forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadvanced_rpc_compressor.cc
574 lines (503 loc) · 23.1 KB
/
advanced_rpc_compressor.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/*
* Copyright (C) 2023-present ScyllaDB
*/
/*
* SPDX-License-Identifier: LicenseRef-ScyllaDB-Source-Available-1.0
*/
#include <seastar/core/metrics.hh>
#include <seastar/util/defer.hh>
#include <numeric>
#include "log.hh"
#include "utils/advanced_rpc_compressor.hh"
#include "utils/advanced_rpc_compressor_protocol.hh"
#include "stream_compressor.hh"
#include "utils/dict_trainer.hh"
#include "seastar/core/on_internal_error.hh"
namespace utils {
logging::logger arc_logger("advanced_rpc_compressor");
static const shared_dict null_dict;
control_protocol::control_protocol(condition_variable& cv)
: _needs_progress(cv)
{
}
compression_algorithm control_protocol::sender_current_algorithm() const noexcept {
return _sender_current_algo;
}
const shared_dict& control_protocol::sender_current_dict() const noexcept {
return _sender_current_dict ? **_sender_current_dict : null_dict;
}
const shared_dict& control_protocol::receiver_current_dict() const noexcept {
return _receiver_current_dict ? **_receiver_current_dict : null_dict;
}
static shared_dict::dict_id get_dict_id(dict_ptr d) {
return d ? (**d).id : null_dict.id;
}
void control_protocol_frame::one_side::serialize(std::span<std::byte, serialized_size> out_span) {
char* out = reinterpret_cast<char*>(out_span.data());
seastar::write_le<uint8_t>(&out[0], header);
seastar::write_le<uint64_t>(&out[1], epoch);
seastar::write_le<uint8_t>(&out[9], algo.value());
seastar::write_le<uint64_t>(&out[10], dict.origin_node.get_least_significant_bits());
seastar::write_le<uint64_t>(&out[18], dict.origin_node.get_most_significant_bits());
seastar::write_le<uint64_t>(&out[26], dict.timestamp);
std::memcpy(&out[34], dict.content_sha256.data(), dict.content_sha256.size());
static_assert(serialized_size == 66);
}
control_protocol_frame::one_side control_protocol_frame::one_side::deserialize(std::span<const std::byte, serialized_size> in_span) {
const char* in = reinterpret_cast<const char*>(in_span.data());
control_protocol_frame::one_side ret;
ret.header = static_cast<header_enum>(seastar::read_le<uint8_t>(&in[0]));
ret.epoch = seastar::read_le<uint64_t>(&in[1]);
ret.algo = compression_algorithm_set::from_value(seastar::read_le<uint8_t>(&in[9]));
ret.dict.origin_node = UUID(seastar::read_le<uint64_t>(&in[18]), seastar::read_le<uint64_t>(&in[10]));
ret.dict.timestamp = seastar::read_le<uint64_t>(&in[26]);
std::memcpy(ret.dict.content_sha256.data(), &in[34], 32);
static_assert(serialized_size == 66);
return ret;
}
void control_protocol_frame::serialize(std::span<std::byte, serialized_size> out) {
sender.serialize(out.subspan<0, one_side::serialized_size>());
receiver.serialize(out.subspan<one_side::serialized_size, one_side::serialized_size>());
};
control_protocol_frame control_protocol_frame::deserialize(std::span<const std::byte, serialized_size> in) {
control_protocol_frame pf;
pf.sender = one_side::deserialize(in.subspan<0, one_side::serialized_size>());
pf.receiver = one_side::deserialize(in.subspan<one_side::serialized_size, one_side::serialized_size>());
return pf;
}
void control_protocol::announce_dict(dict_ptr d) noexcept {
_sender_recent_dict = d;
_sender_protocol_epoch += 1;
_sender_has_update = true;
_sender_has_commit = false;
_receiver_recent_dict = d;
_receiver_has_update = true;
_receiver_has_commit = false;
_needs_progress.signal();
}
void control_protocol::set_supported_algos(compression_algorithm_set algos) noexcept {
_algos = algos;
_sender_protocol_epoch += 1;
_sender_has_update = true;
_sender_has_commit = false;
_receiver_has_update = true;
_needs_progress.signal();
}
void control_protocol::consume_control_header(control_protocol_frame cpf) {
