-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapproximator.cpp
373 lines (346 loc) · 8.85 KB
/
approximator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#include "approximator.h"
#include "algorithm"
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <memory>
double
Approximator::approxSimple (double x)
{
if (*_x.begin () > x || *(_x.end () - 1) < x)
{
printf ("out of bounds");
fflush (stdout);
return 0;
}
auto res_x = std::lower_bound (_x.cbegin (), _x.cend (), x);
auto res_xi = res_x - _x.cbegin ();
auto res_yi = res_xi;
auto res_y = _y.cbegin () + res_yi;
if (cmp (*res_x, x))
{
return _y[res_yi];
}
else if (res_x == _x.cbegin ())
{
return _y[res_yi];
}
else
{
double prev_x = *(res_x - 1);
double prev_y = *(res_y - 1);
double diff_x = *res_x - prev_x;
double diff_y = *res_y - prev_y;
return prev_y + diff_y / diff_x * (x - prev_x);
}
// return std::variant<double, std::string> (1);
}
double
Approximator::approxNewton (double x, bool skip_diffs = 1)
{
int n = _y.size ();
int i, d = 1, k = n;
int s = 0;
if (!skip_diffs)
{
_diffs[0] = _y[0];
while (k != 1)
{
// printf("---\n");
for (i = 0; i < k - 1; i++)
{
if (cmp (_x[i + s + 1], _x[i]))
{
printf ("Not correct data\n");
return 0;
}
else
{
if (std::abs (_y[i]) < 1e-40 && std::abs (_y[i + 1]) < 1e-40)
{
_y[i] = 0;
}
else
_y[i] = (_y[i + 1] - _y[i]) / (_x[i + s + 1] - _x[i]);
}
if (i == 0)
{
_diffs[d] = _y[i];
d++;
}
}
k--;
s++;
}
}
double L = _diffs[n - 1]; //берем последнюю разность
for (i = n - 2; i >= 0; i--)
{
L *= x - _x[i]; //домножаем на коэф
L += _diffs[i]; //прибавляем предыдущую разность
// printf("L = %lf", L);
}
return L;
}
double
Approximator::approxCubicSpline (double x)
{
if (*_x.begin () > x || *(_x.end () - 1) < x)
{
printf ("out of bounds");
fflush (stdout);
return 0;
}
auto res_x = std::upper_bound (_x.cbegin (), _x.cend (), x);
auto res_xi = res_x - _x.cbegin ();
res_xi--;
if (res_xi < 0)
{
printf ("out of bound!!\n");
fflush (stdout);
abort ();
}
size_t i = res_xi;
double c1 = _y[i];
double c2 = _diffs[i];
double diff = (_y[i + 1] - _y[i]) / (_x[i + 1] - _x[i]);
double c3 = (3 * diff - 2 * _diffs[i] - _diffs[i + 1]) / (_x[i + 1] - _x[i]);
double c4 = (_diffs[i] + _diffs[i + 1] - 2 * diff) /
((_x[i + 1] - _x[i]) * (_x[i + 1] - _x[i]));
double k = x - _x[i];
return c1 + c2 * k + c3 * k * k + c4 * k * k * k;
}
bool
Approximator::initCubicSpline (double d1, double dn)
{
int n = _x.size ();
_diffs.reserve (n);
_a.reserve (n);
_b.reserve (n);
_c.reserve (n);
auto &d = _diffs;
_b[0] = 1;
_c[0] = 0;
d[0] = d1;
_b[n - 1] = 1;
_a[n - 1] = 0;
d[n - 1] = dn;
_c[0] /= _b[0];
d[0] /= _b[0];
for (int i = 1; i < n - 1; i++)
{
_a[i] = _x[i + 1] - _x[i];
_b[i] = 2*(_x[i + 1] - _x[i - 1]);
_c[i] = _x[i] - _x[i - 1];
double diff1 = (_y[i] - _y[i - 1]) / (_x[i] - _x[i - 1]);
double diff2 = (_y[i + 1] - _y[i]) / (_x[i + 1] - _x[i]);
d[i] = 3 * (diff1 * (_x[i + 1] - _x[i]) + diff2 * (_x[i] - _x[i - 1]));
_c[i] /= _b[i] - _a[i] * _c[i - 1];
d[i] = (d[i] - _a[i] * d[i - 1]) / (_b[i] - _a[i] * _c[i - 1]);
}
auto res = solve (_a.data (), _b.data (), _c.data (), d.data (), n);
if (res)
{
printf ("solve failes = %d\n", res);
return res;
}
return 0;
}
double
Approximator::approximate (double x)
{
switch (_method)
{
case GraphMethod::simple:
return approxSimple (x);
case GraphMethod::newton:
return approxNewton (x);
case GraphMethod::cubic_spline:
return approxCubicSpline (x);
default:
return approxSimple (x);
}
}
void
Approximator::update (double d1, double dn, GraphMethod)
{
_d1 = d1;
_dn = dn;
}
bool
Approximator::computeOut (bool to_recalc)
{
auto n = _in.size ();
