-
Notifications
You must be signed in to change notification settings - Fork 365
/
Copy path_utils_internal.py
824 lines (701 loc) · 26.5 KB
/
_utils_internal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import contextlib
import logging
import os
import os.path
import sys
import time
import unittest
import warnings
from functools import wraps
import pytest
import torch
import torch.cuda
from tensordict import NestedKey, tensorclass, TensorDict, TensorDictBase
from tensordict.nn import TensorDictModuleBase
from torch import nn, vmap
from torchrl._utils import (
implement_for,
logger as torchrl_logger,
RL_WARNINGS,
seed_generator,
)
from torchrl.data.utils import CloudpickleWrapper
from torchrl.envs import MultiThreadedEnv, ObservationNorm
from torchrl.envs.batched_envs import ParallelEnv, SerialEnv
from torchrl.envs.libs.envpool import _has_envpool
from torchrl.envs.libs.gym import _has_gym, gym_backend, GymEnv
from torchrl.envs.transforms import (
Compose,
RewardClipping,
ToTensorImage,
TransformedEnv,
)
from torchrl.modules import MLP
from torchrl.objectives.value.advantages import _vmap_func
# Get relative file path
# this returns relative path from current file.
# Specified for test_utils.py
__version__ = "0.3"
IS_WIN = sys.platform == "win32"
if IS_WIN:
mp_ctx = "spawn"
else:
mp_ctx = "fork"
def CARTPOLE_VERSIONED():
# load gym
if gym_backend() is not None:
_set_gym_environments()
return _CARTPOLE_VERSIONED
def HALFCHEETAH_VERSIONED():
# load gym
if gym_backend() is not None:
_set_gym_environments()
return _HALFCHEETAH_VERSIONED
def PONG_VERSIONED():
# load gym
# Gymnasium says that the ale_py behavior changes from 1.0
# but with python 3.12 it is already the case with 0.29.1
try:
import ale_py # noqa
except ImportError:
pass
if gym_backend() is not None:
_set_gym_environments()
return _PONG_VERSIONED
def BREAKOUT_VERSIONED():
# load gym
# Gymnasium says that the ale_py behavior changes from 1.0
# but with python 3.12 it is already the case with 0.29.1
try:
import ale_py # noqa
except ImportError:
pass
if gym_backend() is not None:
_set_gym_environments()
return _BREAKOUT_VERSIONED
def PENDULUM_VERSIONED():
# load gym
if gym_backend() is not None:
_set_gym_environments()
return _PENDULUM_VERSIONED
def _set_gym_environments():
global _CARTPOLE_VERSIONED, _HALFCHEETAH_VERSIONED, _PENDULUM_VERSIONED, _PONG_VERSIONED, _BREAKOUT_VERSIONED
_CARTPOLE_VERSIONED = None
_HALFCHEETAH_VERSIONED = None
_PENDULUM_VERSIONED = None
_PONG_VERSIONED = None
_BREAKOUT_VERSIONED = None
@implement_for("gym", None, "0.21.0")
def _set_gym_environments(): # noqa: F811
global _CARTPOLE_VERSIONED, _HALFCHEETAH_VERSIONED, _PENDULUM_VERSIONED, _PONG_VERSIONED, _BREAKOUT_VERSIONED
_CARTPOLE_VERSIONED = "CartPole-v0"
_HALFCHEETAH_VERSIONED = "HalfCheetah-v2"
_PENDULUM_VERSIONED = "Pendulum-v0"
_PONG_VERSIONED = "Pong-v4"
_BREAKOUT_VERSIONED = "Breakout-v4"
@implement_for("gym", "0.21.0", None)
def _set_gym_environments(): # noqa: F811
global _CARTPOLE_VERSIONED, _HALFCHEETAH_VERSIONED, _PENDULUM_VERSIONED, _PONG_VERSIONED, _BREAKOUT_VERSIONED
_CARTPOLE_VERSIONED = "CartPole-v1"
_HALFCHEETAH_VERSIONED = "HalfCheetah-v4"
_PENDULUM_VERSIONED = "Pendulum-v1"
_PONG_VERSIONED = "ALE/Pong-v5"
_BREAKOUT_VERSIONED = "ALE/Breakout-v5"
@implement_for("gymnasium", None, "1.0.0")
def _set_gym_environments(): # noqa: F811
global _CARTPOLE_VERSIONED, _HALFCHEETAH_VERSIONED, _PENDULUM_VERSIONED, _PONG_VERSIONED, _BREAKOUT_VERSIONED
_CARTPOLE_VERSIONED = "CartPole-v1"
_HALFCHEETAH_VERSIONED = "HalfCheetah-v4"
_PENDULUM_VERSIONED = "Pendulum-v1"