if (cpf.receiver.header == control_protocol_frame::UPDATE) {
_sender_protocol_epoch += 1;
_sender_has_update = true;
_sender_has_commit = false;
_needs_progress.signal();
} else if (cpf.receiver.header == control_protocol_frame::COMMIT && cpf.receiver.epoch == _sender_protocol_epoch) {
_sender_has_commit = true;
assert(!_sender_has_update);
if (get_dict_id(_sender_committed_dict) != cpf.receiver.dict) {
_sender_committed_dict = _sender_current_dict;
}
_sender_committed_algo = cpf.receiver.algo.intersection(_algos).heaviest();
_needs_progress.signal();
}
if (cpf.sender.header == control_protocol_frame::UPDATE) {
_receiver_has_commit = true;
_receiver_has_update = false;
if (cpf.sender.dict == get_dict_id(_receiver_recent_dict)) {
_receiver_committed_dict = _receiver_recent_dict;
}
_receiver_protocol_epoch = cpf.sender.epoch;
_needs_progress.signal();
} else if (cpf.sender.header == control_protocol_frame::COMMIT) {
if (cpf.sender.dict == get_dict_id(_receiver_committed_dict)) {
_receiver_current_dict = _receiver_committed_dict;
} else {
assert(cpf.sender.dict == get_dict_id(_receiver_current_dict));
}
}
}
std::optional<control_protocol_frame> control_protocol::produce_control_header() {
control_protocol_frame pf;
if (!(_sender_has_commit || _sender_has_update || _receiver_has_commit || _receiver_has_update)) [[likely]] {
return std::nullopt;
}
if (_sender_has_commit) {
_sender_has_commit = false;
assert(!_sender_has_update);
_sender_current_dict = _sender_committed_dict;
_sender_current_algo = _sender_committed_algo;
pf.sender.header = control_protocol_frame::COMMIT;
pf.sender.dict = get_dict_id(_sender_current_dict);
pf.sender.algo = compression_algorithm_set::singleton(_sender_current_algo);
pf.sender.epoch = _sender_protocol_epoch;
} else if (_sender_has_update) {
_sender_has_update = false;
_sender_committed_dict = _sender_recent_dict;
pf.sender.header = control_protocol_frame::UPDATE;
pf.sender.dict = get_dict_id(_sender_recent_dict);
pf.sender.algo = compression_algorithm_set::singleton(_sender_current_algo);
pf.sender.epoch = _sender_protocol_epoch;
}
if (_receiver_has_commit) {
_receiver_has_commit = false;
pf.receiver.header = control_protocol_frame::COMMIT;
pf.receiver.dict = get_dict_id(_receiver_committed_dict);
pf.receiver.algo = _algos;
pf.receiver.epoch = _receiver_protocol_epoch;
} else if (_receiver_has_update) {
_receiver_has_update = false;
pf.receiver.header = control_protocol_frame::UPDATE;
pf.receiver.dict = get_dict_id(_receiver_recent_dict);
pf.receiver.algo = _algos;
pf.receiver.epoch = _receiver_protocol_epoch;
}
return pf;
}
// Converting the list obtained from config.cc to a more workable form.
compression_algorithm_set algo_list_to_set(std::span<const enum_option<compression_algorithm>> v) {
auto out = compression_algorithm_set::singleton(compression_algorithm::type::RAW);
for (const auto& i : v) {
out = out.sum(compression_algorithm_set::singleton(compression_algorithm(i)));
}
return out;
}
static raw_stream the_raw_stream;
advanced_rpc_compressor::advanced_rpc_compressor(
tracker& fac,
std::function<future<>()> send_empty_frame)
: _tracker(fac)
, _control(_needs_progress)
, _send_empty_frame(std::move(send_empty_frame))
, _progress_fiber(start_progress_fiber())
{
_idx =_tracker->register_compressor(this);
}
future<> advanced_rpc_compressor::start_progress_fiber() {
while (true) {
co_await _needs_progress.when();
co_await _send_empty_frame();
}
}
future<> advanced_rpc_compressor::close() noexcept {
_needs_progress.broken();
return std::move(_progress_fiber).handle_exception([] (const auto& ep) {});
}
advanced_rpc_compressor::~advanced_rpc_compressor() {
_tracker->unregister_compressor(_idx);
}
// Note: whenever a backwards-incompatible change to the compressor protocol/format
// is made, the COMPRESSOR_NAME has to change.