if (to_recalc)
{
if (_method == GraphMethod::newton)
{
approxNewton (0, 0);
}
if (_method == GraphMethod::cubic_spline)
{
initCubicSpline (_d1, _dn);
}
}
for (int i = 0; i < (int)n; i++)
{
auto res = approximate (_in[i]);
_out[i] = res;
}
return 0;
}
Approximator::Approximator (std::vector<double> &x, std::vector<double> &y,
std::vector<double> &in, double d1, double dn,
GraphMethod method)
: _x (x), _y (y), _in (in), _d1 (d1), _dn (dn), _method (method)
{
_out = std::vector<double> (_in.size ());
_diffs = std::vector<double> (_y.size ());
}
Approximator::Approximator (GraphMethod method) : _method (method)
{
_x.reserve (1000000);
_y.reserve (1000000);
if (method == GraphMethod::cubic_spline)
{
_a.reserve (1000000);
_b.reserve (1000000);
_c.reserve (1000000);
}
_in.reserve (5000);
_out.reserve (5000);
}
std::vector<double> &
Approximator::get_out ()
{
return _out;
}
bool
cmp (double x, double y)
{
if (std::abs (x - y) < 1e-12)
{
return 1;
}
else
return 0;
}
// computes vector y
// int
// cholesky_compute_y (double *a, double *y, double *b, int n)
//{
// for (int i = 0; i < n; i++)
// {
// double sum = 0;
// int k;
// for (k = 0; k < i; k += 1)
// {
// // printf ("Gnil'2 %e\n", a[get_el (k, i, u, bb, n)] * y[k]);
// sum += a[k * n + i] * y[k];
// }
// if (fabs (a[i * n + i]) < 1e-10)
// {
// return -1;
// }
// /* printf ("sum %e\n", sum);
// printf ("b %e\n", b[i]);
// printf ("b-sum %e\n", b[i] - sum);
// printf ("ii %e\n", a[get_el (i, i, u, bb, n)]);*/
// y[i] = (b[i] - sum) / a[i * n + i];
// }
// return 0;
//}
// int
// cholesky_compute_x (double *a, double *x, double *y, double *d, int n)
//{
// for (int i = n - 1; i >= 0; i--)
// {
// double sum = 0;
// for (int k = i + 1; k < n; k++)
// {
// sum += a[i * n + k] * x[k];
// }
// if (fabs (a[i * n + i]) < 1e-10)
// {
// return -1;
// }
// x[i] = d[i] * (y[i] - d[i] * sum) / a[i * n + i];
// }
// return 0;
//}
//// solve system Ax = b by cholesky method
//// n -- dimension.
//// matrix A will be destroyed.
//// output result to result.
//// if cant solve return non zero.
// int
// cholesky_solve (double *a, double *b, double *result, int n)
//{
// double *d = (double *)malloc (n * 2 * sizeof (double));
// double *y = d + n; // temporary vector
// if (cholesky_decomp (a, d, n) != 0)
// {
// return -1;
// }
// if (cholesky_compute_y (a, y, b, n) != 0)
// {
// printf ("cholesky_compute_y failed\n");
// return -1;
// }
// if (cholesky_compute_x (a, result, y, d, n) != 0)
// {
// printf ("cholesky_compute_x failed\n");
// return -1;
// }
// free (d);
// return 0;
//}
// int
// cholesky_decomp (double *a, double *d, int n)
//{
// for (int i = 0; i < n; i++)
// {
// // compute d_ii, r_ii:
// double sum = a[i * n + i];
// for (int k = 0; k < i; k++)
// {
// sum -= a[n * k + i] * a[n * k + i] * d[k];
// }
// d[i] = sgn (sum);
// if (fabs (sum) < 1e-10)
// {
// printf ("Cholesky_decomp failed\n");
// return -1;
// }
// a[i * n + i] = sqrt (fabs (sum));
// // compute r_ij:
// for (int j = i + 1; j < n; j++)
// {
// double sum = a[i * n + j];
// for (int k = 0; k < i; k++)
// {
// sum -= a[n * k + i] * a[n * k + j] * d[k];
// }
// a[n * i + j] = sum / (a[n * i + i] * d[i]);
// }
// }
// return 0;
//}
int
solve (double *a, double *b, double *c, double *d, int n)
{
n--; // since we start from x0 (not x1)
// c[0] /= b[0];
// d[0] /= b[0];
// for (int i = 1; i < n; i++)
// {
// c[i] /= b[i] - a[i] * c[i - 1];
// d[i] = (d[i] - a[i] * d[i - 1]) / (b[i] - a[i] * c[i - 1]);
// }
d[n] = (d[n] - a[n] * d[n - 1]) / (b[n] - a[n] * c[n - 1]);
for (int i = n; i-- > 0;)
{
d[i] -= c[i] * d[i + 1];
}
return 0;
}