-
Notifications
You must be signed in to change notification settings - Fork 270
/
Copy pathtrain.py
469 lines (395 loc) · 17.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import gc
import os
import time
from dataclasses import dataclass, field
from datetime import timedelta
from io import BytesIO
from timeit import default_timer as timer
from typing import Any, Dict, List
import numpy as np
import torch
import torch.nn.functional as F
from torch.distributed import destroy_process_group
from torch.distributed.checkpoint.stateful import Stateful
from torch.distributed.elastic.multiprocessing.errors import record
from torch.distributed.tensor.parallel import loss_parallel
from torchtitan.checkpoint import CheckpointManager
from torchtitan.config_manager import JobConfig
from torchtitan.datasets import build_hf_data_loader, create_tokenizer
from torchtitan.float8_linear import build_fp8_linear
from torchtitan.logging_utils import init_logger, logger
from torchtitan.lr_scheduling import get_lr_scheduler
from torchtitan.metrics import build_gpu_memory_monitor, build_metric_logger
from torchtitan.models import model_name_to_cls, model_name_to_tokenizer, models_config
from torchtitan.parallelisms import (
models_parallelize_fns,
models_pipelining_fns,
ParallelDims,
)
from torchtitan.parallelisms.pipelining_utils import build_pipeline_schedule
from torchtitan.profiling import maybe_enable_profiling
from torchtitan.utils import (
Color,
dist_max,
dist_mean,
get_metrics_rank,
get_num_flop_per_token,
get_num_params,
get_peak_flops,
init_distributed,
NoColor,
set_pg_timeouts,
)
@dataclass
class TrainState(Stateful):
step: int = 0
global_avg_losses: List[float] = field(default_factory=list)
global_max_losses: List[float] = field(default_factory=list)
log_steps: List[int] = field(default_factory=list)
def state_dict(self) -> Dict[str, Any]:
# Only checkpoint global_avg_losses and global_max_losses per log frequency
# to avoid sync overhead in every iteration.
global_avg_losses_bytes = BytesIO()
torch.save(self.global_avg_losses, global_avg_losses_bytes)
global_max_losses_bytes = BytesIO()
torch.save(self.global_max_losses, global_max_losses_bytes)
log_steps_bytes = BytesIO()
torch.save(self.log_steps, log_steps_bytes)
return {
"step": torch.tensor(self.step, dtype=torch.int32),
"global_avg_losses": global_avg_losses_bytes,
"global_max_losses": global_max_losses_bytes,
"log_steps": log_steps_bytes,
}
def load_state_dict(self, state_dict) -> None:
self.step = state_dict["step"].item()
state_dict["global_avg_losses"].seek(0)
self.global_avg_losses = torch.load(
state_dict["global_avg_losses"], weights_only=False
)
state_dict["global_max_losses"].seek(0)
self.global_max_losses = torch.load(
state_dict["global_max_losses"], weights_only=False
)
state_dict["log_steps"].seek(0)
self.log_steps = torch.load(state_dict["log_steps"], weights_only=False)
def build_optimizer(model, job_config: JobConfig):
# build optimizer
name = job_config.optimizer.name
lr = job_config.optimizer.lr
fused = job_config.optimizer.fused
# Common parameters for both optimizers
optimizer_kwargs = {
"lr": lr,
"betas": (0.9, 0.95),
"weight_decay": 0.1,
"fused": fused,
"foreach": not fused,
}
if name == "Adam":
# TODO: make the optimizer options configurable by toml/cmd args
optimizer = torch.optim.Adam(model.parameters(), **optimizer_kwargs)
elif name == "AdamW":
optimizer = torch.optim.AdamW(model.parameters(), **optimizer_kwargs)
else:
raise NotImplementedError(f"Optimizer {name} not added.")
