From b876fe4867020f084a62d14057818e084c04cb74 Mon Sep 17 00:00:00 2001 From: Ke Wen Date: Mon, 10 Feb 2025 15:10:43 -0800 Subject: [PATCH 1/5] Initial add of DeepSeek-v3 model --- torchtitan/models/deepseek_v3/model.py | 1438 ++++++++++++++++++++++++ 1 file changed, 1438 insertions(+) create mode 100644 torchtitan/models/deepseek_v3/model.py diff --git a/torchtitan/models/deepseek_v3/model.py b/torchtitan/models/deepseek_v3/model.py new file mode 100644 index 00000000..4c5299ae --- /dev/null +++ b/torchtitan/models/deepseek_v3/model.py @@ -0,0 +1,1438 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. +# +# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved. +# +# This code is based on model definition of `deepseek-ai/DeepSeek-V3-Base` on +# Hugging Face Model Hub. Url: +# https://huggingface.co/deepseek-ai/DeepSeek-V3-Base/blob/main/modeling_deepseek.py +# https://huggingface.co/deepseek-ai/DeepSeek-V3-Base/resolve/main/configuration_deepseek.py +# +# It has been modified from its original forms to accommodate naming convention +# of the TorchTitan project. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch DeepSeek model.""" +import math +import warnings +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import numpy as np + +import torch +import torch.distributed as dist +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from transformers.activations import ACT2FN +from transformers.cache_utils import Cache, DynamicCache +from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask +from transformers.modeling_outputs import ( + BaseModelOutputWithPast, + CausalLMOutputWithPast, +) +from transformers.utils import logging + + +logger = logging.get_logger(__name__) + + +@dataclass +class ModelArgs: + r""" + This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the DeepSeek-V3. + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + Args: + vocab_size (`int`, *optional*, defaults to 129280): + Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`DeepseekV3Model`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 11008): + Dimension of the MLP representations. + moe_intermediate_size (`int`, *optional*, defaults to 1407): + Dimension of the MoE representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer decoder. + num_nextn_predict_layers (`int`, *optional*, defaults to 1): + Number of nextn predict layers in the DeepSeekV3 Model. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer decoder. + n_shared_experts (`int`, *optional*, defaults to None): + Number of shared experts, None means dense model. + n_routed_experts (`int`, *optional*, defaults to None): + Number of routed experts, None means dense model. + routed_scaling_factor (`float`, *optional*, defaults to 1.0): + Scaling factor or routed experts. + topk_method (`str`, *optional*, defaults to `gready`): + Topk method used in routed gate. + n_group (`int`, *optional*, defaults to None): + Number of groups for routed experts. + topk_group (`int`, *optional*, defaults to None): + Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups). + num_experts_per_tok (`int`, *optional*, defaults to None): + Number of selected experts, None means dense model. + moe_layer_freq (`int`, *optional*, defaults to 1): + The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers. + first_k_dense_replace (`int`, *optional*, defaults to 0): + Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head). + \--k dense layers--/ + norm_topk_prob (`bool`, *optional*, defaults to False): + Whether to normalize the weights of the routed experts. + scoring_func (`str`, *optional*, defaults to 'softmax'): + Method of computing expert weights. + aux_loss_alpha (`float`, *optional*, defaults to 0.001): + Auxiliary loss weight coefficient. + seq_aux = (`bool`, *optional*, defaults to True): + Whether to compute the auxiliary loss for each individual sample. + num_key_value_heads (`int`, *optional*): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to + `num_attention_heads`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 1): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 2): + End of stream token id. + pretraining_tp (`int`, *optional*, defaults to 1): + Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this + document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is + necessary to ensure exact reproducibility of the pretraining results. Please refer to [this + issue](https://github.com/pytorch/pytorch/issues/76232). + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether to tie weight embeddings + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + rope_scaling (`Dict`, *optional*): + Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling + strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is + `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update + `max_position_embeddings` to the expected new maximum. + attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): + Whether to use a bias in the query, key, value and output projection layers during self-attention. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + """ + + vocab_size: int =129280 + hidden_size: int =7168 + intermediate_size: int=18432 + moe_intermediate_size: int = 2048 + num_hidden_layers: int=61 + num_nextn_predict_layers: int=1 + num_attention_heads: int =128 + num_key_value_heads: int=128 + n_shared_experts: int = 1 + n_routed_experts: int = 256 + ep_size: int = 1 + routed_scaling_factor: float = 2.5 + kv_lora_rank: int = 512 + q_lora_rank: int = 1536 + qk_rope_head_dim: int = 64 + v_head_dim: int = 128 + qk_nope_head_dim: int = 128 + topk_method: str = 'noaux_tc' + n_group: int = 8 + topk_group: int = 4 + num_experts_per_tok: int = 8 + moe_layer_freq: int = 1 + first_k_dense_replace: int = 3 + norm_topk_prob: bool = True + scoring_func: str = 'sigmoid' + aux_loss_alpha: float = 0.001 + seq_aux: bool = True + hidden_act: str ="silu" + max_position_embeddings: int=4096 + initializer_range: float=0.02 + rms_norm_eps: float=1e-6 + use_cache: bool=False + rope_theta: float=10000.0 + rope_scaling=None + attention_bias: bool=False + attention_dropout: float =0.0 + pad_token_id=None + +class RMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + +class RotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / ( + self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) + ) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache( + seq_len=max_position_embeddings, + device=self.inv_freq.device, + dtype=torch.get_default_dtype(), + ) + self.max_seq_len_cached = None + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + + freqs = torch.outer(t, self.inv_freq.to(t.device)) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) + + return ( + self.cos_cached[:seq_len].to(dtype=x.dtype), + self.sin_cached[:seq_len].to(dtype=x.dtype), + ) + + +class LinearScalingRotaryEmbedding(RotaryEmbedding): + """RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + ): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + t = t / self.scaling_factor + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV3 +class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding): + """RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + ): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + + if seq_len > self.max_position_embeddings: + base = self.base * ( + (self.scaling_factor * seq_len / self.max_position_embeddings) + - (self.scaling_factor - 1) + ) ** (self.dim / (self.dim - 2)) + inv_freq = 1.0 / ( + base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) + ) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +# Inverse dim formula to find dim based on number of rotations +def yarn_find_correction_dim( + num_rotations, dim, base=10000, max_position_embeddings=2048 +): + return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / ( + 2 * math.log(base) + ) + + +# Find dim range bounds based on