//
const static sstring COMPRESSOR_NAME = "SCYLLA_V3";
compression_algorithm advanced_rpc_compressor::get_algo_for_next_msg(size_t msgsize) {
auto algo = _control.sender_current_algorithm();
if (algo == compression_algorithm::type::ZSTD
&& (_tracker->cpu_limit_exceeded()
|| msgsize < _tracker->_cfg.zstd_min_msg_size.get()
|| msgsize > _tracker->_cfg.zstd_max_msg_size.get())
) {
algo = compression_algorithm::type::LZ4;
}
return algo;
}
sstring advanced_rpc_compressor::name() const {
return COMPRESSOR_NAME;
}
const sstring& advanced_rpc_compressor::tracker::supported() const {
return COMPRESSOR_NAME;
}
std::unique_ptr<advanced_rpc_compressor> advanced_rpc_compressor::tracker::negotiate(
sstring feature,
bool is_server,
std::function<future<>()> send_empty_frame)
{
if (feature != COMPRESSOR_NAME) {
return nullptr;
}
auto c = std::make_unique<advanced_rpc_compressor>(*this, std::move(send_empty_frame));
c->_control.set_supported_algos(algo_list_to_set(_cfg.algo_config.get()));
c->_control.announce_dict(_most_recent_dict);
return c;
}
advanced_rpc_compressor::tracker::tracker(config cfg)
: _cfg(cfg)
, _algo_config_observer(_cfg.algo_config.observe([this] (const auto& x) {
set_supported_algos(algo_list_to_set(x));
}))
{
if (_cfg.register_metrics) {
register_metrics();
}
}
advanced_rpc_compressor::tracker::~tracker() {
}
void advanced_rpc_compressor::tracker::attach_to_dict_sampler(dict_sampler* dt) noexcept {
_dict_sampler = dt;
}
void advanced_rpc_compressor::tracker::set_supported_algos(compression_algorithm_set algos) noexcept {
for (const auto c : _compressors) {
c->_control.set_supported_algos(algos);
}
}
size_t advanced_rpc_compressor::tracker::register_compressor(advanced_rpc_compressor* c) {
_compressors.push_back(c);
c->_control.announce_dict(_most_recent_dict);
return _compressors.size() - 1;
}
void advanced_rpc_compressor::tracker::unregister_compressor(size_t i) {
assert(_compressors.size() && i < _compressors.size());
std::swap(_compressors[i], _compressors.back());
_compressors[i]->_idx = i;
_compressors.pop_back();
}
void advanced_rpc_compressor::tracker::register_metrics() {
namespace sm = seastar::metrics;
sm::label algo_label("algorithm");
for (int i = 0; i < static_cast<int>(compression_algorithm::type::COUNT); ++i) {
auto stats = &_stats[i];
auto label = algo_label(compression_algorithm(i).name());
_metrics.add_group("rpc_compression", {
sm::make_counter("bytes_sent", stats->bytes_sent, sm::description("bytes written to RPC connections, before compression"), {label}),
sm::make_counter("compressed_bytes_sent", stats->compressed_bytes_sent, sm::description("bytes written to RPC connections, after compression"), {label}),
sm::make_counter("compressed_bytes_received", stats->compressed_bytes_received, sm::description("bytes read from RPC connections, before decompression"), {label}),
sm::make_counter("messages_received", stats->messages_received, sm::description("RPC messages received"), {label}),
sm::make_counter("messages_sent", stats->messages_sent, sm::description("RPC messages sent"), {label}),
sm::make_counter("bytes_received", stats->bytes_received, sm::description("bytes read from RPC connections, after decompression"), {label}),
sm::make_counter("compression_cpu_nanos", stats->compression_cpu_nanos, sm::description("nanoseconds spent on compression"), {label}),
sm::make_counter("decompression_cpu_nanos", stats->decompression_cpu_nanos, sm::description("nanoseconds spent on decompression"), {label}),
});
}
}
uint64_t advanced_rpc_compressor::tracker::get_total_nanos_spent() const noexcept {
