forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhashing.hh
215 lines (192 loc) · 5.95 KB
/
hashing.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*
* Copyright (C) 2015-present ScyllaDB
*/
/*
* SPDX-License-Identifier: LicenseRef-ScyllaDB-Source-Available-1.0
*/
#pragma once
#include <concepts>
#include <map>
#include <optional>
#include <memory>
#include <seastar/core/byteorder.hh>
#include <seastar/core/sstring.hh>
#include "seastarx.hh"
//
// This hashing differs from std::hash<> in that it decouples knowledge about
// type structure from the way the hash value is calculated:
// * appending_hash<T> instantiation knows about what data should be included in the hash for type T.
// * Hasher object knows how to combine the data into the final hash.
//
// The appending_hash<T> should always feed some data into the hasher, regardless of the state the object is in,
// in order for the hash to be highly sensitive for value changes. For example, vector<optional<T>> should
// ideally feed different values for empty vector and a vector with a single empty optional.
//
// appending_hash<T> is machine-independent.
//
template<typename H>
concept Hasher =
requires(H& h, const char* ptr, size_t size) {
{ h.update(ptr, size) } noexcept -> std::same_as<void>;
};
template<typename H, typename ValueType>
concept HasherReturning = Hasher<H> &&
requires (H& h) {
{ h.finalize() } -> std::convertible_to<ValueType>;
};
class hasher {
public:
virtual ~hasher() = default;
virtual void update(const char* ptr, size_t size) noexcept = 0;
};
template<typename T>
struct appending_hash;
template<typename H, typename T, typename... Args>
requires Hasher<H>
inline
void feed_hash(H& h, const T& value, Args&&... args) noexcept(noexcept(std::declval<appending_hash<T>>()(h, value, args...))) {
appending_hash<T>()(h, value, std::forward<Args>(args)...);
};
template<typename T>
requires std::is_arithmetic_v<T>
struct appending_hash<T> {
template<typename H>
requires Hasher<H>
void operator()(H& h, T value) const noexcept {
auto value_le = cpu_to_le(value);
h.update(reinterpret_cast<const char*>(&value_le), sizeof(T));
}
};
template<>
struct appending_hash<bool> {
template<typename H>
requires Hasher<H>
void operator()(H& h, bool value) const noexcept {
feed_hash(h, static_cast<uint8_t>(value));
}
};
template<>
struct appending_hash<double> {
template<typename H>
requires Hasher<H>
void operator()(H& h, double d) const noexcept {
// Mimics serializer for CQL double type, for inter-machine stability.
if (std::isnan(d)) {
d = std::numeric_limits<double>::quiet_NaN();
}
static_assert(sizeof(double) == sizeof(uint64_t));
uint64_t i;
memcpy(&i, &d, sizeof(i));
feed_hash(h, cpu_to_le(i));
}
};
template<typename T>
requires std::is_enum_v<T>
struct appending_hash<T> {
template<typename H>
requires Hasher<H>
void operator()(H& h, const T& value) const noexcept {
feed_hash(h, static_cast<std::underlying_type_t<T>>(value));
}
};
template<typename T>
struct appending_hash<std::optional<T>> {
template<typename H>
requires Hasher<H>
void operator()(H& h, const std::optional<T>& value) const noexcept {
if (value) {
feed_hash(h, true);
feed_hash(h, *value);
} else {
feed_hash(h, false);
}
}
};
template<typename T>
struct appending_hash<std::unique_ptr<T>> {
template<typename H>
requires Hasher<H>
void operator()(H& h, const std::unique_ptr<T>& value) const noexcept {
if (value) {
feed_hash(h, true);
feed_hash(h, *value);
} else {
feed_hash(h, false);
}
}
};
template<size_t N>
struct appending_hash<char[N]> {
template<typename H>
requires Hasher<H>
void operator()(H& h, const char (&value) [N]) const noexcept {
feed_hash(h, N);
h.update(value, N);
}
};
template<typename T>
struct appending_hash<std::vector<T>> {
template<typename H>
requires Hasher<H>
void operator()(H& h, const std::vector<T>& value) const noexcept {
feed_hash(h, value.size());
for (auto&& v : value) {
appending_hash<T>()(h, v);
}
}
};
template<typename K, typename V>
struct appending_hash<std::map<K, V>> {
template<typename H>
requires Hasher<H>
void operator()(H& h, const std::map<K, V>& value) const noexcept {
feed_hash(h, value.size());
for (auto&& e : value) {
appending_hash<K>()(h, e.first);
appending_hash<V>()(h, e.second);
}
}
};
template<typename K, typename V>
struct appending_hash<std::unordered_map<K, V>> {
template<typename H>
requires Hasher<H>
void operator()(H& h, const std::unordered_map<K, V>& value) const noexcept {
std::map<K, V> sorted(value.begin(), value.end());
feed_hash(h, sorted);
}
};
template<>
struct appending_hash<sstring> {
template<typename H>
requires Hasher<H>
void operator()(H& h, const sstring& v) const noexcept {
feed_hash(h, v.size());
h.update(reinterpret_cast<const char*>(v.cbegin()), v.size() * sizeof(sstring::value_type));
}
};
template<>
struct appending_hash<std::string> {
template<typename H>
requires Hasher<H>
void operator()(H& h, const std::string& v) const noexcept {
feed_hash(h, v.size());
h.update(reinterpret_cast<const char*>(v.data()), v.size() * sizeof(std::string::value_type));
}
};
template<typename T, typename R>
struct appending_hash<std::chrono::duration<T, R>> {
template<typename H>
requires Hasher<H>
void operator()(H& h, std::chrono::duration<T, R> v) const noexcept {
feed_hash(h, v.count());
}
};
template<typename Clock, typename Duration>
struct appending_hash<std::chrono::time_point<Clock, Duration>> {
template<typename H>
requires Hasher<H>
void operator()(H& h, std::chrono::time_point<Clock, Duration> v) const noexcept {
feed_hash(h, v.time_since_epoch().count());
}
};