return optimizer
# Enable debug tracing on failure: https://pytorch.org/docs/stable/elastic/errors.html
@record
def main(job_config: JobConfig):
init_logger()
logger.info(f"Starting job: {job_config.job.description}")
# used for colorful printing
color = Color if job_config.metrics.enable_color_printing else NoColor
# take control of garbage collection to avoid stragglers
_gc_freq = job_config.training.gc_freq
gc.disable()
gc.collect(1)
# init world mesh
world_size = int(os.environ["WORLD_SIZE"])
parallel_dims = ParallelDims(
dp=job_config.training.data_parallel_degree,
tp=job_config.training.tensor_parallel_degree,
pp=job_config.experimental.pipeline_parallel_degree,
world_size=world_size,
enable_loss_parallel=job_config.training.enable_loss_parallel,
)
device = torch.device(f"cuda:{int(os.environ['LOCAL_RANK'])}")
torch.cuda.set_device(device)
init_distributed(job_config)
world_mesh = parallel_dims.build_mesh(device_type="cuda")
model_name = job_config.model.name
# build tokenizer
tokenizer_type = model_name_to_tokenizer[model_name]
tokenizer = create_tokenizer(tokenizer_type, job_config.model.tokenizer_path)
# build dataloader
if parallel_dims.dp_enabled:
dp_mesh = world_mesh["dp"]
dp_degree = dp_mesh.size()
dp_rank = dp_mesh.get_local_rank()
else:
dp_degree, dp_rank = 1, 0
if parallel_dims.pp_enabled:
pp_mesh = world_mesh["pp"]
data_loader = build_hf_data_loader(
job_config.training.dataset,
job_config.training.dataset_path,
tokenizer,
job_config.training.batch_size,
job_config.training.seq_len,
dp_degree,
dp_rank,
)
# loss_parallel enables dispatching to efficient loss operators
loss_parallel_ctx = (
loss_parallel if parallel_dims.loss_parallel_enabled else contextlib.nullcontext
)
# loss fn can be shared by pipeline-parallel or non-pp execution
def loss_fn(pred, labels):
return F.cross_entropy(pred.flatten(0, 1), labels.flatten(0, 1))
# build model (using meta init)
model_cls = model_name_to_cls[model_name]
model_config = models_config[model_name][job_config.model.flavor]
# set the model configs from training inputs:
# 1. norm type to decide which norm layer to use
# 2. vocab size from tokenizer
# 3. max_seq_len base on inputs
model_config.norm_type = job_config.model.norm_type
model_config.vocab_size = tokenizer.n_words
model_config.max_seq_len = job_config.training.seq_len
with torch.device("meta"):
logger.info(
f"Building {model_name} {job_config.model.flavor} with {model_config}"
)
model = model_cls.from_model_args(model_config)
# apply fp8 linear module swap
if job_config.training.fp8_linear:
build_fp8_linear(model, job_config)
# log model size
model_param_count = get_num_params(model)
num_flop_per_token = get_num_flop_per_token(
get_num_params(model, exclude_embedding=True),
model_config,
job_config.training.seq_len,
)
logger.info(
f"{color.blue}Model {model_name} {job_config.model.flavor} "
f"{color.red}size: {model_param_count:,} total parameters{color.reset}"
)
# initialize GPU memory monitor before applying parallelisms to the model
gpu_memory_monitor = build_gpu_memory_monitor()
# obtain the peak flops of bf16 type for MFU calculation
gpu_peak_flops = get_peak_flops(gpu_memory_monitor.device_name)
if parallel_dims.pp_enabled:
stage, model = models_pipelining_fns[model_name](
model, world_mesh, parallel_dims, job_config, device, model_config
)
# apply PT-D DP/TP parallelisms and activation checkpointing
model = models_parallelize_fns[model_name](
model, world_mesh, parallel_dims, job_config
)
init_device = "cpu" if job_config.checkpoint.create_seed_checkpoint else "cuda"
model.to_empty(device=init_device)
if parallel_dims.pp_enabled:
pp_schedule = build_pipeline_schedule(job_config, parallel_dims, stage, loss_fn)
else:
# If PP is enabled, we can't rely on init_weights, because some layers are missing.
# In the future, we may make init_weights handle missing layers, but also have to consider RNG seed propagation.
# allocate sharded model on GPU and initialize weights via DTensor
model.init_weights()
gpu_mem_stats = gpu_memory_monitor.get_peak_stats()
logger.info(
f"GPU memory usage for model: "
f"{gpu_mem_stats.max_reserved_gib:.2f}GiB"
f"({gpu_mem_stats.max_reserved_pct:.2f}%)"
)
# build optimizer after applying parallelisms to the model
optimizer = build_optimizer(model, job_config)
scheduler = get_lr_scheduler(optimizer, job_config)
metric_logger = build_metric_logger(
job_config, metrics_log_rank=get_metrics_rank(world_mesh, parallel_dims)
)
train_state = TrainState()
# train loop
model.train()
checkpoint = CheckpointManager(
model=model,
optimizer=optimizer,
lr_scheduler=scheduler,
dataloader=data_loader,
states={"train_state": train_state},
job_config=job_config,
)
if job_config.checkpoint.create_seed_checkpoint:
assert (
world_size == 1
), "Must create seed-checkpoint using one gpu, to disable sharding"
checkpoint.save(curr_step=0, force=True)
logger.info("Created seed checkpoint")
return
checkpoint_loaded = checkpoint.load()
if parallel_dims.pp_enabled and not checkpoint_loaded:
raise RuntimeError(
"Pipeline Parallelism requires meta-initialization and loading seed checkpoint. "
"Please run `./create_seed_checkpoint.sh` and rerun training with `--checkpoint.enable_checkpoint`"
)
# plot losses loaded from checkpoint (if any) to TensorBoard
# NOTE: Loss info after the last log step before checkpoint saving will not be ploted.
# This can be avoided by setting checkpoint.interval to be a multiple of metrics.log_freq
if train_state.step > 0:
for idx, step in enumerate(train_state.log_steps):
metrics = {
"loss_metrics/global_avg_loss": train_state.global_avg_losses[idx],
"loss_metrics/global_max_loss": train_state.global_max_losses[idx],
}
metric_logger.log(metrics, step=step)
data_iterator = iter(data_loader)
logger.info(f"Training starts at step {train_state.step + 1}")
with maybe_enable_profiling(
job_config, global_step=train_state.step
) as torch_profiler:
checkpoint.reset()
# variables used to keep info for metrics logging
losses_since_last_log: List[float] = []
ntokens_since_last_log = 0
data_loading_times: List[float] = []
time_last_log = timer()
gpu_memory_monitor.reset_peak_stats()
while train_state.step < job_config.training.steps:
train_state.step += 1
if train_state.step > 1 and train_state.step % _gc_freq == 0:
gc.collect(1)
# get batch
data_load_start = timer()
batch = next(data_iterator)
input_ids, labels = batch
ntokens_since_last_log += labels.numel()
data_loading_times.append(timer() - data_load_start)
input_ids = input_ids.cuda()
labels = labels.cuda()
optimizer.zero_grad()
if parallel_dims.pp_enabled:
# pipeline parallel forward / backward inside step() call
is_last_stage = pp_mesh.get_local_rank() == pp_mesh.size() - 1
with loss_parallel_ctx():
if pp_mesh.get_local_rank() == 0:
pp_schedule.step(input_ids)
elif is_last_stage:
losses = []
pp_schedule.step(target=labels, losses=losses)
else:
pp_schedule.step()
# accumulate losses across pipeline microbatches
loss = (
torch.mean(torch.stack(losses))
if is_last_stage
else torch.Tensor([-1.0])
)
else:
# Non-PP forward / backward
with loss_parallel_ctx():
