|
1 | 1 | from __future__ import annotations |
2 | 2 |
|
| 3 | +import contextlib |
3 | 4 | import functools |
| 5 | +from typing import Any |
| 6 | +from typing import Callable |
| 7 | +from typing import cast |
4 | 8 |
|
5 | 9 | import torch |
6 | 10 | from torch._inductor.runtime.hints import DeviceProperties |
7 | 11 | from torch._inductor.utils import triton_type |
8 | 12 | import triton |
| 13 | +from triton.backends.compiler import BaseBackend |
9 | 14 | from triton.backends.compiler import GPUTarget |
10 | 15 | import triton.language as tl |
| 16 | +import triton.runtime.jit as triton_jit |
| 17 | + |
| 18 | +NativeSpecializeImpl = Callable[ |
| 19 | + [type[BaseBackend], object, bool, bool, bool], tuple[object, ...] |
| 20 | +] |
| 21 | +CreateSpecializeImpl = Callable[ |
| 22 | + [Callable[..., object]], Callable[..., tuple[object, ...]] |
| 23 | +] |
| 24 | + |
| 25 | + |
| 26 | +def _make_specialize_impl_wrapper( |
| 27 | + *, |
| 28 | + native_impl: NativeSpecializeImpl | None = None, |
| 29 | + create_factory: CreateSpecializeImpl | None = None, |
| 30 | +) -> Callable[..., object]: |
| 31 | + if native_impl is None: |
| 32 | + native_impl = cast( |
| 33 | + "NativeSpecializeImpl | None", |
| 34 | + getattr(triton_jit, "native_specialize_impl", None), |
| 35 | + ) |
| 36 | + if native_impl is None and create_factory is None: |
| 37 | + raise AttributeError("native_specialize_impl unavailable") |
| 38 | + |
| 39 | + def specialize_impl_wrapper( |
| 40 | + *args: object, |
| 41 | + **kwargs: object, |
| 42 | + ) -> object: |
| 43 | + specialize_extra = cast( |
| 44 | + "Callable[..., object] | None", |
| 45 | + kwargs.pop("specialize_extra", None), |
| 46 | + ) |
| 47 | + kwargs.pop("specialize_zero_one", None) |
| 48 | + backend_param = kwargs.pop("backend", None) |
| 49 | + args_list: list[object] = list(args) |
| 50 | + backend_type: type[BaseBackend] |
| 51 | + if backend_param is None and args_list: |
| 52 | + first = args_list[0] |
| 53 | + if isinstance(first, type) and issubclass(first, BaseBackend): |
| 54 | + backend_type = first |
| 55 | + args_list.pop(0) |
| 56 | + elif isinstance(first, BaseBackend): |
| 57 | + backend_type = type(first) |
| 58 | + args_list.pop(0) |
| 59 | + else: |
| 60 | + backend_type = BaseBackend |
| 61 | + elif isinstance(backend_param, type) and issubclass(backend_param, BaseBackend): |
| 62 | + backend_type = backend_param |
| 63 | + elif isinstance(backend_param, BaseBackend): |
| 64 | + backend_type = type(backend_param) |
| 65 | + else: |
| 66 | + backend_type = BaseBackend |
| 67 | + |
| 68 | + arg = kwargs.pop("arg", None) |
| 69 | + if arg is None: |
| 70 | + if args_list: |
| 71 | + arg = args_list.pop(0) |
| 72 | + else: |
| 73 | + raise TypeError("specialize_impl() missing positional argument 'arg'") |
| 74 | + |
| 75 | + def _pop_flag( |
| 76 | + key: str, |
| 77 | + *, |
| 78 | + alt_keys: tuple[str, ...] = (), |
| 79 | + default: bool | None = None, |
| 80 | + ) -> bool: |
| 81 | + value = kwargs.pop(key, None) |
| 82 | + if value is None: |
| 83 | + for alt in alt_keys: |
| 84 | + value = kwargs.pop(alt, None) |
| 85 | + if value is not None: |
| 86 | + break |
| 87 | + if value is None: |
| 88 | + if args_list: |
| 89 | + value = args_list.pop(0) |
| 90 | + elif default is not None: |
| 91 | + value = default |
| 92 | + else: |
| 93 | + raise TypeError(f"specialize_impl() missing argument '{key}'") |
| 94 | + return bool(value) |
| 95 | + |
| 96 | + is_const = _pop_flag("is_const") |
| 97 | + specialize_value = _pop_flag( |