_PONG_VERSIONED = "ALE/Pong-v5"
_BREAKOUT_VERSIONED = "ALE/Breakout-v5"
@implement_for("gymnasium", "1.0.0", None)
def _set_gym_environments(): # noqa: F811
raise ImportError
if _has_gym:
_set_gym_environments()
def get_relative_path(curr_file, *path_components):
return os.path.join(os.path.dirname(curr_file), *path_components)
def get_available_devices():
devices = [torch.device("cpu")]
n_cuda = torch.cuda.device_count()
if n_cuda > 0:
for i in range(n_cuda):
devices += [torch.device(f"cuda:{i}")]
return devices
def get_default_devices():
num_cuda = torch.cuda.device_count()
if num_cuda == 0:
# if torch.mps.is_available():
# return [torch.device("mps:0")]
return [torch.device("cpu")]
elif num_cuda == 1:
return [torch.device("cuda:0")]
else:
# then run on all devices
return get_available_devices()
def generate_seeds(seed, repeat):
seeds = [seed]
for _ in range(repeat - 1):
seed = seed_generator(seed)
seeds.append(seed)
return seeds
# Decorator to retry upon certain Exceptions.
def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False):
def deco_retry(f):
@wraps(f)
def f_retry(*args, **kwargs):
mtries, mdelay = tries, delay
while mtries > 1:
try:
return f(*args, **kwargs)
except ExceptionToCheck as e:
msg = "%s, Retrying in %d seconds..." % (str(e), mdelay)
torchrl_logger.info(msg)
time.sleep(mdelay)
mtries -= 1
try:
return f(*args, **kwargs)
except ExceptionToCheck as e:
if skip_after_retries:
raise pytest.skip(
f"Skipping after {tries} consecutive {str(e)}"
) from e
else:
raise e
return f_retry # true decorator
return deco_retry
# After calling this function, any log record whose name contains 'record_name'
# and is emitted from the logger that has qualified name 'logger_qname' is
# appended to the 'records' list.
# NOTE: This function is based on testing utilities for 'torch._logging'
def capture_log_records(records, logger_qname, record_name):
assert isinstance(records, list)
logger = logging.getLogger(logger_qname)
class EmitWrapper:
def __init__(self, old_emit):
self.old_emit = old_emit
def __call__(self, record):
nonlocal records
self.old_emit(record)
if record_name in record.name:
records.append(record)
for handler in logger.handlers:
new_emit = EmitWrapper(handler.emit)
contextlib.ExitStack().enter_context(
unittest.mock.patch.object(handler, "emit", new_emit)
)
@pytest.fixture
def dtype_fixture():
dtype = torch.get_default_dtype()
torch.set_default_dtype(torch.double)
yield dtype
torch.set_default_dtype(dtype)
@contextlib.contextmanager
def set_global_var(module, var_name, value):
old_value = getattr(module, var_name)
setattr(module, var_name, value)
try:
yield
finally:
setattr(module, var_name, old_value)
def _make_envs(
env_name,
frame_skip,
transformed_in,
transformed_out,
N,
p_env_device=None,
env_device=None,
# device="cpu",
kwargs=None,
local_mp_ctx=mp_ctx,
):
torch.manual_seed(0)
if not transformed_in:
def create_env_fn():
return GymEnv(env_name, frame_skip=frame_skip, device=env_device)
else:
if env_name == PONG_VERSIONED():
def create_env_fn():
base_env = GymEnv(env_name, frame_skip=frame_skip, device=env_device)
in_keys = list(base_env.observation_spec.keys(True, True))[:1]
return TransformedEnv(
base_env,
Compose(*[ToTensorImage(in_keys=in_keys), RewardClipping(0, 0.1)]),
)
else:
def create_env_fn():
base_env = GymEnv(env_name, frame_skip=frame_skip, device=env_device)
in_keys = list(base_env.observation_spec.keys(True, True))[:1]
return TransformedEnv(
base_env,
Compose(
ObservationNorm(in_keys=in_keys, loc=0.5, scale=1.1),
RewardClipping(0, 0.1),
),
)
env0 = create_env_fn()
