-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
292 lines (269 loc) · 11.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import argparse
import torch
import cv2
import logging
import numpy as np
from net import *
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
from torch.utils.data import DataLoader
import sys
import math
import json
from dataset import DataSet, UVGDataSet
from drawuvg import uvgdrawplt
from tensorboardX import SummaryWriter
from drawuvg import uvgdrawplt
import cv2
torch.backends.cudnn.enabled = True
torch.set_grad_enabled(True)
# gpu_num = 4
gpu_num = torch.cuda.device_count()
cur_lr = base_lr = 1e-4# * gpu_num
train_lambda = 2048
print_step = 100 #原来为100
cal_step = 100 #原来为10
# print_step = 10
warmup_step = 0# // gpu_num
gpu_per_batch = 4
test_step = 10000# // gpu_num
tot_epoch = 1000000
tot_step = 2000000
decay_interval = 1800000
lr_decay = 0.1
logger = logging.getLogger("VideoCompression")
tb_logger = None
global_step = 0
ref_i_dir = geti(train_lambda)
parser = argparse.ArgumentParser(description='DVC reimplement')
parser.add_argument('-l', '--log', default='',
help='output training details')
parser.add_argument('-p', '--pretrain', default = '',
help='load pretrain model')
parser.add_argument('--test', action='store_true')
parser.add_argument('--testuvg', action='store_true')
parser.add_argument('--testvtl', action='store_true')
parser.add_argument('--testmcl', action='store_true')
parser.add_argument('--testauc', action='store_true')
parser.add_argument('--rerank', action='store_true')
parser.add_argument('--allpick', action='store_true')
parser.add_argument('--config', dest='config', required=True,
help = 'hyperparameter of Reid in json format')
def parse_config(config):
config = json.load(open(args.config))
global tot_epoch, tot_step, test_step, base_lr, cur_lr, lr_decay, decay_interval, train_lambda, ref_i_dir
if 'tot_epoch' in config:
tot_epoch = config['tot_epoch']
if 'tot_step' in config:
tot_step = config['tot_step']
if 'test_step' in config:
test_step = config['test_step']
print('teststep : ', test_step)
if 'train_lambda' in config:
train_lambda = config['train_lambda']
ref_i_dir = geti(train_lambda)
if 'lr' in config:
if 'base' in config['lr']:
base_lr = config['lr']['base']
cur_lr = base_lr
if 'decay' in config['lr']:
lr_decay = config['lr']['decay']
if 'decay_interval' in config['lr']:
decay_interval = config['lr']['decay_interval']
def adjust_learning_rate(optimizer, global_step):
global cur_lr
global warmup_step
if global_step < warmup_step:
lr = base_lr * global_step / warmup_step
elif global_step < decay_interval:# // gpu_num:
lr = base_lr
else:
lr = base_lr * (lr_decay ** (global_step // decay_interval))
cur_lr = lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def Var(x):
return Variable(x.cuda())
def testuvg(global_step, testfull=False):
faceDetector = cv2.FaceDetectorYN_create(model='yunet.onnx', config='', input_size=(1280, 704))
with torch.no_grad():
test_loader = DataLoader(dataset=test_dataset, shuffle=False, num_workers=0, batch_size=1, pin_memory=True)
net.eval()
sumbpp = 0
sumpsnr = 0
summsssim = 0
sumpsnr_roi = 0
summsssiom_roi = 0
cnt = 0
for batch_idx, input in enumerate(test_loader):
if batch_idx % 100 == 0:
print("testing : %d/%d"% (batch_idx, len(test_loader)))
input_images = input[0]
ref_image = input[1]
#print(input_images.size(),ref_image.size())
ref_bpp = input[2]
ref_psnr = input[3]
ref_msssim = input[4]
seqlen = input_images.size()[1]
sumbpp += torch.mean(ref_bpp).detach().numpy()
sumpsnr += torch.mean(ref_psnr).detach().numpy()
summsssim += torch.mean(ref_msssim).detach().numpy()
cnt += 1
for i in range(seqlen):
input_image = input_images[:, i, :, :, :]
inputframe, refframe = Var(input_image), Var(ref_image)
clipped_recon_image, mse_loss, warploss, interloss, bpp_feature, bpp_z, bpp_mv, bpp = net(inputframe, refframe)
sumbpp += torch.mean(bpp).cpu().detach().numpy()
sumpsnr += torch.mean(10 * (torch.log(1. / mse_loss) / np.log(10))).cpu().detach().numpy()
summsssim += ms_ssim(clipped_recon_image.cpu().detach(), input_image, data_range=1.0, size_average=True).numpy()
cnt += 1
ref_image = clipped_recon_image
img = torchvision.transforms.ToPILImage()(ref_image[0])
img.save('autodl-tmp/demo/{}.png'.format(batch_idx))
log = "global step %d : " % (global_step) + "\n"
logger.info(log)
sumbpp /= cnt
sumpsnr /= cnt
summsssim /= cnt
log = "UVGdataset : average bpp : %.6lf, average psnr : %.6lf, average msssim: %.6lf\n" % (sumbpp, sumpsnr, summsssim)
logger.info(log)
uvgdrawplt([sumbpp], [sumpsnr], [summsssim], global_step, testfull=testfull)
def train(epoch, global_step):
print ("epoch", epoch)
global gpu_per_batch
train_loader = DataLoader(dataset = train_dataset, shuffle=True, num_workers=gpu_num, batch_size=gpu_per_batch, pin_memory=True)
net.train()
global optimizer
bat_cnt = 0
cal_cnt = 0
sumloss = 0
sumpsnr = 0
suminterpsnr = 0
sumwarppsnr = 0
sumbpp = 0
sumbpp_feature = 0
sumbpp_mv = 0
sumbpp_z = 0
tot_iter = len(train_loader)
t0 = datetime.datetime.now()
for batch_idx, input in enumerate(train_loader):
global_step += 1
bat_cnt += 1
input_image, ref_image = Var(input[0]), Var(input[1])
quant_noise_feature, quant_noise_z, quant_noise_mv = Var(input[2]), Var(input[3]), Var(input[4])
# ta = datetime.datetime.now()
clipped_recon_image, mse_loss, warploss, interloss, bpp_feature, bpp_z, bpp_mv, bpp = net(input_image, ref_image, quant_noise_feature, quant_noise_z, quant_noise_mv)
# tb = datetime.datetime.now()
mse_loss, warploss, interloss, bpp_feature, bpp_z, bpp_mv, bpp = \
torch.mean(mse_loss), torch.mean(warploss), torch.mean(interloss), torch.mean(bpp_feature), torch.mean(bpp_z), torch.mean(bpp_mv), torch.mean(bpp)
distribution_loss = bpp
if global_step < 500000:
warp_weight = 0.1
else:
warp_weight = 0
distortion = mse_loss + warp_weight * (warploss + interloss)
rd_loss = train_lambda * distortion + distribution_loss
# tc = datetime.datetime.now()
optimizer.zero_grad()
rd_loss.backward()
# tf = datetime.datetime.now()
def clip_gradient(optimizer, grad_clip):
for group in optimizer.param_groups:
for param in group["params"]:
if param.grad is not None:
param.grad.data.clamp_(-grad_clip, grad_clip)
clip_gradient(optimizer, 0.5)
optimizer.step()
if global_step % cal_step == 0:
cal_cnt += 1
if mse_loss > 0:
psnr = 10 * (torch.log(1 * 1 / mse_loss) / np.log(10)).cpu().detach().numpy()
else:
psnr = 100
if warploss > 0:
warppsnr = 10 * (torch.log(1 * 1 / warploss) / np.log(10)).cpu().detach().numpy()
else:
warppsnr = 100
