Skip to content

Latest commit

 

History

History
145 lines (116 loc) · 6.83 KB

readme.md

File metadata and controls

145 lines (116 loc) · 6.83 KB

Magi, The Manga Whisperer

Static Badge Static Badge Dynamic JSON Badge Static Badge

Static Badge Static Badge Dynamic JSON Badge Static Badge

Table of Contents

  1. Magiv1
  2. Magiv2
  3. Datasets

Magiv1

Magi_teaser

v1 Usage

from transformers import AutoModel
import numpy as np
from PIL import Image
import torch
import os

images = [
        "path_to_image1.jpg",
        "path_to_image2.png",
    ]

def read_image_as_np_array(image_path):
    with open(image_path, "rb") as file:
        image = Image.open(file).convert("L").convert("RGB")
        image = np.array(image)
    return image

images = [read_image_as_np_array(image) for image in images]

model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True).cuda()
with torch.no_grad():
    results = model.predict_detections_and_associations(images)
    text_bboxes_for_all_images = [x["texts"] for x in results]
    ocr_results = model.predict_ocr(images, text_bboxes_for_all_images)

for i in range(len(images)):
    model.visualise_single_image_prediction(images[i], results[i], filename=f"image_{i}.png")
    model.generate_transcript_for_single_image(results[i], ocr_results[i], filename=f"transcript_{i}.txt")

Magiv2

magiv2

v2 Usage

from PIL import Image
import numpy as np
from transformers import AutoModel
import torch

model = AutoModel.from_pretrained("ragavsachdeva/magiv2", trust_remote_code=True).cuda().eval()


def read_image(path_to_image):
    with open(path_to_image, "rb") as file:
        image = Image.open(file).convert("L").convert("RGB")
        image = np.array(image)
    return image

chapter_pages = ["page1.png", "page2.png", "page3.png" ...]
character_bank = {
    "images": ["char1.png", "char2.png", "char3.png", "char4.png" ...],
    "names": ["Luffy", "Sanji", "Zoro", "Ussop" ...]
}

chapter_pages = [read_image(x) for x in chapter_pages]
character_bank["images"] = [read_image(x) for x in character_bank["images"]]

with torch.no_grad():
    per_page_results = model.do_chapter_wide_prediction(chapter_pages, character_bank, use_tqdm=True, do_ocr=True)

transcript = []
for i, (image, page_result) in enumerate(zip(chapter_pages, per_page_results)):
    model.visualise_single_image_prediction(image, page_result, f"page_{i}.png")
    speaker_name = {
        text_idx: page_result["character_names"][char_idx] for text_idx, char_idx in page_result["text_character_associations"]
    }
    for j in range(len(page_result["ocr"])):
        if not page_result["is_essential_text"][j]:
            continue
        name = speaker_name.get(j, "unsure") 
        transcript.append(f"<{name}>: {page_result['ocr'][j]}")
with open(f"transcript.txt", "w") as fh:
    for line in transcript:
        fh.write(line + "\n")

Datasets

Disclaimer: In adherence to copyright regulations, we are unable to publicly distribute the manga images that we've collected. The test images, however, are available freely, publicly and officially on Manga Plus by Shueisha.

Static Badge Static Badge

Other notes

  • Request to download Manga109 dataset here.
  • Download a large scale dataset from Mangadex using this tool.
  • The Manga109 test splits are available here: detection, character clustering. Be careful that some background characters have the same label even though they are not the same character, see.

License and Citation

The provided models and datasets are available for academic research purposes only.

@InProceedings{magiv1,
    author    = {Sachdeva, Ragav and Zisserman, Andrew},
    title     = {The Manga Whisperer: Automatically Generating Transcriptions for Comics},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2024},
    pages     = {12967-12976}
}
@misc{magiv2,
      author={Ragav Sachdeva and Gyungin Shin and Andrew Zisserman},
      title={Tails Tell Tales: Chapter-Wide Manga Transcriptions with Character Names}, 
      year={2024},
      eprint={2408.00298},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2408.00298}, 
}