env_parallel = ParallelEnv(
N,
create_env_fn,
create_env_kwargs=kwargs,
mp_start_method=local_mp_ctx,
device=p_env_device,
)
env_serial = SerialEnv(
N, create_env_fn, create_env_kwargs=kwargs, device=p_env_device
)
for key in env0.observation_spec.keys(True, True):
obs_key = key
break
else:
obs_key = None
if transformed_out:
t_out = get_transform_out(env_name, transformed_in, obs_key=obs_key)
env0 = TransformedEnv(
env0,
t_out(),
)
env_parallel = TransformedEnv(
env_parallel,
t_out(),
)
env_serial = TransformedEnv(
env_serial,
t_out(),
)
else:
t_out = None
if _has_envpool:
env_multithread = _make_multithreaded_env(
env_name,
frame_skip,
t_out,
N,
device="cpu",
kwargs=None,
)
else:
env_multithread = None
return env_parallel, env_serial, env_multithread, env0
def _make_multithreaded_env(
env_name,
frame_skip,
transformed_out,
N,
device="cpu",
kwargs=None,
):
torch.manual_seed(0)
multithreaded_kwargs = (
{"frame_skip": frame_skip} if env_name == PONG_VERSIONED() else {}
)
env_multithread = MultiThreadedEnv(
N,
env_name,
create_env_kwargs=multithreaded_kwargs,
device=device,
)
if transformed_out:
for key in env_multithread.observation_spec.keys(True, True):
obs_key = key
break
else:
obs_key = None
env_multithread = TransformedEnv(
env_multithread,
get_transform_out(env_name, transformed_in=False, obs_key=obs_key)(),
)
return env_multithread
def get_transform_out(env_name, transformed_in, obs_key=None):
if env_name == PONG_VERSIONED():
if obs_key is None:
obs_key = "pixels"
def t_out():
return (
Compose(*[ToTensorImage(in_keys=[obs_key]), RewardClipping(0, 0.1)])
if not transformed_in
else Compose(*[ObservationNorm(in_keys=[obs_key], loc=0, scale=1)])
)
elif env_name == HALFCHEETAH_VERSIONED:
if obs_key is None:
obs_key = ("observation", "velocity")
def t_out():
return Compose(
ObservationNorm(in_keys=[obs_key], loc=0.5, scale=1.1),
RewardClipping(0, 0.1),
)
else:
if obs_key is None:
obs_key = "observation"
def t_out():
return (
Compose(
ObservationNorm(in_keys=[obs_key], loc=0.5, scale=1.1),
RewardClipping(0, 0.1),
)
if not transformed_in
else Compose(ObservationNorm(in_keys=[obs_key], loc=1.0, scale=1.0))
)
return t_out
def make_tc(td):
"""Makes a tensorclass from a tensordict instance."""
class MyClass:
pass
MyClass.__annotations__ = {}
for key in td.keys():
MyClass.__annotations__[key] = torch.Tensor
return tensorclass(MyClass)
def rollout_consistency_assertion(
rollout, *, done_key="done", observation_key="observation", done_strict=False
):
"""Tests that observations in "next" match observations in the next root tensordict when done is False, and don't match otherwise."""
done = rollout[..., :-1]["next", done_key].squeeze(-1)
# data resulting from step, when it's not done
r_not_done = rollout[..., :-1]["next"][~done]
# data resulting from step, when it's not done, after step_mdp
r_not_done_tp1 = rollout[:, 1:][~done]
torch.testing.assert_close(
r_not_done[observation_key],
r_not_done_tp1[observation_key],
msg=f"Key {observation_key} did not match",
)
if done_strict and not done.any():
raise RuntimeError("No done detected, test could not complete.")
if done.any():
# data resulting from step, when it's done
r_done = rollout[..., :-1]["next"][done]
# data resulting from step, when it's done, after step_mdp and reset
r_done_tp1 = rollout[..., 1:][done]
# check that at least one obs after reset does not match the version before reset
assert not torch.isclose(
r_done[observation_key], r_done_tp1[observation_key]
).all()
def rand_reset(env):
"""Generates a tensordict with reset keys that mimic the done spec.