return _stats[static_cast<int>(compression_algorithm::type::ZSTD)].decompression_cpu_nanos
+ _stats[static_cast<int>(compression_algorithm::type::ZSTD)].compression_cpu_nanos
+ _stats[static_cast<int>(compression_algorithm::type::LZ4)].decompression_cpu_nanos
+ _stats[static_cast<int>(compression_algorithm::type::LZ4)].compression_cpu_nanos;
}
void advanced_rpc_compressor::tracker::maybe_refresh_zstd_quota(uint64_t now) noexcept {
using std::chrono::nanoseconds, std::chrono::milliseconds;
if (now >= _short_period_start + nanoseconds(milliseconds(_cfg.zstd_quota_refresh_ms)).count()) {
_short_period_start = now;
_nanos_used_before_this_short_period = get_total_nanos_spent();
}
if (now >= _long_period_start + nanoseconds(milliseconds(_cfg.zstd_longterm_quota_refresh_ms)).count()) {
_long_period_start = now;
_nanos_used_before_this_long_period = get_total_nanos_spent();
}
}
bool advanced_rpc_compressor::tracker::cpu_limit_exceeded() const noexcept {
using std::chrono::nanoseconds, std::chrono::milliseconds;
uint64_t used_short = get_total_nanos_spent() - _nanos_used_before_this_short_period;
uint64_t used_long = get_total_nanos_spent() - _nanos_used_before_this_long_period;
uint64_t limit_short = nanoseconds(milliseconds(_cfg.zstd_quota_refresh_ms.get())).count() * _cfg.zstd_quota_fraction;
uint64_t limit_long = nanoseconds(milliseconds(_cfg.zstd_longterm_quota_refresh_ms.get())).count() * _cfg.zstd_longterm_quota_fraction;
return used_long >= limit_long || used_short >= limit_short;
}
std::span<const per_algorithm_stats, compression_algorithm::count()> advanced_rpc_compressor::tracker::get_stats() const noexcept {
return _stats;
}
stream_compressor& advanced_rpc_compressor::get_compressor(compression_algorithm algo) {
switch (algo.get()) {
case compression_algorithm::type::LZ4: return get_global_lz4_cstream();
case compression_algorithm::type::ZSTD: return get_global_zstd_cstream();
case compression_algorithm::type::RAW: return the_raw_stream;
default: __builtin_unreachable();
}
}
stream_decompressor& advanced_rpc_compressor::get_decompressor(compression_algorithm algo) {
switch (algo.get()) {
case compression_algorithm::type::LZ4: return get_global_lz4_dstream();
case compression_algorithm::type::ZSTD: return get_global_zstd_dstream();
case compression_algorithm::type::RAW: return the_raw_stream;
default: __builtin_unreachable();
}
}
rpc::snd_buf advanced_rpc_compressor::compress(size_t head_space, rpc::snd_buf data) {
const size_t checksum_size = _tracker->_cfg.checksumming.get() ? sizeof(uint32_t) : 0;
const uint32_t crc = checksum_size ? crc_impl(data) : -1;
auto now = _tracker->get_steady_nanos();
_tracker->maybe_refresh_zstd_quota(now);
auto algo = get_algo_for_next_msg(data.size);
auto& stats = _tracker->_stats[algo.idx()];
auto update_time_stats = defer([&, nanos_before = now] {
stats.compression_cpu_nanos += _tracker->get_steady_nanos() - nanos_before;
});
_tracker->ingest(data);
auto protocol_header = _control.produce_control_header();
const size_t protocol_header_size = protocol_header ? control_protocol_frame::serialized_size : 0;
auto uncompressed_size = data.size;
auto compressed = std::invoke([&] {
try {
return compress_impl(head_space + 1 + checksum_size + protocol_header_size, std::move(data), get_compressor(algo), true, rpc::snd_buf::chunk_size);
} catch (...) {
arc_logger.error("Error during decompression with algorithm {}: {}. ", algo.name(), std::current_exception());
throw;
}
});
// Write the algorithm type to the first byte after the external head_space.
