|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD 3-Clause license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import copy |
| 8 | +import unittest |
| 9 | + |
| 10 | +import torch |
| 11 | +import torch.nn as nn |
| 12 | +from parameterized import param, parameterized |
| 13 | +from torch import uint1, uint2, uint3, uint4 |
| 14 | + |
| 15 | +from torchao.prototype.quantization.codebook_groupwise.api import ( |
| 16 | + EmbeddingLutQuantizer, |
| 17 | + GroupwiseLutWeightConfig, |
| 18 | +) |
| 19 | + |
| 20 | + |
| 21 | +def generate_test_cases(): |
| 22 | + """Generates test cases with logic to handle has_scales correctly.""" |
| 23 | + code_dtypes = [uint1, uint2, uint3, uint4] |
| 24 | + lut_block_shapes = [[1, -1], [2, -1], [4, -1]] |
| 25 | + |
| 26 | + test_cases = [] |
| 27 | + |
| 28 | + for code_dtype in code_dtypes: |
| 29 | + for lut_block_shape in lut_block_shapes: |
| 30 | + test_cases.append( |
| 31 | + param( |
| 32 | + config=GroupwiseLutWeightConfig( |
| 33 | + code_dtype=code_dtype, |
| 34 | + lut_block_shape=lut_block_shape, |
| 35 | + scale_block_shape=None, |
| 36 | + has_scale=False, |
| 37 | + ), |
| 38 | + embedding_dim=256, |
| 39 | + num_embeddings=128, |
| 40 | + ) |
| 41 | + ) |
| 42 | + |
| 43 | + return test_cases |
| 44 | + |
| 45 | + |
| 46 | +class TestLutEmbeddingQuantizer(unittest.TestCase): |
| 47 | + @parameterized.expand(generate_test_cases()) |
| 48 | + def test_accuracy_vs_qdq_reference( |
| 49 | + self, |
| 50 | + config: GroupwiseLutWeightConfig, |
| 51 | + embedding_dim: int, |
| 52 | + num_embeddings: int = 128, |
| 53 | + ): |
| 54 | + """ |
| 55 | + Tests the numerical accuracy of the custom quantized embedding module |
| 56 | + against a QDQ (Quantize-Dequantize) reference implementation. |
| 57 | + """ |
| 58 | + embedding_dim = embedding_dim |
| 59 | + model = nn.Sequential(nn.Embedding(num_embeddings, embedding_dim)) |
| 60 | + indices = torch.randint(0, num_embeddings, (10, 20), dtype=torch.int64) |
| 61 | + |
| 62 | + # --- 1. Get ACTUAL result from the custom kernel implementation --- |
| 63 | + quantized_model = copy.deepcopy(model) |
| 64 | + # Ensure the 'use_qdq_reference' flag is False for the performance path |
| 65 | + perf_config = copy.deepcopy(config) |
| 66 | + perf_config.use_qdq_reference = False |
| 67 | + |
| 68 | + quantizer = EmbeddingLutQuantizer(perf_config) |
| 69 | + quantizer.quantize(quantized_model) |
| 70 | + |
| 71 | + with torch.no_grad(): |
| 72 | + actual_result = quantized_model(indices) |
| 73 | + |
| 74 | + # --- 2. Get EXPECTED result from the QDQ reference implementation --- |
| 75 | + reference_model = copy.deepcopy(model) |
| 76 | + # Set the 'use_qdq_reference' flag to True for the reference path |
| 77 | + ref_config = copy.deepcopy(config) |
| 78 | + ref_config.use_qdq_reference = True |
| 79 | + |
| 80 | + quantizer = EmbeddingLutQuantizer(ref_config) |
| 81 | + quantizer.quantize(reference_model) |
| 82 | + |
| 83 | + with torch.no_grad(): |
| 84 | + expected_result = reference_model(indices) |
| 85 | + |
| 86 | + # --- 3. Compare results --- |
| 87 | + self.assertTrue( |
| 88 | + torch.allclose(actual_result, expected_result, atol=1e-6, rtol=1e-5) |
| 89 | + ) |
| 90 | + |
| 91 | + |
| 92 | +if __name__ == "__main__": |
| 93 | + unittest.main() |
0 commit comments