Values are drawn at random until at least one reset is present.
"""
full_done_spec = env.full_done_spec
result = {}
for reset_key, list_of_done in zip(env.reset_keys, env.done_keys_groups):
val = full_done_spec[list_of_done[0]].rand()
while not val.any():
val = full_done_spec[list_of_done[0]].rand()
result[reset_key] = val
# create a data structure that keeps the batch size of the nested specs
result = (
full_done_spec.zero().update(result).exclude(*full_done_spec.keys(True, True))
)
return result
def check_rollout_consistency_multikey_env(td: TensorDict, max_steps: int):
index_batch_size = (0,) * (len(td.batch_size) - 1)
# Check done and reset for root
observation_is_max = td["next", "observation"][..., 0, 0, 0] == max_steps + 1
next_is_done = td["next", "done"][index_batch_size][:-1].squeeze(-1)
assert (td["next", "done"][observation_is_max]).all()
assert (~td["next", "done"][~observation_is_max]).all()
# Obs after done is 0
assert (td["observation"][index_batch_size][1:][next_is_done] == 0).all()
# Obs after not done is previous obs
assert (
td["observation"][index_batch_size][1:][~next_is_done]
== td["next", "observation"][index_batch_size][:-1][~next_is_done]
).all()
# Check observation and reward update with count action for root
action_is_count = td["action"].long().argmax(-1).to(torch.bool)
assert (
td["next", "observation"][action_is_count]
== td["observation"][action_is_count] + 1
).all()
assert (td["next", "reward"][action_is_count] == 1).all()
# Check observation and reward do not update with no-count action for root
assert (
td["next", "observation"][~action_is_count]
== td["observation"][~action_is_count]
).all()
assert (td["next", "reward"][~action_is_count] == 0).all()
# Check done and reset for nested_1
observation_is_max = td["next", "nested_1", "observation"][..., 0] == max_steps + 1
# done at the root always prevail
next_is_done = td["next", "done"][index_batch_size][:-1].squeeze(-1)
assert (td["next", "nested_1", "done"][observation_is_max]).all()
assert (~td["next", "nested_1", "done"][~observation_is_max]).all()
# Obs after done is 0
assert (
td["nested_1", "observation"][index_batch_size][1:][next_is_done] == 0
).all()
# Obs after not done is previous obs
assert (
td["nested_1", "observation"][index_batch_size][1:][~next_is_done]
== td["next", "nested_1", "observation"][index_batch_size][:-1][~next_is_done]
).all()
# Check observation and reward update with count action for nested_1
action_is_count = td["nested_1"]["action"].to(torch.bool)
assert (
td["next", "nested_1", "observation"][action_is_count]
== td["nested_1", "observation"][action_is_count] + 1
).all()
assert (td["next", "nested_1", "gift"][action_is_count] == 1).all()
# Check observation and reward do not update with no-count action for nested_1
assert (
td["next", "nested_1", "observation"][~action_is_count]
== td["nested_1", "observation"][~action_is_count]
).all()
assert (td["next", "nested_1", "gift"][~action_is_count] == 0).all()
# Check done and reset for nested_2
observation_is_max = td["next", "nested_2", "observation"][..., 0] == max_steps + 1
# done at the root always prevail
next_is_done = td["next", "done"][index_batch_size][:-1].squeeze(-1)
assert (td["next", "nested_2", "done"][observation_is_max]).all()
assert (~td["next", "nested_2", "done"][~observation_is_max]).all()
# Obs after done is 0
assert (
td["nested_2", "observation"][index_batch_size][1:][next_is_done] == 0
).all()
# Obs after not done is previous obs
assert (
td["nested_2", "observation"][index_batch_size][1:][~next_is_done]
== td["next", "nested_2", "observation"][index_batch_size][:-1][~next_is_done]
).all()
# Check observation and reward update with count action for nested_2
action_is_count = td["nested_2"]["azione"].squeeze(-1).to(torch.bool)
assert (
td["next", "nested_2", "observation"][action_is_count]
== td["nested_2", "observation"][action_is_count] + 1
).all()
assert (td["next", "nested_2", "reward"][action_is_count] == 1).all()
# Check observation and reward do not update with no-count action for nested_2
assert (
td["next", "nested_2", "observation"][~action_is_count]
== td["nested_2", "observation"][~action_is_count]
).all()
assert (td["next", "nested_2", "reward"][~action_is_count] == 0).all()
def decorate_thread_sub_func(func, num_threads):
def new_func(*args, **kwargs):
assert torch.get_num_threads() == num_threads
return func(*args, **kwargs)
return CloudpickleWrapper(new_func)
class LSTMNet(nn.Module):
"""An embedder for an LSTM preceded by an MLP.