rotations +def yarn_find_correction_range( + low_rot, high_rot, dim, base=10000, max_position_embeddings=2048 +): + low = math.floor( + yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings) + ) + high = math.ceil( + yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings) + ) + return max(low, 0), min(high, dim - 1) # Clamp values just in case + + +def yarn_get_mscale(scale=1, mscale=1): + if scale <= 1: + return 1.0 + return 0.1 * mscale * math.log(scale) + 1.0 + + +def yarn_linear_ramp_mask(min, max, dim): + if min == max: + max += 0.001 # Prevent singularity + + linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) + ramp_func = torch.clamp(linear_func, 0, 1) + return ramp_func + + +class YarnRotaryEmbedding(RotaryEmbedding): + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + original_max_position_embeddings=4096, + beta_fast=32, + beta_slow=1, + mscale=1, + mscale_all_dim=0, + ): + self.scaling_factor = scaling_factor + self.original_max_position_embeddings = original_max_position_embeddings + self.beta_fast = beta_fast + self.beta_slow = beta_slow + self.mscale = mscale + self.mscale_all_dim = mscale_all_dim + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + dim = self.dim + + freq_extra = 1.0 / ( + self.base + ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) + ) + freq_inter = 1.0 / ( + self.scaling_factor + * self.base + ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) + ) + + low, high = yarn_find_correction_range( + self.beta_fast, + self.beta_slow, + dim, + self.base, + self.original_max_position_embeddings, + ) + inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to( + device=device, dtype=torch.float32 + ) + inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange(seq_len, device=device, dtype=torch.float32) + + freqs = torch.outer(t, inv_freq) + + _mscale = float( + yarn_get_mscale(self.scaling_factor, self.mscale) + / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim) + ) + + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer( + "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False + ) + self.register_buffer( + "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False + ) + + +# Copied from transformers.models.llama.modeling_llama.rotate_half +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`): + The position indices of the tokens corresponding to the query and key tensors. For example, this can be + used to pass offsetted position ids when working with a KV-cache. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos[position_ids].unsqueeze(unsqueeze_dim) + sin = sin[position_ids].unsqueeze(unsqueeze_dim) + + b, h, s, d = q.shape + q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) + + b, h, s, d = k.shape + k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) + + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +class MLP(nn.Module): + def __init__(self, config, hidden_size=None, intermediate_size=None): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size if hidden_size is None else hidden_size + self.intermediate_size = ( + config.intermediate_size if intermediate_size is None else intermediate_size + ) + + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + return down_proj + + +class MoEGate(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.top_k = config.num_experts_per_tok + self.n_routed_experts = config.n_routed_experts + self.routed_scaling_factor = config.routed_scaling_factor + self.scoring_func = config.scoring_func + self.seq_aux = config.seq_aux + self.topk_method = config.topk_method + self.n_group = config.n_group + self.topk_group = config.topk_group + + # topk selection algorithm + self.norm_topk_prob = config.norm_topk_prob + self.gating_dim = config.hidden_size + self.weight = nn.Parameter( + torch.empty((self.n_routed_experts, self.gating_dim)) + ) + if self.topk_method == "noaux_tc": + self.e_score_correction_bias = nn.Parameter( + torch.empty((self.n_routed_experts)) + ) + self.reset_parameters() + + def reset_parameters(self) -> None: + import torch.nn.init as init + + init.kaiming_uniform_(self.weight, a=math.sqrt(5)) + + def forward(self, hidden_states): + bsz, seq_len, h = hidden_states.shape + ### compute gating score + hidden_states = hidden_states.view(-1, h) + logits = F.linear( + hidden_states.type(torch.float32), self.weight.type(torch.float32), None + ) + if self.scoring_func == "sigmoid": + scores = logits.sigmoid() + else: + raise NotImplementedError( + f"insupportable scoring function for MoE gating: {self.scoring_func}" + ) + + ### select top-k experts + if self.topk_method == "noaux_tc": + assert not self.training + scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0) + group_scores = ( + scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1) + ) # [n, n_group] + group_idx = torch.topk( + group_scores, k=self.topk_group, dim=-1, sorted=False + )[ + 1 + ] # [n, top_k_group] + group_mask = torch.zeros_like(group_scores) # [n, n_group] + group_mask.scatter_(1, group_idx, 1) # [n, n_group] + score_mask = ( + group_mask.unsqueeze(-1) + .expand( + bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group + ) + .reshape(bsz * seq_len, -1) + ) # [n, e] + tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e] + _, topk_idx = torch.topk( + tmp_scores, k=self.top_k, dim=-1, sorted=False + ) + topk_weight = scores.gather(1, topk_idx) + else: + raise NotImplementedError( + f"insupportable TopK function for MoE gating: {self.topk_method}" + ) + + ### norm gate to sum 1 + if self.top_k > 1 and self.norm_topk_prob: + denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 + topk_weight = topk_weight / denominator + topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor + + return topk_idx, topk_weight + +class MoE(nn.Module): + """ + A mixed expert module containing shared experts. + """ + + def __init__(self, config): + super().__init__() + self.config = config + self.num_experts_per_tok = config.num_experts_per_tok + + if hasattr(config, "ep_size") and config.ep_size > 1: + assert config.ep_size == dist.get_world_size() + self.ep_size = config.ep_size + self.experts_per_rank = config.n_routed_experts // config.ep_size + self.ep_rank = dist.get_rank() + self.experts = nn.ModuleList( + [ + ( + MLP( + config, intermediate_size=config.moe_intermediate_size + ) + if i >= self.ep_rank * self.experts_per_rank + and i < (self.ep_rank + 1) * self.experts_per_rank + else None + ) + for i in range(config.n_routed_experts) + ] + ) + else: + self.ep_size = 1 + self.experts_per_rank = config.n_routed_experts + self.ep_rank = 0 + self.experts = nn.ModuleList( + [ + MLP( + config, intermediate_size=config.moe_intermediate_size + ) + for i in range(config.n_routed_experts) + ] + ) + self.gate = MoEGate(config) + if config.n_shared_experts is not None: + intermediate_size = config.moe_intermediate_size * config.n_shared_experts + self.shared_experts = MLP( + config=config, intermediate_size=intermediate_size + ) + + def forward(self, hidden_states): + identity = hidden_states + orig_shape = hidden_states.shape + topk_idx, topk_weight = self.gate(hidden_states) + hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) + flat_topk_idx = topk_idx.view(-1) + if not self.training: + y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape) + if self.config.n_shared_experts is not None: + y = y + self.shared_experts(identity) + return y + + @torch.no_grad() + def moe_infer(self, x, topk_ids, topk_weight): + cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts))) + cnts.scatter_(1, topk_ids, 1) + tokens_per_expert = cnts.sum(dim=0) + idxs = topk_ids.view(-1).argsort() + sorted_tokens = x[idxs // topk_ids.shape[1]] + sorted_tokens_shape = sorted_tokens.shape + if self.ep_size > 1: + tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1) + tokens_per_expert_group = tokens_per_expert.new_empty( + tokens_per_expert.shape[0] + ) + dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert) + output_splits = ( + tokens_per_expert_group.view(self.ep_size, -1) + .sum(1) + .cpu() + .numpy() + .tolist() + ) + gathered_tokens = sorted_tokens.new_empty( + tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1] + ) + input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist() + dist.all_to_all( + list(gathered_tokens.split(output_splits)), + list(sorted_tokens.split(input_split_sizes)), + ) + tokens_per_expert_post_gather = tokens_per_expert_group.view( + self.ep_size, self.experts_per_rank + ).sum(dim=0) + gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32) + s = 0 + for i, k in enumerate(tokens_per_expert_group.cpu().numpy()): + gatherd_idxs[s : s + k] = i % self.experts_per_rank + s += k + gatherd_idxs = gatherd_idxs.argsort() + sorted_tokens = gathered_tokens[gatherd_idxs] + tokens_per_expert = tokens_per_expert_post_gather + tokens_per_expert = tokens_per_expert.cpu().numpy() + + outputs = [] + start_idx = 0 + for i, num_tokens in enumerate(tokens_per_expert): + end_idx = start_idx + num_tokens + if num_tokens == 0: + continue + expert = self.experts[i + self.ep_rank * self.experts_per_rank] + tokens_for_this_expert = sorted_tokens[start_idx:end_idx] + expert_out = expert(tokens_for_this_expert) + outputs.append(expert_out) + start_idx = end_idx + + outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0) + if self.ep_size > 1: + new_x = torch.empty_like(outs) + new_x[gatherd_idxs] = outs + gathered_tokens = new_x.new_empty(*sorted_tokens_shape) + dist.all_to_all( + list(gathered_tokens.split(input_split_sizes)), + list(new_x.split(output_splits)), + ) + outs = gathered_tokens + + new_x = torch.empty_like(outs) + new_x[idxs] = outs + final_out = ( + new_x.view(*topk_ids.shape, -1) + .type(topk_weight.dtype) + .mul_(topk_weight.unsqueeze(dim=-1)) + .sum(dim=1) + .type(new_x.dtype) + ) + return final_out + + +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand( + batch, num_key_value_heads, n_rep, slen, head_dim + ) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +class Attention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: ModelArgs, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + if layer_idx is None: + logger.warning_once( + f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " + "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " + "when creating this class." + ) + + self.attention_dropout = config.attention_dropout + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + self.q_lora_rank = config.q_lora_rank + self.qk_rope_head_dim = config.qk_rope_head_dim + self.kv_lora_rank = config.kv_lora_rank + self.v_head_dim = config.v_head_dim + self.qk_nope_head_dim = config.qk_nope_head_dim + self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim + + self.is_causal = True + + if self.q_lora_rank is None: + self.q_proj = nn.Linear( + self.hidden_size, self.num_heads * self.q_head_dim, bias=False + ) + else: + self.q_a_proj = nn.Linear( + self.hidden_size, config.q_lora_rank, bias=config.attention_bias + ) + self.q_a_layernorm = RMSNorm(config.q_lora_rank) + self.q_b_proj = nn.Linear( + config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False + ) + + self.kv_a_proj_with_mqa = nn.Linear( + self.hidden_size, + config.kv_lora_rank + config.qk_rope_head_dim, + bias=config.attention_bias, + ) + self.kv_a_layernorm = RMSNorm(config.kv_lora_rank) + self.kv_b_proj = nn.Linear( + config.kv_lora_rank, + self.num_heads + * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim), + bias=False, + ) + + self.o_proj = nn.Linear( + self.num_heads * self.v_head_dim, + self.hidden_size, + bias=config.attention_bias, + ) + self._init_rope() + + self.softmax_scale = self.q_head_dim ** (-0.5) + if self.config.rope_scaling is not None: + mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0) + scaling_factor = self.config.rope_scaling["factor"] + if mscale_all_dim: + mscale = yarn_get_mscale(scaling_factor, mscale_all_dim) + self.softmax_scale = self.softmax_scale * mscale * mscale + + def _init_rope(self): + if self.config.rope_scaling is None: + self.rotary_emb = RotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + else: + scaling_type = self.config.rope_scaling["type"] + scaling_factor = self.config.rope_scaling["factor"] + if scaling_type == "linear": + self.rotary_emb = LinearScalingRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "dynamic": + self.rotary_emb = DynamicNTKScalingRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "yarn": + kwargs = { + key: self.config.rope_scaling[key] + for key in [ + "original_max_position_embeddings", + "beta_fast", + "beta_slow", + "mscale", + "mscale_all_dim", + ] + if key in self.config.rope_scaling + } + self.rotary_emb = YarnRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + **kwargs, + ) + else: + raise ValueError(f"Unknown RoPE scaling type {scaling_type}") + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return ( + tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim) + .transpose(1, 2) + .contiguous() + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + bsz, q_len, _ = hidden_states.size() + + if self.q_lora_rank is None: + q = self.q_proj(hidden_states) + else: + q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) + q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) + q_nope, q_pe = torch.split( + q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 + ) + + compressed_kv = self.kv_a_proj_with_mqa(hidden_states) + compressed_kv, k_pe = torch.split( + compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 + ) + k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) + kv = ( + self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) + .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) + .transpose(1, 2) + ) + + k_nope, value_states = torch.split( + kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 + ) + kv_seq_len = value_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + + q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) + + query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + query_states[:, :, :, : self.qk_nope_head_dim] = q_nope + query_states[:, :, :, self.qk_nope_head_dim :] = q_pe + + key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + key_states[:, :, :, : self.qk_nope_head_dim] = k_nope + key_states[:, :, :, self.qk_nope_head_dim :] = k_pe + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, cache_kwargs + ) + + attn_weights = ( + torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale + ) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + assert attention_mask is not None + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax( + attn_weights, dim=-1, dtype=torch.float32 + ).to(query_states.dtype) + attn_weights = nn.functional.dropout( + attn_weights, p=self.attention_dropout, training=self.training + ) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +class DecoderLayer(nn.Module): + def __init__(self, config: ModelArgs, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + + self.self_attn = Attention( + config=config, layer_idx=layer_idx + ) + + self.mlp = ( + MoE(config) + if ( + config.n_routed_experts is not None + and layer_idx >= config.first_k_dense_replace + and layer_idx % config.moe_layer_freq == 0 + ) + else MLP(config) + ) + self.input_layernorm = RMSNorm( + config.hidden_size, eps=config.rms_norm_eps + ) + self.post_attention_layernorm = RMSNorm( + config.hidden_size, eps=config.rms_norm_eps + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + **kwargs, + ) -> Tuple[ + torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] + ]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): + attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, + query_sequence_length, key_sequence_length)` if default attention is used. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + **kwargs, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +DeepseekV3_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class DeepseekV3Model(torch.nn.Module): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DecoderLayer`] + + Args: + config: ModelArgs + """ + + def __init__(self, config: ModelArgs): + super().__init__() + self.config = config + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding( + config.vocab_size, config.hidden_size, self.padding_idx + ) + self.layers = nn.ModuleList( + [ + DecoderLayer(config, layer_idx) + for layer_idx in range(config.num_hidden_layers) + ] + ) + self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + #self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = False, + ) -> Union[Tuple, BaseModelOutputWithPast]: + use_cache = use_cache if use_cache is not None else self.config.use_cache + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time" + ) + elif input_ids is not None: + batch_size, seq_length = input_ids.shape[:2] + elif inputs_embeds is not None: + batch_size, seq_length = inputs_embeds.shape[:2] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + past_key_values_length = 0 + if use_cache: + use_legacy_cache = not isinstance(past_key_values, Cache) + if use_legacy_cache: + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + past_key_values_length = past_key_values.get_usable_length(seq_length) + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, + seq_length + past_key_values_length, + dtype=torch.long, + device=device, + ) + position_ids = position_ids.unsqueeze(0) + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + # 4d mask is passed through the layers + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + ) + + # embed positions + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = None + if use_cache: + next_cache = ( + next_decoder_cache.to_legacy_cache() + if use_legacy_cache + else next_decoder_cache + ) + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] + if v is not None + ) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +class DeepseekV3ForCausalLM(torch.nn.Module): + def __init__(self, config): + super().__init__(config) + self.model = DeepseekV3Model(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = False, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM + + >>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) + >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + inputs_embeds=None, + **kwargs, + ): + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + max_cache_length = past_key_values.get_max_length() + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as + # input) + if ( + attention_mask is not None + and attention_mask.shape[1] > input_ids.shape[1] + ): + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple( + past_state.index_select(0, beam_idx.to(past_state.device)) + for past_state in layer_past + ), + ) + return reordered_past + + +if __name__ == "__main__": + device = torch.device("cuda") + model_args = ModelArgs() + model_args.num_hidden_layers //= 16 + # Instantiate model + with device: + model = DeepseekV3Model(model_args) + + # Test forward + bs = 2 + seqlen = 128 + x = torch.randint(model_args.vocab_size, (bs, seqlen), device=device) + y = model(x) + print(y[0].shape) From 0cb4475a890e759d9fb5e6e7f7822f8fd02fa39d Mon Sep 17 00:00:00 2001 From: Ke Wen Date: Mon, 10 Feb 2025 15:12:25 -0800 Subject: [PATCH 2/5] Lint --- torchtitan/models/deepseek_v3/model.py | 87 ++++++++++++++------------ 1 file changed, 46 insertions(+), 41 deletions(-) diff --git a/torchtitan/models/deepseek_v3/model.py b/torchtitan/models/deepseek_v3/model.py index 4c5299ae..b8f3a048 100644 --- a/torchtitan/models/deepseek_v3/model.py +++ b/torchtitan/models/deepseek_v3/model.py @@ -1,3 +1,9 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the BSD-style license found in the +# LICENSE file in the root directory of this source tree. + # Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. # # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved. @@ -6,7 +12,7 @@ # Hugging Face Model Hub. Url: # https://huggingface.co/deepseek-ai/DeepSeek-V3-Base/blob/main/modeling_deepseek.py # https://huggingface.co/deepseek-ai/DeepSeek-V3-Base/resolve/main/configuration_deepseek.py -# +# # It has been modified from its original forms to accommodate naming convention # of the TorchTitan project. # @@ -145,14 +151,14 @@ class ModelArgs: The dropout ratio for the attention probabilities. """ - vocab_size: int =129280 - hidden_size: int =7168 - intermediate_size: int=18432 + vocab_size: int = 129280 + hidden_size: int = 7168 + intermediate_size: int = 18432 moe_intermediate_size: int = 2048 - num_hidden_layers: int=61 - num_nextn_predict_layers: int=1 - num_attention_heads: int =128 - num_key_value_heads: int=128 + num_hidden_layers: int = 61 + num_nextn_predict_layers: int = 1 + num_attention_heads: int = 128 + num_key_value_heads: int = 128 n_shared_experts: int = 1 n_routed_experts: int = 256 ep_size: int = 1 @@ -162,26 +168,27 @@ class ModelArgs: qk_rope_head_dim: int = 64 v_head_dim: int = 128 qk_nope_head_dim: int = 128 - topk_method: str = 'noaux_tc' + topk_method: str = "noaux_tc" n_group: int = 8 topk_group: int = 4 num_experts_per_tok: int = 8 moe_layer_freq: int = 1 first_k_dense_replace: int = 3 norm_topk_prob: bool = True - scoring_func: str = 'sigmoid' + scoring_func: str = "sigmoid" aux_loss_alpha: float = 0.001 seq_aux: bool = True - hidden_act: str ="silu" - max_position_embeddings: int=4096 - initializer_range: float=0.02 - rms_norm_eps: float=1e-6 - use_cache: bool=False - rope_theta: float=10000.0 - rope_scaling=None - attention_bias: bool=False - attention_dropout: float =0.0 - pad_token_id=None + hidden_act: str = "silu" + max_position_embeddings: int = 4096 + initializer_range: float = 0.02 + rms_norm_eps: float = 1e-6 + use_cache: bool = False + rope_theta: float = 10000.0 + rope_scaling = None + attention_bias: bool = False + attention_dropout: float = 0.0 + pad_token_id = None + class RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): @@ -345,7 +352,6 @@ def yarn_linear_ramp_mask(min, max, dim): class YarnRotaryEmbedding(RotaryEmbedding): - def __init__( self, dim, @@ -522,9 +528,13 @@ def forward(self, hidden_states): ### select top-k experts if self.topk_method == "noaux_tc": assert not self.training - scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0) + scores_for_choice = scores.view( + bsz * seq_len, -1 + ) + self.e_score_correction_bias.unsqueeze(0) group_scores = ( - scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1) + scores_for_choice.view(bsz * seq_len, self.n_group, -1) + .topk(2, dim=-1)[0] + .sum(dim=-1) ) # [n, n_group] group_idx = torch.topk( group_scores, k=self.topk_group, dim=-1, sorted=False @@ -540,10 +550,10 @@ def forward(self, hidden_states): ) .reshape(bsz * seq_len, -1) ) # [n, e] - tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e] - _, topk_idx = torch.topk( - tmp_scores, k=self.top_k, dim=-1, sorted=False - ) + tmp_scores = scores_for_choice.masked_fill( + ~score_mask.bool(), 0.0 + ) # [n, e] + _, topk_idx = torch.topk(tmp_scores, k=self.top_k, dim=-1, sorted=False) topk_weight = scores.gather(1, topk_idx) else: raise NotImplementedError( @@ -554,10 +564,13 @@ def forward(self, hidden_states): if self.top_k > 1 and self.norm_topk_prob: denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 topk_weight = topk_weight / denominator - topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor + topk_weight = ( + topk_weight * self.routed_scaling_factor + ) # must multiply the scaling factor return topk_idx, topk_weight + class MoE(nn.Module): """ A mixed expert module containing shared experts. @@ -576,9 +589,7 @@ def __init__(self, config): self.experts = nn.ModuleList( [ ( - MLP( - config, intermediate_size=config.moe_intermediate_size - ) + MLP(config, intermediate_size=config.moe_intermediate_size) if