| 98 | + "specialize_value", |
| 99 | + alt_keys=("specialize",), |
| 100 | + default=True, |
| 101 | + ) |
| 102 | + align = _pop_flag("align", default=True) |
| 103 | + |
| 104 | + if native_impl is not None: |
| 105 | + result = native_impl( |
| 106 | + backend_type, |
| 107 | + arg, |
| 108 | + is_const, |
| 109 | + specialize_value, |
| 110 | + align, |
| 111 | + ) |
| 112 | + if specialize_extra is not None: |
| 113 | + with contextlib.suppress(Exception): |
| 114 | + specialize_extra(arg) |
| 115 | + else: |
| 116 | + assert create_factory is not None |
| 117 | + |
| 118 | + def _call_specialize_extra( |
| 119 | + extra_arg: object, |
| 120 | + kind: object, |
| 121 | + *, |
| 122 | + align: bool = True, |
| 123 | + ) -> object: |
| 124 | + if specialize_extra is None: |
| 125 | + return None |
| 126 | + try: |
| 127 | + return specialize_extra(extra_arg) |
| 128 | + except TypeError: |
| 129 | + try: |
| 130 | + return specialize_extra(extra_arg, kind, align=align) |
| 131 | + except Exception: |
| 132 | + return None |
| 133 | + except Exception: |
| 134 | + return None |
| 135 | + |
| 136 | + impl = create_factory(_call_specialize_extra) |
| 137 | + result = impl( |
| 138 | + arg, |
| 139 | + is_const=is_const, |
| 140 | + specialize_value=specialize_value, |
| 141 | + align=align, |
| 142 | + ) |
| 143 | + return result |
| 144 | + |
| 145 | + return specialize_impl_wrapper |
| 146 | + |
| 147 | + |
| 148 | +def _ensure_triton_specialize_impl_alias() -> None: |
| 149 | + if hasattr(triton_jit, "specialize_impl"): |
| 150 | + return |
| 151 | + if hasattr(triton_jit, "native_specialize_impl"): |
| 152 | + module: Any = triton_jit |
| 153 | + module.specialize_impl = _make_specialize_impl_wrapper() # type: ignore[assignment] |
| 154 | + return |
| 155 | + if hasattr(triton_jit, "create_specialize_impl"): |
| 156 | + module: Any = triton_jit |
| 157 | + module.specialize_impl = _make_specialize_impl_wrapper( |
| 158 | + create_factory=triton_jit.create_specialize_impl, |
| 159 | + ) # type: ignore[assignment] |
| 160 | + |
| 161 | + |
| 162 | +_ensure_triton_specialize_impl_alias() |
| 163 | + |
| 164 | + |
| 165 | +def _ensure_backend_specialization_alias() -> None: |
| 166 | + if hasattr(BaseBackend, "get_arg_specialization"): |
| 167 | + return |
| 168 | + if hasattr(BaseBackend, "get_tensor_specialization"): |
| 169 | + BaseBackend.get_arg_specialization = BaseBackend.get_tensor_specialization # type: ignore[attr-defined] |
| 170 | + |
| 171 | + |
| 172 | +_ensure_backend_specialization_alias() |
| 173 | + |
| 174 | + |
| 175 | +@functools.cache |
| 176 | +def get_triton_find_paths_if() -> Callable[..., object]: |
| 177 | + if hasattr(triton_jit, "find_paths_if"): |
| 178 | + return triton_jit.find_paths_if |
| 179 | + if hasattr(triton_jit, "_find_paths_if"): |
| 180 | + return triton_jit._find_paths_if # type: ignore[attr-defined] |
| 181 | + raise AttributeError("Unable to locate Triton find_paths_if helper") |
| 182 | + |
| 183 | + |
| 184 | +@functools.cache |
| 185 | +def get_triton_iterable_path() -> Callable[..., object]: |
| 186 | + if hasattr(triton_jit, "get_iterable_path"): |
| 187 | + return triton_jit.get_iterable_path |
| 188 | + if hasattr(triton_jit, "_get_iterable_path"): |
| 189 | + return triton_jit._get_iterable_path # type: ignore[attr-defined] |
| 190 | + raise AttributeError("Unable to locate Triton get_iterable_path helper") |
11 | 191 |
|
12 | 192 |
|
13 | 193 | def supports_tensor_descriptor() -> bool: |
|
0 commit comments