pred = model(input_ids)
loss = loss_fn(pred, labels)
# pred.shape=(bs, seq_len, vocab_size)
# need to free to before bwd to avoid peaking memory
del pred
loss.backward()
# clip gradients
torch.nn.utils.clip_grad_norm_(
model.parameters(), job_config.training.max_norm, foreach=True
)
# optimizer step
checkpoint.wait_for_staging()
optimizer.step()
scheduler.step()
losses_since_last_log.append(loss)
# log metrics
if (
train_state.step == 1
or train_state.step % job_config.metrics.log_freq == 0
):
losses = [loss.item() for loss in losses_since_last_log]
avg_loss, max_loss = (
np.mean(losses),
np.max(losses),
)
if parallel_dims.dp_enabled:
global_avg_loss, global_max_loss = (
dist_mean(avg_loss, dp_mesh).item(),
dist_max(max_loss, dp_mesh).item(),
)
else:
global_avg_loss, global_max_loss = avg_loss, max_loss
train_state.log_steps.append(train_state.step)
train_state.global_avg_losses.append(global_avg_loss)
train_state.global_max_losses.append(global_max_loss)
time_delta = timer() - time_last_log
# tokens per second, abbr. as wps by convention
wps = ntokens_since_last_log / (
time_delta * parallel_dims.model_parallel_size
)
# model FLOPS utilization
# For its definition and calculation, please refer to the PaLM paper:
# https://arxiv.org/abs/2204.02311
mfu = 100 * num_flop_per_token * wps / gpu_peak_flops
time_end_to_end = time_delta / job_config.metrics.log_freq
time_data_loading = np.mean(data_loading_times)
time_data_loading_pct = 100 * np.sum(data_loading_times) / time_delta
gpu_mem_stats = gpu_memory_monitor.get_peak_stats()
metrics = {
"loss_metrics/global_avg_loss": global_avg_loss,
"loss_metrics/global_max_loss": global_max_loss,
"wps": wps,
"mfu(%)": mfu,
"time_metrics/end_to_end(s)": time_end_to_end,
"time_metrics/data_loading(s)": time_data_loading,
"time_metrics/data_loading(%)": time_data_loading_pct,
"memory/max_active(GiB)": gpu_mem_stats.max_active_gib,
"memory/max_active(%)": gpu_mem_stats.max_active_pct,
"memory/max_reserved(GiB)": gpu_mem_stats.max_reserved_gib,
"memory/max_reserved(%)": gpu_mem_stats.max_reserved_pct,
"memory/num_alloc_retries": gpu_mem_stats.num_alloc_retries,
"memory/num_ooms": gpu_mem_stats.num_ooms,
}
metric_logger.log(metrics, step=train_state.step)
logger.info(
f"{color.cyan}step: {train_state.step:2} "
f"{color.green}loss: {global_avg_loss:7.4f} "
f"{color.yellow}memory: {gpu_mem_stats.max_reserved_gib:5.2f}GiB"
f"({gpu_mem_stats.max_reserved_pct:.2f}%) "
f"{color.blue}wps: {round(wps):,} "
f"{color.magenta}mfu: {mfu:.2f}%{color.reset}"
)
losses_since_last_log.clear()
ntokens_since_last_log = 0
data_loading_times.clear()
time_last_log = timer()
gpu_memory_monitor.reset_peak_stats()
checkpoint.save(
train_state.step, force=(train_state.step == job_config.training.steps)
)
# signals the profiler that the next profiling step has started
if torch_profiler:
torch_profiler.step()
# Reduce timeout after first train step for faster signal (assumes lazy init, compile are finished)
if train_state.step == 1:
set_pg_timeouts(
timeout=timedelta(seconds=job_config.comm.train_timeout_seconds),
world_mesh=world_mesh,
)
if torch.distributed.get_rank() == 0:
logger.info("Sleeping 2 seconds for other ranks to complete")
time.sleep(2)
metric_logger.close()
logger.info("Training completed")
if __name__ == "__main__":
config = JobConfig()
config.parse_args()
main(config)
destroy_process_group()