i >= self.ep_rank * self.experts_per_rank and i < (self.ep_rank + 1) * self.experts_per_rank else None @@ -592,9 +603,7 @@ def __init__(self, config): self.ep_rank = 0 self.experts = nn.ModuleList( [ - MLP( - config, intermediate_size=config.moe_intermediate_size - ) + MLP(config, intermediate_size=config.moe_intermediate_size) for i in range(config.n_routed_experts) ] ) @@ -945,9 +954,7 @@ def __init__(self, config: ModelArgs, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size - self.self_attn = Attention( - config=config, layer_idx=layer_idx - ) + self.self_attn = Attention(config=config, layer_idx=layer_idx) self.mlp = ( MoE(config) @@ -958,9 +965,7 @@ def __init__(self, config: ModelArgs, layer_idx: int): ) else MLP(config) ) - self.input_layernorm = RMSNorm( - config.hidden_size, eps=config.rms_norm_eps - ) + self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) @@ -1137,7 +1142,7 @@ def __init__(self, config: ModelArgs): self.gradient_checkpointing = False # Initialize weights and apply final processing - #self.post_init() + # self.post_init() def get_input_embeddings(self): return self.embed_tokens From 1a9aba64101f35b5b94f9d7daf73304035c9bd6b Mon Sep 17 00:00:00 2001 From: Ke Wen Date: Mon, 10 Feb 2025 15:47:47 -0800 Subject: [PATCH 3/5] Minimize HF transformer dependency --- .../models/deepseek_v3/attn_mask_utils.py | 394 ++++++++++++++++++ torchtitan/models/deepseek_v3/model.py | 104 +---- 2 files changed, 413 insertions(+), 85 deletions(-) create mode 100755 torchtitan/models/deepseek_v3/attn_mask_utils.py diff --git a/torchtitan/models/deepseek_v3/attn_mask_utils.py b/torchtitan/models/deepseek_v3/attn_mask_utils.py new file mode 100755 index 00000000..9bcce5ff --- /dev/null +++ b/torchtitan/models/deepseek_v3/attn_mask_utils.py @@ -0,0 +1,394 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the BSD-style license found in the +# LICENSE file in the root directory of this source tree. + +# This code is based on src/transformers/modeling_attn_mask_utils.py of +# huggingface/transformers. It has been modified from its original forms to +# contain only the necessary utilities. + +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch + + +@dataclass +class AttentionMaskConverter: + """ + A utility attention mask class that allows one to: + - Create a causal 4d mask + - Create a causal 4d mask with slided window + - Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length, + key_value_length) that can be multiplied with attention scores + + Examples: + + ```python + >>> import torch + >>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter + + >>> converter = AttentionMaskConverter(True) + >>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32) + tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], + [-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], + [-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], + [-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, -3.4028e+38], + [-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, 0.0000e+00]]]]) + ``` + + Parameters: + is_causal (`bool`): + Whether the attention mask should be a uni-directional (causal) or bi-directional mask. + + sliding_window (`int`, *optional*): + Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer. + """ + + is_causal: bool + sliding_window: int + + def __init__(self, is_causal: bool, sliding_window: Optional[int] = None): + self.is_causal = is_causal + self.sliding_window = sliding_window + + if self.sliding_window is not None and self.sliding_window <= 0: + raise ValueError( + f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`" + ) + + def to_causal_4d( + self, + batch_size: int, + query_length: int, + key_value_length: int, + dtype: torch.dtype, + device: Union[torch.device, "str"] = "cpu", + ) -> Optional[torch.Tensor]: + """ + Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative + bias to upper right hand triangular matrix (causal mask). + """ + if not self.is_causal: + raise ValueError( + f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True." + ) + + # If shape is not cached, create a new causal mask and cache it + input_shape = (batch_size, query_length) + past_key_values_length = key_value_length - query_length + + # create causal mask + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + causal_4d_mask = None + if input_shape[-1] > 1 or self.sliding_window is not None: + causal_4d_mask = self._make_causal_mask( + input_shape, + dtype, + device=device, + past_key_values_length=past_key_values_length, + sliding_window=self.sliding_window, + ) + + return causal_4d_mask + + def to_4d( + self, + attention_mask_2d: torch.Tensor, + query_length: int, + dtype: torch.dtype, + key_value_length: Optional[int] = None, + ) -> torch.Tensor: + """ + Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length, + key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is + causal, a causal mask will be added. + """ + input_shape = (attention_mask_2d.shape[0], query_length) + + # create causal mask + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + causal_4d_mask = None + if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal: + if key_value_length is None: + raise ValueError( + "This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask." + ) + + past_key_values_length = key_value_length - query_length + causal_4d_mask = self._make_causal_mask( + input_shape, + dtype, + device=attention_mask_2d.device, + past_key_values_length=past_key_values_length, + sliding_window=self.sliding_window, + ) + elif self.sliding_window is not None: + raise NotImplementedError( + "Sliding window is currently only implemented for causal masking" + ) + + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + expanded_attn_mask = self._expand_mask( + attention_mask_2d, dtype, tgt_len=input_shape[-1] + ).to(attention_mask_2d.device) + + if causal_4d_mask is not None: + expanded_attn_mask = causal_4d_mask.masked_fill( + expanded_attn_mask.bool(), torch.finfo(dtype).min + ) + + # expanded_attn_mask + causal_4d_mask can cause some overflow + expanded_4d_mask = expanded_attn_mask + + return expanded_4d_mask + + @staticmethod + def _make_causal_mask( + input_ids_shape: torch.Size, + dtype: torch.dtype, + device: torch.device, + past_key_values_length: int = 0, + sliding_window: Optional[int] = None, + ): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz, tgt_len = input_ids_shape + mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) + mask_cond = torch.arange(mask.size(-1), device=device) + mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) + + mask = mask.to(dtype) + + if past_key_values_length > 0: + mask = torch.cat( + [ + torch.zeros( + tgt_len, past_key_values_length, dtype=dtype, device=device + ), + mask, + ], + dim=-1, + ) + + # add lower triangular sliding window mask if necessary + if sliding_window is not None: + diagonal = past_key_values_length - sliding_window - 1 + + context_mask = torch.tril( + torch.ones_like(mask, dtype=torch.bool), diagonal=diagonal + ) + mask.masked_fill_(context_mask, torch.finfo(dtype).min) + + return mask[None, None, :, :].expand( + bsz, 1, tgt_len, tgt_len + past_key_values_length + ) + + @staticmethod + def _expand_mask( + mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None + ): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + bsz, src_len = mask.size() + tgt_len = tgt_len if tgt_len is not None else src_len + + expanded_mask = ( + mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) + ) + + inverted_mask = 1.0 - expanded_mask + + return inverted_mask.masked_fill( + inverted_mask.to(torch.bool), torch.finfo(dtype).min + ) + + @staticmethod + def _unmask_unattended( + expanded_mask: torch.FloatTensor, + min_dtype: float, + ): + # fmt: off + """ + Attend to all tokens in masked rows from the expanded attention mask, for example the relevant