if interloss > 0:
interpsnr = 10 * (torch.log(1 * 1 / interloss) / np.log(10)).cpu().detach().numpy()
else:
interpsnr = 100
loss_ = rd_loss.cpu().detach().numpy()
sumloss += loss_
sumpsnr += psnr
suminterpsnr += interpsnr
sumwarppsnr += warppsnr
sumbpp += bpp.cpu().detach()
sumbpp_feature += bpp_feature.cpu().detach()
sumbpp_mv += bpp_mv.cpu().detach()
sumbpp_z += bpp_z.cpu().detach()
if (batch_idx % print_step)== 0 and bat_cnt > 1:
tb_logger.add_scalar('lr', cur_lr, global_step)
tb_logger.add_scalar('rd_loss', sumloss / cal_cnt, global_step)
tb_logger.add_scalar('psnr', sumpsnr / cal_cnt, global_step)
tb_logger.add_scalar('warppsnr', sumwarppsnr / cal_cnt, global_step)
tb_logger.add_scalar('interpsnr', suminterpsnr / cal_cnt, global_step)
tb_logger.add_scalar('bpp', sumbpp / cal_cnt, global_step)
tb_logger.add_scalar('bpp_feature', sumbpp_feature / cal_cnt, global_step)
tb_logger.add_scalar('bpp_z', sumbpp_z / cal_cnt, global_step)
tb_logger.add_scalar('bpp_mv', sumbpp_mv / cal_cnt, global_step)
t1 = datetime.datetime.now()
deltatime = t1 - t0
log = 'Train Epoch : {:02} [{:4}/{:4} ({:3.0f}%)] Avgloss:{:.6f} lr:{} time:{}'.format(epoch, batch_idx, len(train_loader), 100. * batch_idx / len(train_loader), sumloss / cal_cnt, cur_lr, (deltatime.seconds + 1e-6 * deltatime.microseconds) / bat_cnt)
print(log)
log = 'details : warppsnr : {:.2f} interpsnr : {:.2f} psnr : {:.2f}'.format(sumwarppsnr / cal_cnt, suminterpsnr / cal_cnt, sumpsnr / cal_cnt)
print(log)
bat_cnt = 0
cal_cnt = 0
sumbpp = sumbpp_feature = sumbpp_mv = sumbpp_z = sumloss = sumpsnr = suminterpsnr = sumwarppsnr = 0
t0 = t1
log = 'Train Epoch : {:02} Loss:\t {:.6f}\t lr:{}'.format(epoch, sumloss / bat_cnt, cur_lr)
logger.info(log)
return global_step
if __name__ == "__main__":
args = parser.parse_args()
formatter = logging.Formatter('%(asctime)s - %(levelname)s] %(message)s')
stdhandler = logging.StreamHandler()
stdhandler.setLevel(logging.INFO)
stdhandler.setFormatter(formatter)
logger.addHandler(stdhandler)
if args.log != '':
filehandler = logging.FileHandler(args.log)
filehandler.setLevel(logging.INFO)
filehandler.setFormatter(formatter)
logger.addHandler(filehandler)
logger.setLevel(logging.INFO)
logger.info("DVC training")
logger.info("config : ")
logger.info(open(args.config).read())
parse_config(args.config)
model = VideoCompressor()
if args.pretrain != '':
print("loading pretrain : ", args.pretrain)
global_step = load_model(model, args.pretrain)
net = model.cuda()
net = torch.nn.DataParallel(net, list(range(gpu_num)))
bp_parameters = net.parameters()
optimizer = optim.Adam(bp_parameters, lr=base_lr)
# save_model(model, 0)
global train_dataset, test_dataset
if args.testuvg:
test_dataset = UVGDataSet(refdir=ref_i_dir, testfull=True)
print('testing UVG')
testuvg(0, testfull=True)
exit(0)
tb_logger = SummaryWriter('./events')
train_dataset = DataSet("autodl-tmp/data/vimeo_septuplet/test.txt")
# test_dataset = UVGDataSet(refdir=ref_i_dir)
stepoch = global_step // (train_dataset.__len__() // (gpu_per_batch))# * gpu_num))
for epoch in range(stepoch, tot_epoch):
adjust_learning_rate(optimizer, global_step)
if global_step > tot_step:
save_model(model, global_step)
break
global_step = train(epoch, global_step)
save_model(model, global_step)