The forward method returns the hidden states of the current state
(input hidden states) and the output, as
the environment returns the 'observation' and 'next_observation'.
Because the LSTM kernel only returns the last hidden state, hidden states
are padded with zeros such that they have the right size to be stored in a
TensorDict of size [batch x time_steps].
If a 2D tensor is provided as input, it is assumed that it is a batch of data
with only one time step. This means that we explicitly assume that users will
unsqueeze inputs of a single batch with multiple time steps.
Args:
out_features (int): number of output features.
lstm_kwargs (dict): the keyword arguments for the
:class:`~torch.nn.LSTM` layer.
mlp_kwargs (dict): the keyword arguments for the
:class:`~torchrl.modules.MLP` layer.
device (torch.device, optional): the device where the module should
be instantiated.
Keyword Args:
lstm_backend (str, optional): one of ``"torchrl"`` or ``"torch"`` that
indeicates where the LSTM class is to be retrieved. The ``"torchrl"``
backend (:class:`~torchrl.modules.LSTM`) is slower but works with
:func:`~torch.vmap` and should work with :func:`~torch.compile`.
Defaults to ``"torch"``.
Examples:
>>> batch = 7
>>> time_steps = 6
>>> in_features = 4
>>> out_features = 10
>>> hidden_size = 5
>>> net = LSTMNet(
... out_features,
... {"input_size": hidden_size, "hidden_size": hidden_size},
... {"out_features": hidden_size},
... )
>>> # test single step vs multi-step
>>> x = torch.randn(batch, time_steps, in_features) # >3 dims = multi-step
>>> y, hidden0_in, hidden1_in, hidden0_out, hidden1_out = net(x)
>>> x = torch.randn(batch, in_features) # 2 dims = single step
>>> y, hidden0_in, hidden1_in, hidden0_out, hidden1_out = net(x)
"""
def __init__(
self,
out_features: int,
lstm_kwargs,
mlp_kwargs,
device=None,
*,
lstm_backend: str | None = None,
) -> None:
super().__init__()
lstm_kwargs.update({"batch_first": True})
self.mlp = MLP(device=device, **mlp_kwargs)
if lstm_backend is None:
lstm_backend = "torch"
self.lstm_backend = lstm_backend
if self.lstm_backend == "torch":
LSTM = nn.LSTM
else:
from torchrl.modules.tensordict_module.rnn import LSTM
self.lstm = LSTM(device=device, **lstm_kwargs)
self.linear = nn.LazyLinear(out_features, device=device)
def _lstm(
self,
input: torch.Tensor,
hidden0_in: torch.Tensor | None = None,
hidden1_in: torch.Tensor | None = None,
):
squeeze0 = False
squeeze1 = False
if input.ndimension() == 1:
squeeze0 = True
input = input.unsqueeze(0).contiguous()
if input.ndimension() == 2:
squeeze1 = True
input = input.unsqueeze(1).contiguous()
batch, steps = input.shape[:2]
if hidden1_in is None and hidden0_in is None:
shape = (batch, steps) if not squeeze1 else (batch,)
hidden0_in, hidden1_in = (
torch.zeros(
*shape,
self.lstm.num_layers,
self.lstm.hidden_size,
device=input.device,
dtype=input.dtype,
)
for _ in range(2)
)
elif hidden1_in is None or hidden0_in is None:
raise RuntimeError(
f"got type(hidden0)={type(hidden0_in)} and type(hidden1)={type(hidden1_in)}"
)
elif squeeze0:
hidden0_in = hidden0_in.unsqueeze(0)
hidden1_in = hidden1_in.unsqueeze(0)
# we only need the first hidden state
if not squeeze1:
_hidden0_in = hidden0_in[:, 0]
_hidden1_in = hidden1_in[:, 0]
else:
_hidden0_in = hidden0_in
_hidden1_in = hidden1_in
hidden = (
