-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbatch_test.py
212 lines (191 loc) · 7.62 KB
/
batch_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
some instructions
1. Fill the models that needs to be checked in the modelzoo_dict
2. Arange the structure of the directory as follows, the script will find the
corresponding config itself:
model_dir/model_family/checkpoints
e.g.: models/faster_rcnn/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
models/faster_rcnn/faster_rcnn_r101_fpn_1x_coco_20200130-047c8118.pth
3. Excute the batch_test.sh
"""
import argparse
import json
import os
import subprocess
import mmcv
import torch
from mmcv import Config, get_logger
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
wrap_fp16_model)
from mmdet.apis import multi_gpu_test, single_gpu_test
from mmdet.datasets import (build_dataloader, build_dataset,
replace_ImageToTensor)
from mmdet.models import build_detector
modelzoo_dict = {
'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py': {
'bbox': 0.374
},
'configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py': {
'bbox': 0.382,
'segm': 0.347
},
'configs/rpn/rpn_r50_fpn_1x_coco.py': {
'AR@1000': 0.582
}
}
def parse_args():
parser = argparse.ArgumentParser(
description='The script used for checking the correctness \
of batch inference')
parser.add_argument('model_dir', help='directory of models')
parser.add_argument(
'json_out', help='the output json records test information like mAP')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def check_finish(all_model_dict, result_file):
# check if all models are checked
tested_cfgs = []
with open(result_file, 'r+') as f:
for line in f:
line = json.loads(line)
tested_cfgs.append(line['cfg'])
is_finish = True
for cfg in sorted(all_model_dict.keys()):
if cfg not in tested_cfgs:
return cfg
if is_finish:
with open(result_file, 'a+') as f:
f.write('finished\n')
def dump_dict(record_dict, json_out):
# dump result json dict
with open(json_out, 'a+') as f:
mmcv.dump(record_dict, f, file_format='json')
f.write('\n')
def main():
args = parse_args()
# touch the output json if not exist
with open(args.json_out, 'a+'):
pass
# init distributed env first, since logger depends on the dist
# info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, backend='nccl')
rank, world_size = get_dist_info()
logger = get_logger('root')
# read info of checkpoints and config
result_dict = dict()
for model_family_dir in os.listdir(args.model_dir):
for model in os.listdir(
os.path.join(args.model_dir, model_family_dir)):
# cpt: rpn_r50_fpn_1x_coco_20200218-5525fa2e.pth
# cfg: rpn_r50_fpn_1x_coco.py
cfg = model.split('.')[0][:-18] + '.py'
cfg_path = os.path.join('configs', model_family_dir, cfg)
assert os.path.isfile(
cfg_path), f'{cfg_path} is not valid config path'
cpt_path = os.path.join(args.model_dir, model_family_dir, model)
result_dict[cfg_path] = cpt_path
assert cfg_path in modelzoo_dict, f'please fill the ' \
f'performance of cfg: {cfg_path}'
cfg = check_finish(result_dict, args.json_out)
cpt = result_dict[cfg]
try:
cfg_name = cfg
logger.info(f'evaluate {cfg}')
record = dict(cfg=cfg, cpt=cpt)
cfg = Config.fromfile(cfg)
# cfg.data.test.ann_file = 'data/val_0_10.json'
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
if cfg.model.get('neck'):
if isinstance(cfg.model.neck, list):
for neck_cfg in cfg.model.neck:
if neck_cfg.get('rfp_backbone'):
if neck_cfg.rfp_backbone.get('pretrained'):
neck_cfg.rfp_backbone.pretrained = None
elif cfg.model.neck.get('rfp_backbone'):
if cfg.model.neck.rfp_backbone.get('pretrained'):
cfg.model.neck.rfp_backbone.pretrained = None
# in case the test dataset is concatenated
if isinstance(cfg.data.test, dict):
cfg.data.test.test_mode = True
elif isinstance(cfg.data.test, list):
for ds_cfg in cfg.data.test:
ds_cfg.test_mode = True
# build the dataloader
samples_per_gpu = 2 # hack test with 2 image per gpu
if samples_per_gpu > 1:
# Replace 'ImageToTensor' to 'DefaultFormatBundle'
cfg.data.test.pipeline = replace_ImageToTensor(
cfg.data.test.pipeline)
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=samples_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False)
# build the model and load checkpoint
model = build_detector(
cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
checkpoint = load_checkpoint(model, cpt, map_location='cpu')
# old versions did not save class info in checkpoints,
# this walkaround is for backward compatibility
if 'CLASSES' in checkpoint['meta']:
model.CLASSES = checkpoint['meta']['CLASSES']
else:
model.CLASSES = dataset.CLASSES
if not distributed:
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(model, data_loader)
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
outputs = multi_gpu_test(model, data_loader, 'tmp')
if rank == 0:
ref_mAP_dict = modelzoo_dict[cfg_name]
metrics = list(ref_mAP_dict.keys())
metrics = [
m if m != 'AR@1000' else 'proposal_fast' for m in metrics
]
eval_results = dataset.evaluate(outputs, metrics)
print(eval_results)
for metric in metrics:
if metric == 'proposal_fast':
ref_metric = modelzoo_dict[cfg_name]['AR@1000']
eval_metric = eval_results['AR@1000']
else:
ref_metric = modelzoo_dict[cfg_name][metric]
eval_metric = eval_results[f'{metric}_mAP']
if abs(ref_metric - eval_metric) > 0.003:
record['is_normal'] = False
dump_dict(record, args.json_out)
check_finish(result_dict, args.json_out)
except Exception as e:
logger.error(f'rank: {rank} test fail with error: {e}')
record['terminate'] = True
dump_dict(record, args.json_out)
check_finish(result_dict, args.json_out)
# hack there to throw some error to prevent hang out
subprocess.call('xxx')
if __name__ == '__main__':
main()