-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathlabelme2coco.py
171 lines (142 loc) · 5.51 KB
/
labelme2coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import argparse
import json
import matplotlib.pyplot as plt
import skimage.io as io
import cv2
#from labelme import utils
#
from image import img_b64_to_arr
#
import numpy as np
import glob
import PIL.Image
import PIL.ImageDraw
import os
class labelme2coco(object):
def __init__(self, labelme_json=[], save_json_path='./new.json'):
'''
Args: labelme_json: paths of labelme json files
: save_json_path: saved path
'''
self.labelme_json = labelme_json
self.save_json_path = save_json_path
self.images = []
self.categories = []
self.annotations = []
# self.data_coco = {}
self.label = []
self.annID = 1
self.height = 0
self.width = 0
self.save_json()
def data_transfer(self):
for num, json_file in enumerate(self.labelme_json):
with open(json_file, 'r') as fp:
data = json.load(fp)
(prefix, res) = os.path.split(json_file)
(file_name, extension) = os.path.splitext(res)
self.images.append(self.image(data, num, file_name))
for shapes in data['shapes']:
label = shapes['label']
if label not in self.label:
self.categories.append(self.categorie(label))
self.label.append(label)
points = shapes['points']
self.annotations.append(
self.annotation(points, label, num))
self.annID += 1
def image(self, data, num, file_name):
image = {}
#img = img_b64_to_arr(data['imageData'])
height, width = 1200, 1920
#img = None
image['height'] = height
image['width'] = width
image['id'] = int(num+1)
image['file_name'] = file_name + '.tif'
self.height = height
self.width = width
return image
def categorie(self, label):
categorie = {}
categorie['supercategory'] = label
categorie['id'] = int(len(self.label)+1)
categorie['name'] = label
return categorie
def annotation(self, points, label, num):
annotation = {}
annotation['iscrowd'] = 0
annotation['image_id'] = int(num+1)
# TODO: check the segementation result:OK
# annotation['bbox'] = list(map(float, self.getbbox(points)))
# # coarsely from bbox to segmentation
# x = annotation['bbox'][0]
# y = annotation['bbox'][1]
# w = annotation['bbox'][2]
# h = annotation['bbox'][3]
# annotation['segmentation'] = [
# [x, y, x+w, y, x+w, y+h, x, y+h]] # at least 6 points
annotation['segmentation'] = [list(np.asarray(points).flatten())]
annotation['category_id'] = self.getcatid(label)
annotation['id'] = int(self.annID)
# add area info
# the area is not used for detection
annotation['area'] = self.height * self.width
return annotation
def getcatid(self, label):
for categorie in self.categories:
if label == categorie['name']:
return categorie['id']
# if label[1]==categorie['name']:
# return categorie['id']
return -1
def getbbox(self, points):
# img = np.zeros([self.height,self.width],np.uint8)
# cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA)
# cv2.fillPoly(img, [np.asarray(points)], 1)
polygons = points
mask = self.polygons_to_mask([self.height, self.width], polygons)
return self.mask2box(mask)
def mask2box(self, mask):
# np.where(mask==1)
index = np.argwhere(mask == 1)
rows = index[:, 0]
clos = index[:, 1]
left_top_r = np.min(rows) # y
left_top_c = np.min(clos) # x
right_bottom_r = np.max(rows)
right_bottom_c = np.max(clos)
# [x1,y1,w,h] for coco box format
return [left_top_c, left_top_r, right_bottom_c-left_top_c, right_bottom_r-left_top_r]
def polygons_to_mask(self, img_shape, polygons):
mask = np.zeros(img_shape, dtype=np.uint8)
mask = PIL.Image.fromarray(mask)
xy = list(map(tuple, polygons))
PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask
def data2coco(self):
data_coco = {}
data_coco['images'] = self.images
data_coco['categories'] = self.categories
data_coco['annotations'] = self.annotations
return data_coco
def save_json(self):
self.data_transfer()
self.data_coco = self.data2coco()
json.dump(self.data_coco, open(self.save_json_path, 'w',
encoding='utf-8'), indent=4, separators=(',', ': '), cls=MyEncoder)
# type check when save json files
class MyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(MyEncoder, self).default(obj)
# you need to modify the path according to your environment
labelme_json = glob.glob('train/*.json')
labelme2coco(labelme_json, 'annotations/train.json')