// Note: compress_impl guarantees that the head space (including our byte, as we passed head_space + 1) is in the first fragment,
// so what we are doing below is legal.
auto dst = std::get_if<temporary_buffer<char>>(&compressed.bufs);
if (!dst) {
dst = std::get<std::vector<temporary_buffer<char>>>(compressed.bufs).data();
}
static_assert(compression_algorithm::count() <= 0x3f); // We have 6 bits for algorithm ID, 2 bits for flags.
dst->get_write()[head_space] = (algo.idx() & 0x3f) | (protocol_header ? 0x80 : 0x00) | (checksum_size ? 0x40 : 0x00);
if (checksum_size) {
write_le<uint32_t>(&dst->get_write()[head_space + 1], crc);
}
if (protocol_header) {
auto out_data = reinterpret_cast<std::byte*>(dst->get_write() + head_space + 1 + checksum_size);
constexpr size_t out_size = control_protocol_frame::serialized_size;
auto out = std::span<std::byte, out_size>(out_data, out_size);
protocol_header->serialize(out);
}
stats.bytes_sent += uncompressed_size;
stats.compressed_bytes_sent += compressed.size - head_space;
stats.messages_sent += 1;
return compressed;
}
template <typename T>
requires std::is_trivially_copyable_v<T>
T read_from_rcv_buf(rpc::rcv_buf& data) {
if (data.size < sizeof(T)) {
throw std::runtime_error("Truncated compressed RPC frame");
}
auto it = std::get_if<temporary_buffer<char>>(&data.bufs);
if (!it) {
it = std::get<std::vector<temporary_buffer<char>>>(data.bufs).data();
}
std::array<T, 1> out;
auto out_span = std::as_writable_bytes(std::span(out)).subspan(0);
while (out_span.size()) {
size_t n = std::min<size_t>(out_span.size(), it->size());
// Make a special case for n==0, to avoid calling memcpy(src=..., it->get()=nullptr, n=0). The nullptr bothers UBSAN.
if (n) {
std::memcpy(static_cast<void*>(out_span.data()), it->get(), n);
out_span = out_span.subspan(n);
it->trim_front(n);
data.size -= n;
}
++it;
}
return out[0];
}
rpc::rcv_buf advanced_rpc_compressor::decompress(rpc::rcv_buf data) {
const uint8_t header_byte = read_from_rcv_buf<uint8_t>(data);
const bool has_checksum = header_byte & 0x40;
const bool has_control_frame = header_byte & 0x80;
uint32_t expected_crc = -1;
if (has_checksum) {
expected_crc = seastar::le_to_cpu(read_from_rcv_buf<uint32_t>(data));
}
if (has_control_frame) {
auto control_protocol_frame_bytes = read_from_rcv_buf<std::array<std::byte, control_protocol_frame::serialized_size>>(data);
_control.consume_control_header(control_protocol_frame::deserialize(control_protocol_frame_bytes));
}
// Will throw if the enum value is unknown.
