-
Notifications
You must be signed in to change notification settings - Fork 2
Open
Description
Dear Dr. Corty,
I attach the code used as well as a cross-file with 100 markers as an example to show you the difference in the output of both functions.
marker <- "Hydroxyisobutyric_acid_2TMS1"
chromosome <- 22
# QTL scanonevar
crossData <- qtl::read.cross(format = "csv", file = paste0(marker,"_chr",chromosome,"_cross.csv"))
crossData <- qtl::calc.genoprob(crossData, step = 0)
# Available options
# qtl::scanonevar(cross = , pheno.col = , mean_covar = , var_covar = ,maxit = ,tol = ,quiet = )
result_qtl <- qtl::scanonevar(cross = crossData)
# As qtl package returns the -log10 of the p-value I converted it to compare
result_qtl[,3] <- 10^-result_qtl[,3]
result_qtl[,4] <- 10^-result_qtl[,4]
colnames(result_qtl) <- c("chr", "pos", "mQTL.p", "vQTL.p")
head(result_qtl)
# vQTL scanonevar
crossData <- qtl::read.cross(format = "csv", file = paste0(marker,"_chr",chromosome,"_cross.csv"))
crossData <- qtl::calc.genoprob(crossData, step = 0)
# Available options
# vqtl::scanonevar(cross = ,mean.formula = ,var.formula = ,chrs = ,scan_types = ,glm_family = ,return.covar.effects = )
result_vqtl <- vqtl::scanonevar(cross = crossData,
mean.formula = eval(parse(text = paste0(marker, " ~ mean.QTL.add + mean.QTL.dom"))),
var.formula = ~ var.QTL.add + var.QTL.dom)
result_vqtl <- result_vqtl$result
result_vqtl <- result_vqtl[,c(2,4,6,8,10)]
head(result_vqtl)
##### QTL PACKAGE ######
--Read the following data:
1354 individuals
100 markers
1 phenotypes
--Cross type: f2
chr pos mQTL.p vQTL.p
22:17066768 22 17066768 0.7126233 0.5256289
22:17067504 22 17067504 0.2775431 0.8481988
22:17067856 22 17067856 0.2560010 0.5723839
22:17068400 22 17068400 0.1859521 0.1510190
22:17069064 22 17069064 0.2826160 0.1899186
22:17070120 22 17070120 0.3294673 0.4517932
##### vQTL PACKAGE ######
--Read the following data:
1354 individuals
100 markers
1 phenotypes
--Cross type: f2
# A tibble: 6 x 5
chr pos mQTL.asymp.p vQTL.asymp.p mvQTL.asymp.p
<chr> <dbl> <dbl> <dbl> <dbl>
1 22 17066768 0.905 0.966 0.991
2 22 17067504 0.871 0.944 0.983
3 22 17067856 0.859 0.926 0.977
4 22 17068400 0.814 0.773 0.922
5 22 17069064 0.878 0.809 0.954
6 22 17070120 0.840 0.919 0.973
After finished the entire genome scan for some phenotypes I found that your function vqtl::scanonevar return smaller p-values than the qtl::scanonevar.
Metadata
Metadata
Assignees
Labels
No labels