-
Notifications
You must be signed in to change notification settings - Fork 384
Open
Description
@fabianp How could I get true results or interpret them? memory-profiler
shows same usage values for lines in the loop.
import numpy as np
from scipy.spatial import cKDTree, distance
import os
from memory_profiler import profile
radii = np.loadtxt(os.path.join(os.path.join(os.environ['USERPROFILE']), 'Desktop', "data", 'radii.csv'))
poss = np.loadtxt(os.path.join(os.path.join(os.environ['USERPROFILE']), 'Desktop', "data", 'coordinates.csv'), delimiter=",")
print(len(radii))
rad_max = np.amax(np.hstack(radii))
dia_max = 2 * rad_max
@profile
def ends_gap_opt(poss, dia_max):
particle_corsp_overlaps = []
ends_ind = [np.empty([1, 2], dtype=np.int64)]
kdtree = cKDTree(poss)
for particle_idx in range(len(poss)):
cur_point = poss[particle_idx]
nears_i_ind = np.array(kdtree.query_ball_point(cur_point, r=dia_max), dtype=np.int64)
assert len(nears_i_ind) > 0
if len(nears_i_ind) <= 1:
continue
nears_i_ind = nears_i_ind[nears_i_ind != particle_idx]
dist_i = distance.cdist(poss[nears_i_ind], cur_point[None, :]).squeeze()
contact_check = dist_i - (radii[nears_i_ind] + radii[particle_idx])
connected = contact_check[contact_check <= 0]
particle_corsp_overlaps.append(connected)
I have modified the memory_profiler.py
as pull requests Fix: Large negative increments #350 and also, in another test using large negative increment values in line profiler #195, . Both solutions remove previous negative values from increments. Which of them is the true one?
The same mem usages are doubtful and seem to be wrong:
Metadata
Metadata
Assignees
Labels
No labels