first rows when + using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. + Details: https://github.com/pytorch/pytorch/issues/110213 + + `expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len]. + `attention_mask` is [bsz, src_seq_len]. + + The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias. + + For example, if `expanded_mask` is (e.g. here left-padding case) + ``` + [[[[0, 0, 0], + [0, 0, 0], + [0, 0, 1]]], + [[[1, 0, 0], + [1, 1, 0], + [1, 1, 1]]], + [[[0, 0, 0], + [0, 1, 0], + [0, 1, 1]]]] + ``` + then the modified `expanded_mask` will be + ``` + [[[[1, 1, 1], <-- modified + [1, 1, 1], <-- modified + [0, 0, 1]]], + [[[1, 0, 0], + [1, 1, 0], + [1, 1, 1]]], + [[[1, 1, 1], <-- modified + [0, 1, 0], + [0, 1, 1]]]] + ``` + """ + # fmt: on + if expanded_mask.dtype == torch.bool: + raise ValueError( + "AttentionMaskConverter._unmask_unattended expects a float `expanded_mask`, got a BoolTensor." + ) + + return expanded_mask.mul( + ~torch.all(expanded_mask == min_dtype, dim=-1, keepdim=True) + ) + + @staticmethod + def _ignore_causal_mask_sdpa( + attention_mask: Optional[torch.Tensor], + inputs_embeds: torch.Tensor, + past_key_values_length: int, + sliding_window: Optional[int] = None, + is_training: bool = False, + ) -> bool: + """ + Detects whether the optional user-specified attention_mask & the automatically created causal mask can be + ignored in case PyTorch's SDPA is used, rather relying on SDPA's `is_causal` argument. + + In case no token is masked in the `attention_mask` argument, if `query_length == 1` or + `key_value_length == query_length`, we rather rely on SDPA `is_causal` argument to use causal/non-causal masks, + allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is + passed). + """ + + _, query_length = inputs_embeds.shape[0], inputs_embeds.shape[1] + key_value_length = query_length + past_key_values_length + + is_tracing = ( + torch.jit.is_tracing() + or isinstance(inputs_embeds, torch.fx.Proxy) + or is_torchdynamo_compiling() + ) + + ignore_causal_mask = False + + if attention_mask is None: + # TODO: When tracing with TorchDynamo with fullgraph=True, the model is recompiled depending on the input + # shape, thus SDPA's `is_causal` argument is rightfully updated + # (see https://gist.github.com/fxmarty/1313f39037fc1c112508989628c57363). However, when using + # `torch.export` or `torch.onnx.dynamo_export`, we must pass an example input, and `is_causal` behavior is + # hard-coded. If a user exports a model with q_len > 1, the exported model will hard-code `is_causal=True` + # which is in general wrong (see https://github.com/pytorch/pytorch/issues/108108). + # Thus, we only set `ignore_causal_mask = True` if the model is set to training. + # + # Besides, jit.trace can not handle the `q_len > 1` condition for `is_causal` + # ("TypeError: scaled_dot_product_attention(): argument 'is_causal' must be bool, not Tensor"). + if ( + (is_training or not is_tracing) + and (query_length == 1 or key_value_length == query_length) + and (sliding_window is None or key_value_length < sliding_window) + ): + ignore_causal_mask = True + elif sliding_window is None or key_value_length < sliding_window: + if len(attention_mask.shape) == 4: + return False + elif not is_tracing and torch.all(attention_mask == 1): + if query_length == 1 or key_value_length == query_length: + # For query_length == 1, causal attention and bi-directional attention are the same. + ignore_causal_mask = True + + # Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore + # the attention mask, as SDPA causal mask generation may be wrong. We will set `is_causal=False` in + # SDPA and rely on Transformers attention_mask instead, hence not setting it to None here. + # Reference: https://github.com/pytorch/pytorch/issues/108108 + # TODO: maybe revisit this with https://github.com/pytorch/pytorch/pull/114823 in PyTorch 2.3. + + return ignore_causal_mask + + +def _prepare_4d_causal_attention_mask( + attention_mask: Optional[torch.Tensor], + input_shape: Union[torch.Size, Tuple, List], + inputs_embeds: torch.Tensor, + past_key_values_length: int, + sliding_window: Optional[int] = None, +): + """ + Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape + `(batch_size, key_value_length)` + + Args: + attention_mask (`torch.Tensor` or `None`): + A 2D attention mask of shape `(batch_size, key_value_length)` + input_shape (`tuple(int)` or `list(int)` or `torch.Size`): + The input shape should be a tuple that defines `(batch_size, query_length)`. + inputs_embeds (`torch.Tensor`): + The embedded inputs as a torch Tensor. + past_key_values_length (`int`): + The length of the key value cache. + sliding_window (`int`, *optional*): + If the model uses windowed attention, a sliding window should be passed. + """ + attn_mask_converter = AttentionMaskConverter( + is_causal=True, sliding_window=sliding_window + ) + + key_value_length = input_shape[-1] + past_key_values_length + + # 4d mask is passed through the layers + if attention_mask is not None and len(attention_mask.shape) == 2: + attention_mask = attn_mask_converter.to_4d( + attention_mask, + input_shape[-1], + key_value_length=key_value_length, + dtype=inputs_embeds.dtype, + ) + elif attention_mask is not None and len(attention_mask.shape) == 4: + expected_shape = (input_shape[0], 1, input_shape[1], key_value_length) + if tuple(attention_mask.shape) != expected_shape: + raise ValueError( + f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}." + ) + else: + # if the 4D mask has correct shape - invert it and fill with negative infinity + inverted_mask = 1.0 - attention_mask + attention_mask = inverted_mask.masked_fill( + inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min + ) + else: + attention_mask = attn_mask_converter.to_causal_4d( + input_shape[0], + input_shape[-1], + key_value_length, + dtype=inputs_embeds.dtype, + device=inputs_embeds.device, + ) + + return attention_mask diff --git a/torchtitan/models/deepseek_v3/model.py b/torchtitan/models/deepseek_v3/model.py index b8f3a048..43edd7b7 100644 --- a/torchtitan/models/deepseek_v3/model.py +++ b/torchtitan/models/deepseek_v3/model.py @@ -4,17 +4,15 @@ # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. -# Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. -# -# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved. -# # This code is based on model definition of `deepseek-ai/DeepSeek-V3-Base` on # Hugging Face Model Hub. Url: # https://huggingface.co/deepseek-ai/DeepSeek-V3-Base/blob/main/modeling_deepseek.py # https://huggingface.co/deepseek-ai/DeepSeek-V3-Base/resolve/main/configuration_deepseek.py # # It has been modified from its original forms to accommodate naming convention -# of the TorchTitan project. +# and usage patterns of the TorchTitan project. + +# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -31,7 +29,7 @@ import math import warnings from dataclasses import dataclass -from typing import List, Optional, Tuple, Union +from typing import List, Optional, Tuple import numpy as np @@ -39,21 +37,11 @@ import torch.distributed as dist import torch.nn.functional as F import torch.utils.checkpoint + +from attn_mask_utils import _prepare_4d_causal_attention_mask from torch import nn from torch.nn import CrossEntropyLoss -from transformers.activations import ACT2FN -from transformers.cache_utils import Cache, DynamicCache -from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask -from transformers.modeling_outputs import ( - BaseModelOutputWithPast, - CausalLMOutputWithPast, -) -from transformers.utils import logging - - -logger = logging.get_logger(__name__) - @dataclass class ModelArgs: @@ -474,7 +462,7 @@ def __init__(self, config, hidden_size=None, intermediate_size=None): self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) - self.act_fn = ACT2FN[config.hidden_act] + self.act_fn = nn.SiLU() def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) @@ -724,13 +712,6 @@ def __init__(self, config: ModelArgs, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx - if layer_idx is None: - logger.warning_once( - f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " - "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " - "when creating this class." - ) - self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads @@ -845,7 +826,7 @@ def forward( hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Cache] = None, + past_key_value=None, output_attentions: bool = False, use_cache: bool = False, **kwargs, @@ -1161,7 +1142,7 @@ def forward( output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = False, - ) -> Union[Tuple, BaseModelOutputWithPast]: + ) -> torch.Tensor: use_cache = use_cache if use_cache is not None else self.config.use_cache # retrieve input_ids and inputs_embeds @@ -1178,9 +1159,6 @@ def forward( past_key_values_length = 0 if use_cache: - use_legacy_cache = not isinstance(past_key_values, Cache) - if use_legacy_cache: - past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values_length = past_key_values.get_usable_length(seq_length) if position_ids is None: @@ -1208,14 +1186,7 @@ def forward( hidden_states = inputs_embeds # decoder layers - all_hidden_states = () if output_hidden_states else None - all_self_attns = () if output_attentions else None - next_decoder_cache = None - for decoder_layer in self.layers: - if output_hidden_states: - all_hidden_states += (hidden_states,) - layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, @@ -1227,37 +1198,9 @@ def forward( hidden_states = layer_outputs[0] - if use_cache: - next_decoder_cache = layer_outputs[2 if output_attentions else 1] - - if output_attentions: - all_self_attns += (layer_outputs[1],) - hidden_states = self.norm(hidden_states) - # add hidden states from the last decoder layer - if output_hidden_states: - all_hidden_states += (hidden_states,) - - next_cache = None - if use_cache: - next_cache = ( - next_decoder_cache.to_legacy_cache() - if use_legacy_cache - else next_decoder_cache - ) - if not return_dict: - return tuple( - v - for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] - if v is not None - ) - return BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=next_cache, - hidden_states=all_hidden_states, - attentions=all_self_attns, - ) + return hidden_states class DeepseekV3ForCausalLM(torch.nn.Module): @@ -1268,7 +1211,7 @@ def __init__(self, config): self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing - self.post_init() + # self.post_init() def forward( self, @@ -1282,7 +1225,7 @@ def forward( output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = False, - ) -> Union[Tuple, CausalLMOutputWithPast]: + ) -> Tuple: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): @@ -1308,8 +1251,7 @@ def forward( >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" - # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) - outputs = self.model( + hidden_states = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, @@ -1321,7 +1263,6 @@ def forward( return_dict=return_dict, ) - hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() @@ -1338,17 +1279,8 @@ def forward( shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) - if not return_dict: - output = (logits,) + outputs[1:] - return (loss,) + output if loss is not None else output - - return CausalLMOutputWithPast( - loss=loss, - logits=logits, - past_key_values=outputs.past_key_values, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) + output = (logits,) + return (loss,) + output if loss is not None else output def prepare_inputs_for_generation( self, @@ -1359,7 +1291,7 @@ def prepare_inputs_for_generation( **kwargs, ): if past_key_values is not None: - if isinstance(past_key_values, Cache): + if True: # if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens max_cache_length = past_key_values.get_max_length() @@ -1427,6 +1359,8 @@ def _reorder_cache(past_key_values, beam_idx): return reordered_past +# Single process run: +# ``python model.py`` if __name__ == "__main__": device = torch.device("cuda") model_args = ModelArgs() @@ -1440,4 +1374,4 @@ def _reorder_cache(past_key_values, beam_idx): seqlen = 128 x = torch.randint(model_args.vocab_size, (bs, seqlen), device=device) y = model(x) - print(y[0].shape) + print(y.shape) From c185b0de3745ddcd6510fe49bb65c8ee87f8a950 Mon Sep 17 00:00:00 2001 From: Ke Wen Date: Mon, 10 Feb 2025 17:01:21 -0800 Subject: [PATCH 4/5] Remove unrelated forward arguments --- torchtitan/models/deepseek_v3/model.py | 157 ++++--------------------- 1 file changed, 22 insertions(+), 135 deletions(-) diff --git a/torchtitan/models/deepseek_v3/model.py b/torchtitan/models/deepseek_v3/model.py index 43edd7b7..610d205f 100644 --- a/torchtitan/models/deepseek_v3/model.py +++ b/torchtitan/models/deepseek_v3/model.py @@ -27,9 +27,8 @@ # limitations under the License. """ PyTorch DeepSeek model.""" import math -import warnings from dataclasses import dataclass -from typing import List, Optional, Tuple +from typing import Optional, Tuple import numpy as np @@ -170,7 +169,6 @@ class ModelArgs: max_position_embeddings: int = 4096 initializer_range: float = 0.02 rms_norm_eps: float = 1e-6 - use_cache: bool = False rope_theta: float = 10000.0 rope_scaling = None attention_bias: bool = False @@ -607,7 +605,6 @@ def forward(self, hidden_states): orig_shape = hidden_states.shape topk_idx, topk_weight = self.gate(hidden_states) hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) - flat_topk_idx = topk_idx.view(-1) if not self.training: y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape) if self.config.n_shared_experts is not None: @@ -826,15 +823,7 @@ def forward( hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, - past_key_value=None, - output_attentions: bool = False, - use_cache: bool = False, - **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - if "padding_mask" in kwargs: - warnings.warn( - "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" - ) bsz, q_len, _ = hidden_states.size() if self.q_lora_rank is None: @@ -861,14 +850,8 @@ def forward( kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 ) kv_seq_len = value_states.shape[-2] - if past_key_value is not None: - if self.layer_idx is None: - raise ValueError( - f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " - "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " - "with a layer index." - ) - kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + # if past_key_value is not None: + # kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) @@ -880,11 +863,11 @@ def forward( key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) key_states[:, :, :, : self.qk_nope_head_dim] = k_nope key_states[:, :, :, self.qk_nope_head_dim :] = k_pe - if past_key_value is not None: - cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models - key_states, value_states = past_key_value.update( - key_states, value_states, self.layer_idx, cache_kwargs - ) + # if past_key_value is not None: + # cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + # key_states, value_states = past_key_value.update( + # key_states, value_states, self.layer_idx, cache_kwargs + # ) attn_weights = ( torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale @@ -924,10 +907,7 @@ def forward( attn_output = self.o_proj(attn_output) - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value + return attn_output class DecoderLayer(nn.Module): @@ -956,10 +936,6 @@ def forward( hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: Optional[bool] = False, - use_cache: Optional[bool] = False, - **kwargs, ) -> Tuple[ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] ]: @@ -969,31 +945,16 @@ def forward( attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding - (see `past_key_values`). - past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ - if "padding_mask" in kwargs: - warnings.warn( - "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" - ) residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention - hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - **kwargs, ) hidden_states = residual + hidden_states @@ -1003,15 +964,7 @@ def forward( hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states - outputs = (hidden_states,) - - if output_attentions: - outputs += (self_attn_weights,) - - if use_cache: - outputs += (present_key_value,) - - return outputs + return hidden_states def _init_weights(self, module): @@ -1121,65 +1074,24 @@ def __init__(self, config: ModelArgs): ) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) - self.gradient_checkpointing = False # Initialize weights and apply final processing # self.post_init() - def get_input_embeddings(self): - return self.embed_tokens - - def set_input_embeddings(self, value): - self.embed_tokens = value - def forward( self, - input_ids: torch.LongTensor = None, + input_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = False, - output_hidden_states: Optional[bool] = False, - return_dict: Optional[bool] = False, ) -> torch.Tensor: - use_cache = use_cache if use_cache is not None else self.config.use_cache - - # retrieve input_ids and inputs_embeds - if input_ids is not None and inputs_embeds is not None: - raise ValueError( - "You cannot specify both input_ids and inputs_embeds at the same time" - ) - elif input_ids is not None: - batch_size, seq_length = input_ids.shape[:2] - elif inputs_embeds is not None: - batch_size, seq_length = inputs_embeds.shape[:2] - else: - raise ValueError("You have to specify either input_ids or inputs_embeds") - - past_key_values_length = 0 - if use_cache: - past_key_values_length = past_key_values.get_usable_length(seq_length) - - if position_ids is None: - device = input_ids.device if input_ids is not None else inputs_embeds.device - position_ids = torch.arange( - past_key_values_length, - seq_length + past_key_values_length, - dtype=torch.long, - device=device, - ) - position_ids = position_ids.unsqueeze(0) - - if inputs_embeds is None: - inputs_embeds = self.embed_tokens(input_ids) + batch_size, seq_length = input_ids.shape[:2] + inputs_embeds = self.embed_tokens(input_ids) # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, - past_key_values_length, + 0, # past_key_values_length ) # embed positions @@ -1187,17 +1099,12 @@ def forward( # decoder layers for decoder_layer in self.layers: - layer_outputs = decoder_layer( + hidden_states = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, - past_key_value=past_key_values, - output_attentions=output_attentions, - use_cache=use_cache, ) - hidden_states = layer_outputs[0] - hidden_states = self.norm(hidden_states) return hidden_states @@ -1215,16 +1122,10 @@ def __init__(self, config): def forward( self, - input_ids: torch.LongTensor = None, + input_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = False, - output_hidden_states: Optional[bool] = False, - return_dict: Optional[bool] = False, ) -> Tuple: r""" Args: @@ -1255,12 +1156,6 @@ def forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, ) logits = self.lm_head(hidden_states) @@ -1287,17 +1182,13 @@ def prepare_inputs_for_generation( input_ids, past_key_values=None, attention_mask=None, - inputs_embeds=None, **kwargs, ): if past_key_values is not None: - if True: # if isinstance(past_key_values, Cache): - cache_length = past_key_values.get_seq_length() - past_length = past_key_values.seen_tokens - max_cache_length = past_key_values.get_max_length() - else: - cache_length = past_length = past_key_values[0][0].shape[2] - max_cache_length = None + # Assuming isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + max_cache_length = past_key_values.get_max_length() # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where @@ -1330,11 +1221,7 @@ def prepare_inputs_for_generation( if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] - # if `inputs_embeds` are passed, we only want to use them in the 1st generation step - if inputs_embeds is not None and past_key_values is None: - model_inputs = {"inputs_embeds": inputs_embeds} - else: - model_inputs = {"input_ids": input_ids} + model_inputs = {"input_ids": input_ids} model_inputs.update( { From 86934e6ac410ec6a725156b10b570059e274226a Mon Sep 17 00:00:00 2001 From: Ke Wen Date: Mon, 10 Feb 2025 17:10:05 -0800 Subject: [PATCH 5/5] Lint --- torchtitan/models/deepseek_v3/attn_mask_utils.py | 9 ++++++--- torchtitan/models/deepseek_v3/model.py | 13 ++++++------- 2 files changed, 12 insertions(+), 10 deletions(-) diff --git a/torchtitan/models/deepseek_v3/attn_mask_utils.py b/torchtitan/models/deepseek_v3/attn_mask_utils.py index 9bcce5ff..6a54899c 100755 --- a/torchtitan/models/deepseek_v3/attn_mask_utils.py +++ b/torchtitan/models/deepseek_v3/attn_mask_utils.py @@ -68,7 +68,8 @@ def __init__(self, is_causal: bool, sliding_window: Optional[int] = None): if self.sliding_window is not None and self.sliding_window <= 0: raise ValueError( - f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`" + "Make sure that when passing `sliding_window` that its value is a strictly positive integer, " + f"not `{self.sliding_window}`" ) def to_causal_4d( @@ -126,7 +127,8 @@ def to_4d( if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal: if key_value_length is None: raise ValueError( - "This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask." + "This attention mask converter is causal. Make sure to pass " + "`key_value_length` to correctly create a causal mask." ) past_key_values_length = key_value_length - query_length @@ -233,7 +235,8 @@ def _unmask_unattended( `expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len]. `attention_mask` is [bsz, src_seq_len]. - The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias. + The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case + of alibi attention bias. For example, if `expanded_mask` is (e.g. here left-padding case) ``` diff --git a/torchtitan/models/deepseek_v3/model.py b/torchtitan/models/deepseek_v3/model.py index 610d205f..1ecc899c 100644 --- a/torchtitan/models/deepseek_v3/model.py +++ b/torchtitan/models/deepseek_v3/model.py @@ -77,7 +77,8 @@ class ModelArgs: n_group (`int`, *optional*, defaults to None): Number of groups for routed experts. topk_group (`int`, *optional*, defaults to None): - Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups). + Number of selected groups for each token(for each token, ensuring the selected experts is only within + `topk_group` groups). num_experts_per_tok (`int`, *optional*, defaults to None): Number of selected experts, None means dense model. moe_layer_freq (`int`, *optional*, defaults to 1): @@ -499,7 +500,7 @@ def reset_parameters(self) -> None: def forward(self, hidden_states): bsz, seq_len, h = hidden_states.shape - ### compute gating score + # compute gating score hidden_states = hidden_states.view(-1, h) logits = F.linear( hidden_states.type(torch.float32), self.weight.type(torch.float32), None @@ -511,7 +512,7 @@ def forward(self, hidden_states): f"insupportable scoring function for MoE gating: {self.scoring_func}" ) - ### select top-k experts + # select top-k experts if self.topk_method == "noaux_tc": assert not self.training scores_for_choice = scores.view( @@ -546,7 +547,7 @@ def forward(self, hidden_states): f"insupportable TopK function for MoE gating: {self.topk_method}" ) - ### norm gate to sum 1 + # norm gate to sum 1 if self.top_k > 1 and self.norm_topk_prob: denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 topk_weight = topk_weight / denominator @@ -936,9 +937,7 @@ def forward( hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, - ) -> Tuple[ - torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] - ]: + ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`