-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathKMeans.m
49 lines (49 loc) · 1.05 KB
/
KMeans.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
function [U, E_in] = KMeans(data, K)
[N, d] = size(data);
% init U
sampleIds = randsample(1:N, K, false);
U = data(sampleIds, :);
labels_u = zeros(N, 1);
while true
stop = true;
for i = 1:N
x = data(i, :);
% check label
label = 0;
dist = 0;
for j = 1:K
tmp_dist = sum((x-U(j, :)).^2);
if label == 0 || tmp_dist < dist
label = j;
dist = tmp_dist;
end
end
if labels_u(i) ~= label
stop = false;
end
labels_u(i) = label;
end
if stop == true
break;
end
%update U
new_U = zeros(K, d);
labels_count = zeros(K, 1);
for i = 1:N
label = labels_u(i);
new_U(label, :) = new_U(label, :) + data(i, :);
labels_count(label) = labels_count(label) + 1;
end
for i = 1:K
new_U(i, :) = new_U(i, :)/labels_count(i);
end
U = new_U;
end
E_in = 0;
for i = 1:N
label = labels_u(i);
u = U(label, :);
E_in = E_in + norm(x-u);
end
E_in = E_in/N;
end