auto algo = compression_algorithm(header_byte & 0x3f);
auto& stats = _tracker->_stats[algo.idx()];
auto update_time_stats = defer([&, nanos_before = _tracker->get_steady_nanos()] {
stats.decompression_cpu_nanos += _tracker->get_steady_nanos() - nanos_before;
});
auto compressed_size = data.size;
auto decompressed = std::invoke([&] {
try {
return decompress_impl(data, get_decompressor(algo), true, rpc::snd_buf::chunk_size);
} catch (...) {
arc_logger.error("Error during compression with algorithm {}: {}. ", algo.name(), std::current_exception());
throw;
}
});
if (has_checksum) {
const uint32_t actual_crc = crc_impl(decompressed);
if (expected_crc != actual_crc) {
seastar::on_internal_error(arc_logger, fmt::format("RPC compression checksum error (expected: {:x}, got: {:x}). This indicates a bug. Set `internode_compression: none` and restart the nodes to regain stability, then report the bug.", expected_crc, actual_crc));
}
}
_tracker->ingest(decompressed);
stats.compressed_bytes_received += compressed_size;
stats.bytes_received += decompressed.size;
stats.messages_received += 1;
return decompressed;
}
zstd_dstream& advanced_rpc_compressor::get_global_zstd_dstream() {
auto& dstream = _tracker->get_global_zstd_dstream();
dstream.set_dict(_control.receiver_current_dict().zstd_ddict.get());
return _tracker->get_global_zstd_dstream();
}
zstd_cstream& advanced_rpc_compressor::get_global_zstd_cstream() {
auto& cstream = _tracker->get_global_zstd_cstream();
cstream.set_dict(_control.sender_current_dict().zstd_cdict.get());
return _tracker->get_global_zstd_cstream();
}
lz4_dstream& advanced_rpc_compressor::get_global_lz4_dstream() {
auto& dstream = _tracker->get_global_lz4_dstream();
dstream.set_dict(_control.receiver_current_dict().lz4_ddict);
return dstream;
}
lz4_cstream& advanced_rpc_compressor::get_global_lz4_cstream() {
auto& cstream = _tracker->get_global_lz4_cstream();
cstream.set_dict(_control.sender_current_dict().lz4_cdict.get());
return cstream;
}
zstd_dstream& advanced_rpc_compressor::tracker::get_global_zstd_dstream() {
if (!_global_zstd_dstream) {
_global_zstd_dstream = std::make_unique<zstd_dstream>();
}
return *_global_zstd_dstream;
}
zstd_cstream& advanced_rpc_compressor::tracker::get_global_zstd_cstream() {
if (!_global_zstd_cstream) {
_global_zstd_cstream = std::make_unique<zstd_cstream>();
}
return *_global_zstd_cstream;
}
lz4_dstream& advanced_rpc_compressor::tracker::get_global_lz4_dstream() {
if (!_global_lz4_dstream) {
_global_lz4_dstream = std::make_unique<lz4_dstream>();
}
return *_global_lz4_dstream;
}
lz4_cstream& advanced_rpc_compressor::tracker::get_global_lz4_cstream() {
if (!_global_lz4_cstream) {
_global_lz4_cstream = std::make_unique<lz4_cstream>();
}
return *_global_lz4_cstream;
}
template <typename T>
requires std::same_as<T, rpc::rcv_buf> || std::same_as<T, rpc::snd_buf>
void advanced_rpc_compressor::tracker::ingest_generic(const T& data) {
if (_dict_sampler && _dict_sampler->is_sampling()) {
if (const auto* src = std::get_if<temporary_buffer<char>>(&data.bufs)) {
_dict_sampler->ingest({reinterpret_cast<const std::byte*>(src->get()), src->size()});
} else {
const auto& frags = std::get<std::vector<temporary_buffer<char>>>(data.bufs);
for (const auto& frag : frags) {
_dict_sampler->ingest({reinterpret_cast<const std::byte*>(frag.get()), frag.size()});
}
}
}
}
void advanced_rpc_compressor::tracker::ingest(const rpc::snd_buf& data) {
ingest_generic(data);
}
void advanced_rpc_compressor::tracker::ingest(const rpc::rcv_buf& data) {
ingest_generic(data);
}
void advanced_rpc_compressor::tracker::announce_dict(dict_ptr d) {
_most_recent_dict = d;
for (const auto c : _compressors) {
c->_control.announce_dict(_most_recent_dict);
}
}
future<> announce_dict_to_shards(seastar::sharded<walltime_compressor_tracker>& sharded_tracker, utils::shared_dict shared_dict) {
arc_logger.debug("Announcing new dictionary: ts={}, origin={}", shared_dict.id.timestamp, shared_dict.id.origin_node);
auto dict = make_lw_shared(std::move(shared_dict));
auto foreign_ptrs = std::vector<foreign_ptr<decltype(dict)>>();
for (size_t i = 0; i < smp::count; ++i) {
foreign_ptrs.push_back(make_foreign(dict));
}
co_await sharded_tracker.invoke_on_all([&foreign_ptrs] (auto& tracker) {
tracker.announce_dict(make_lw_shared(std::move(foreign_ptrs[this_shard_id()])));
});
}
} // namespace utils