-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem21.rb
41 lines (34 loc) · 1018 Bytes
/
problem21.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/bin/env ruby
require 'benchmark'
<<COMM
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
COMM
def factors(n)
x = n
factors = []
sq = Math.sqrt(n).floor
(2..sq).each do |prime|
#next if n % prime != 0
#break if prime > sq
if (n % prime == 0)
factors.push(prime)
end
end
factors + factors.map {|f| x / f} + [1]
end
def sum seq
seq.inject(0) {|ac,i| ac+=i}
end
def d n
sum(factors(n))
end
def amicable? n
(d(d(n)) == n) && (d(n) != n)
end
amic = (1..10000).select {|d| amicable?(d) }
puts amic.inspect
puts amic.map{|a| d(a) }.inspect
puts sum(amic)