-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.py
35 lines (26 loc) · 1019 Bytes
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon May 8 13:57:59 2023
@author: nakagawa
"""
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
train = pd.read_csv("train.csv",index_col="id")
test = pd.read_csv("test.csv",index_col="id")
target_str = "price_range"
x_train = train.drop(target_str,axis=1)
y_train = train[target_str]
# x_train,x_test,y_train,y_test = train_test_split(x_train,y_train,
# test_size=0.1,
# random_state=0,
# )
clf = MLPClassifier(solver="adam",
hidden_layer_sizes=((100,100,100)),
random_state=0,
max_iter=1000)
clf.fit(x_train, y_train)
y_predict = clf.predict(test)
y_predict = pd.DataFrame(y_predict,index=test.index)
y_predict.to_csv("submits/neuralnetworkpredict.csv",header=False)