +2018-11-15 11:54:46,062 | epoch: [20/30] iter: [73/391] loss_D: 1.3848 loss_G: 0.6930 +2018-11-15 11:54:53,050 | epoch: [20/30] iter: [74/391] loss_D: 1.3853 loss_G: 0.6941 +2018-11-15 11:54:59,905 | epoch: [20/30] iter: [75/391] loss_D: 1.3849 loss_G: 0.6930 +2018-11-15 11:55:06,784 | epoch: [20/30] iter: [76/391] loss_D: 1.3856 loss_G: 0.6938 +2018-11-15 11:55:13,868 | epoch: [20/30] iter: [77/391] loss_D: 1.3846 loss_G: 0.6935 +2018-11-15 11:55:20,973 | epoch: [20/30] iter: [78/391] loss_D: 1.3849 loss_G: 0.6942 +2018-11-15 11:55:27,917 | epoch: [20/30] iter: [79/391] loss_D: 1.3853 loss_G: 0.6940 +2018-11-15 11:55:34,534 | epoch: [20/30] iter: [80/391] loss_D: 1.3840 loss_G: 0.6939 +2018-11-15 11:55:41,421 | epoch: [20/30] iter: [81/391] loss_D: 1.3849 loss_G: 0.6937 +2018-11-15 11:55:48,817 | epoch: [20/30] iter: [82/391] loss_D: 1.3844 loss_G: 0.6939 +2018-11-15 11:55:56,034 | epoch: [20/30] iter: [83/391] loss_D: 1.3849 loss_G: 0.6939 +2018-11-15 11:56:03,104 | epoch: [20/30] iter: [84/391] loss_D: 1.3849 loss_G: 0.6930 +2018-11-15 11:56:10,445 | epoch: [20/30] iter: [85/391] loss_D: 1.3864 loss_G: 0.6936 +2018-11-15 11:56:17,316 | epoch: [20/30] iter: [86/391] loss_D: 1.3859 loss_G: 0.6944 +2018-11-15 11:56:23,930 | epoch: [20/30] iter: [87/391] loss_D: 1.3890 loss_G: 0.6926 +2018-11-15 11:56:30,588 | epoch: [20/30] iter: [88/391] loss_D: 1.3859 loss_G: 0.6940 +2018-11-15 11:56:37,718 | epoch: [20/30] iter: [89/391] loss_D: 1.3854 loss_G: 0.6919 +2018-11-15 11:56:44,690 | epoch: [20/30] iter: [90/391] loss_D: 1.3858 loss_G: 0.6933 +2018-11-15 11:56:52,127 | epoch: [20/30] iter: [91/391] loss_D: 1.3860 loss_G: 0.6935 +2018-11-15 11:56:59,386 | epoch: [20/30] iter: [92/391] loss_D: 1.3867 loss_G: 0.6935 +2018-11-15 11:57:06,211 | epoch: [20/30] iter: [93/391] loss_D: 1.3859 loss_G: 0.6912 +2018-11-15 11:57:13,202 | epoch: [20/30] iter: [94/391] loss_D: 1.3869 loss_G: 0.6934 +2018-11-15 11:57:20,085 | epoch: [20/30] iter: [95/391] loss_D: 1.3877 loss_G: 0.6924 +2018-11-15 11:57:26,736 | epoch: [20/30] iter: [96/391] loss_D: 1.3865 loss_G: 0.6924 +2018-11-15 11:57:33,909 | epoch: [20/30] iter: [97/391] loss_D: 1.3855 loss_G: 0.6924 +2018-11-15 11:57:40,894 | epoch: [20/30] iter: [98/391] loss_D: 1.3868 loss_G: 0.6921 +2018-11-15 11:57:47,682 | epoch: [20/30] iter: [99/391] loss_D: 1.3888 loss_G: 0.6926 +2018-11-15 11:57:54,300 | epoch: [20/30] iter: [100/391] loss_D: 1.3887 loss_G: 0.6932 +2018-11-15 11:58:01,361 | epoch: [20/30] iter: [101/391] loss_D: 1.3878 loss_G: 0.6950 +2018-11-15 11:58:08,318 | epoch: [20/30] iter: [102/391] loss_D: 1.3873 loss_G: 0.6940 +2018-11-15 11:58:15,208 | epoch: [20/30] iter: [103/391] loss_D: 1.3871 loss_G: 0.6938 +2018-11-15 11:58:22,411 | epoch: [20/30] iter: [104/391] loss_D: 1.3879 loss_G: 0.6939 +2018-11-15 11:58:29,579 | epoch: [20/30] iter: [105/391] loss_D: 1.3870 loss_G: 0.6941 +2018-11-15 11:58:36,680 | epoch: [20/30] iter: [106/391] loss_D: 1.3863 loss_G: 0.6938 +2018-11-15 11:58:43,764 | epoch: [20/30] iter: [107/391] loss_D: 1.3870 loss_G: 0.6937 +2018-11-15 11:58:50,628 | epoch: [20/30] iter: [108/391] loss_D: 1.3863 loss_G: 0.6935 +2018-11-15 11:58:57,657 | epoch: [20/30] iter: [109/391] loss_D: 1.3869 loss_G: 0.6938 +2018-11-15 11:59:04,707 | epoch: [20/30] iter: [110/391] loss_D: 1.3852 loss_G: 0.6935 +2018-11-15 11:59:11,868 | epoch: [20/30] iter: [111/391] loss_D: 1.3867 loss_G: 0.6935 +2018-11-15 11:59:19,213 | epoch: [20/30] iter: [112/391] loss_D: 1.3860 loss_G: 0.6931 +2018-11-15 11:59:26,423 | epoch: [20/30] iter: [113/391] loss_D: 1.3862 loss_G: 0.6932 +2018-11-15 11:59:33,335 | epoch: [20/30] iter: [114/391] loss_D: 1.3865 loss_G: 0.6930 +2018-11-15 11:59:40,048 | epoch: [20/30] iter: [115/391] loss_D: 1.3863 loss_G: 0.6930 +2018-11-15 11:59:46,876 | epoch: [20/30] iter: [116/391] loss_D: 1.3871 loss_G: 0.6939 +2018-11-15 11:59:53,973 | epoch: [20/30] iter: [117/391] loss_D: 1.3865 loss_G: 0.6936 +2018-11-15 12:00:01,033 | epoch: [20/30] iter: [118/391] loss_D: 1.3854 loss_G: 0.6932 +2018-11-15 12:00:08,298 | epoch: [20/30] iter: [119/391] loss_D: 1.3869 loss_G: 0.6932 +2018-11-15 12:00:15,270 | epoch: [20/30] iter: [120/391] loss_D: 1.3859 loss_G: 0.6928 +2018-11-15 12:00:22,398 | epoch: [20/30] iter: [121/391] loss_D: 1.3861 loss_G: 0.6930 +2018-11-15 12:00:29,584 | epoch: [20/30] iter: [122/391] loss_D: 1.3870 loss_G: 0.6936 +2018-11-15 12:00:36,719 | epoch: [20/30] iter: [123/391] loss_D: 1.3860 loss_G: 0.6936 +2018-11-15 12:00:43,872 | epoch: [20/30] iter: [124/391] loss_D: 1.3865 loss_G: 0.6937 +2018-11-15 12:00:51,045 | epoch: [20/30] iter: [125/391] loss_D: 1.3863 loss_G: 0.6928 +2018-11-15 12:00:57,885 | epoch: [20/30] iter: [126/391] loss_D: 1.3854 loss_G: 0.6939