-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
198 lines (164 loc) · 5.18 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from __future__ import division
import numpy as np
from common import *
import tensorflow.examples.tutorials.mnist as mnist
class Data:
def __init__(self,inputs,outputs):
assert type(inputs) is np.ndarray
assert type(outputs) is np.ndarray
self.inputs = inputs
self.outputs = outputs
class Dataset:
def __init__(self,train,test):
assert isinstance(train,Data)
assert isinstance(test,Data)
self.train_data = train
self.test_data = test
#K is number of mux inputs
class Seldata(Dataset):
def __init__(self,K,selval):
assert selval < K
assert K < 20
self.cnt = 0
self.K = K
self.selval = selval
X,y = np.zeros((2**self.K,self.K)), np.zeros((2**self.K))
for i in range(2**self.K):
X[i] = bitfield(i,self.K)
y[i] = self.sel(i)
Dataset.__init__(self,Data(X,y),Data(X,y))
def sel(self,x):
return int(bitstr(x,self.K)[self.selval])
def next_data(self,k):
X,y = np.zeros((k,self.K)), np.zeros((k))
for i in range(k):
ri = np.random.randint(0,2**self.K)
X[i], y[i] = bitfield(ri,self.K), scaleto11(self.sel(ri))
return [X,y]
#max_i = 2**self.K
#r = np.random.randint(0,max_i)
#X,y = np.zeros((k,self.K)), np.zeros((k))
#
#if r+k < max_i:
# X = self.train_data.inputs[r:r+k]
# y = self.train_data.outputs[r:r+k]
#else:
@property
def test(self):
return self.test_data
class Lutdata(Dataset):
def __init__(self,N,f):
self.N = N
self.f = f
data = np.zeros(2**N).astype(int)
X,y = np.zeros((2**N,N)), np.zeros((2**N))
for i in range(2**N):
X[i] = bitfield(i,N)
y[i] = f(i,N)
Dataset.__init__(self,Data(X,y),Data(X,y))
def next_data(self,k):
X,y = np.zeros((k,self.N)),np.zeros((k))
for i in range(k):
ri = np.random.randint(0,2**self.N)
X[i], y[i] = bitfield(ri,self.N), scaleto11(self.f(ri,self.N))
return [X,y]
@property
def test(self):
return self.test_data
class Unaryopdata(Dataset):
def __init__(self,f,inbits,outbits):
self.cnt = 0
self.f = f
self.inbits = inbits
self.outbits = outbits
inbitrange = 2**inbits
X,y = np.zeros((inbitrange,inbits)),np.zeros((inbitrange,outbits))
for a in range(inbitrange):
c = self.f(a)
i = a
X[i] = bitfield(a,inbits)
y[i] = bitfield(c,outbits)
print(X.shape, y.shape)
Dataset.__init__(self,Data(X,y),Data(X,y))
def next_data(self,k,rand=True):
inbits = self.inbits
outbits = self.outbits
X,y = np.zeros((k,inbits)),np.zeros((k,outbits))
if rand:
for i in range(k):
a = np.random.randint(0,2**inbits)
c = self.f(a)
X[i] = bitfield(a,inbits)
y[i] = bitfield(c,outbits)
else:
tot = 2**inbits
for i in range(k):
a = (i+self.cnt)%tot
c = self.f(a)
X[i] = bitfield(a,inbits)
y[i] = bitfield(c,outbits)
self.cnt = (self.cnt+k)%tot
return [X,y]
@property
def test(self):
return self.test_data
class Binopdata(Dataset):
def __init__(self,f,inbits,outbits):
self.f = f
self.inbits = inbits
self.outbits = outbits
inbitrange = 2**inbits
X,y = np.zeros((inbitrange**2,2*inbits)),np.zeros((inbitrange**2,outbits))
print(X.shape, y.shape)
for a in range(inbitrange):
for b in range(inbitrange):
c = self.f(a,b)
i = a*(2**inbits)+b
X[i,0:inbits] = bitfield(a,inbits)
X[i,inbits:] = bitfield(b,inbits)
y[i] = bitfield(c,outbits)
Dataset.__init__(self,Data(X,y),Data(X,y))
def next_data(self,k):
inbits = self.inbits
outbits = self.outbits
X,y = np.zeros((k,2*inbits)),np.zeros((k,outbits))
for i in range(k):
a,b = np.random.randint(0,2**inbits,2)
c = self.f(a,b)
X[i,0:inbits] = bitfield(a,inbits)
X[i,inbits:] = bitfield(b,inbits)
y[i] = bitfield(c,outbits)
return [X,y]
@property
def test(self):
return self.test_data
class Mnistdata(Dataset):
def __init__(self,ds=1):
assert 28%ds==0
self.ds = ds
self.data = mnist.input_data.read_data_sets('MNIST_data',one_hot=True)
train_images = (self.data.train.images >0.5).astype(int)
train_labels = (self.data.train.labels > 0.5).astype(int)
test_images = (self.data.test.images > 0.5).astype(int)
test_labels = (self.data.test.labels > 0.5).astype(int)
Dataset.__init__(self,Data(train_images,train_labels),Data(test_images,test_labels))
#assume [?,784]
def reshape(self,X):
bsize = X.shape[0]
assert X.shape[1] == 28**2
return np.reshape(X,(bsize,28,28))
def downsample(self,X):
if type(X) is tuple or type(X) is list:
return [self.downsample(X[0]),X[1]]
if len(X.shape)==2:
X = self.reshape(X)
return X[:,::self.ds,::self.ds].reshape(X.shape[0],(28//self.ds)**2)
def next_data(self,k):
data = self.data.train.next_batch(k)
data = self.downsample(data)
data[0] = scaleto11((data[0] > 0.5).astype(int))
data[1] = scaleto11((data[1] > 0.5).astype(int))
return data
@property
def test(self,ds=1):
return [self.downsample(scaleto11((self.test_data.inputs > 0.5).astype(int))),scaleto11((self.test_data.outputs >0.5).astype(int))]