_hidden0_in.transpose(-3, -2).contiguous(),
_hidden1_in.transpose(-3, -2).contiguous(),
)
y0, hidden = self.lstm(input, hidden)
# dim 0 in hidden is num_layers, but that will conflict with tensordict
hidden = tuple(_h.transpose(0, 1) for _h in hidden)
y = self.linear(y0)
out = [y, hidden0_in, hidden1_in, *hidden]
if squeeze1:
# squeezes time
out[0] = out[0].squeeze(1)
if not squeeze1:
# we pad the hidden states with zero to make tensordict happy
for i in range(3, 5):
out[i] = torch.stack(
[torch.zeros_like(out[i]) for _ in range(input.shape[1] - 1)]
+ [out[i]],
1,
)
if squeeze0:
out = [_out.squeeze(0) for _out in out]
return tuple(out)
def forward(
self,
input: torch.Tensor,
hidden0_in: torch.Tensor | None = None,
hidden1_in: torch.Tensor | None = None,
):
input = self.mlp(input)
return self._lstm(input, hidden0_in, hidden1_in)
def _call_value_nets(
value_net: TensorDictModuleBase,
data: TensorDictBase,
params: TensorDictBase,
next_params: TensorDictBase,
single_call: bool,
value_key: NestedKey,
detach_next: bool,
vmap_randomness: str = "error",
):
in_keys = value_net.in_keys
if single_call:
for i, name in enumerate(data.names):
if name == "time":
ndim = i + 1
break
else:
ndim = None
if ndim is not None:
# get data at t and last of t+1
idx0 = (slice(None),) * (ndim - 1) + (slice(-1, None),)
idx = (slice(None),) * (ndim - 1) + (slice(None, -1),)
idx_ = (slice(None),) * (ndim - 1) + (slice(1, None),)
data_in = torch.cat(
[
data.select(*in_keys, value_key, strict=False),
data.get("next").select(*in_keys, value_key, strict=False)[idx0],
],
ndim - 1,
)
else:
if RL_WARNINGS:
warnings.warn(
"Got a tensordict without a time-marked dimension, assuming time is along the last dimension. "
"This warning can be turned off by setting the environment variable RL_WARNINGS to False."
)
ndim = data.ndim
idx = (slice(None),) * (ndim - 1) + (slice(None, data.shape[ndim - 1]),)
idx_ = (slice(None),) * (ndim - 1) + (slice(data.shape[ndim - 1], None),)
data_in = torch.cat(
[
data.select(*in_keys, value_key, strict=False),
data.get("next").select(*in_keys, value_key, strict=False),
],
ndim - 1,
)
# next_params should be None or be identical to params
if next_params is not None and next_params is not params:
raise ValueError(
"the value at t and t+1 cannot be retrieved in a single call without recurring to vmap when both params and next params are passed."
)
if params is not None:
with params.to_module(value_net):
value_est = value_net(data_in).get(value_key)
else:
value_est = value_net(data_in).get(value_key)
value, value_ = value_est[idx], value_est[idx_]
else:
data_in = torch.stack(
[
data.select(*in_keys, value_key, strict=False),
data.get("next").select(*in_keys, value_key, strict=False),
],
0,
)
if (params is not None) ^ (next_params is not None):
raise ValueError(
"params and next_params must be either both provided or not."
)
elif params is not None:
params_stack = torch.stack([params, next_params], 0).contiguous()
data_out = _vmap_func(value_net, (0, 0), randomness=vmap_randomness)(
data_in, params_stack
)
else:
data_out = vmap(value_net, (0,), randomness=vmap_randomness)(data_in)
value_est = data_out.get(value_key)
value, value_ = value_est[0], value_est[1]
data.set(value_key, value)
data.set(("next", value_key), value_)
if detach_next:
value_ = value_.detach()
return value, value_