forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogalloc.cc
3046 lines (2687 loc) · 113 KB
/
logalloc.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 2015-present ScyllaDB
*/
/*
* SPDX-License-Identifier: LicenseRef-ScyllaDB-Source-Available-1.0
*/
#include <boost/intrusive/list.hpp>
#include <boost/intrusive/set.hpp>
#include <boost/intrusive/slist.hpp>
#include <stack>
#include <ranges>
#include <seastar/core/memory.hh>
#include <seastar/core/align.hh>
#include <seastar/core/format.hh>
#include <seastar/core/metrics.hh>
#include <seastar/core/reactor.hh>
#include <seastar/core/coroutine.hh>
#include <seastar/core/smp.hh>
#include <seastar/core/with_scheduling_group.hh>
#include <seastar/coroutine/maybe_yield.hh>
#include <seastar/util/alloc_failure_injector.hh>
#include <seastar/util/backtrace.hh>
#include <seastar/util/later.hh>
#include "utils/assert.hh"
#include "utils/logalloc.hh"
#include "utils/log.hh"
#include "utils/dynamic_bitset.hh"
#include "utils/log_heap.hh"
#include "utils/preempt.hh"
#include "utils/vle.hh"
#include "utils/coarse_steady_clock.hh"
#include <random>
#include <chrono>
using namespace std::chrono_literals;
#ifdef SEASTAR_ASAN_ENABLED
#include <sanitizer/asan_interface.h>
// For each aligned 8 byte segment, the algorithm used by address
// sanitizer can represent any addressable prefix followed by a
// poisoned suffix. The details are at:
// https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
// For us this means that:
// * The descriptor must be 8 byte aligned. If it was not, making the
// descriptor addressable would also make the end of the previous
// value addressable.
// * Each value must be at least 8 byte aligned. If it was not, making
// the value addressable would also make the end of the descriptor
// addressable.
template<typename T>
[[nodiscard]] static T align_up_for_asan(T val) {
return align_up(val, size_t(8));
}
template<typename T>
void poison(const T* addr, size_t size) {
// Both values and descriptors must be aligned.
SCYLLA_ASSERT(uintptr_t(addr) % 8 == 0);
// This can be followed by
// * 8 byte aligned descriptor (this is a value)
// * 8 byte aligned value
// * dead value
// * end of segment
// In all cases, we can align up the size to guarantee that asan
// is able to poison this.
ASAN_POISON_MEMORY_REGION(addr, align_up_for_asan(size));
}
void unpoison(const char *addr, size_t size) {
ASAN_UNPOISON_MEMORY_REGION(addr, size);
}
#else
template<typename T>
[[nodiscard]] static T align_up_for_asan(T val) { return val; }
template<typename T>
void poison(const T* addr, size_t size) { }
void unpoison(const char *addr, size_t size) { }
#endif
namespace bi = boost::intrusive;
standard_allocation_strategy standard_allocation_strategy_instance;
namespace {
class migrators_base {
protected:
std::vector<const migrate_fn_type*> _migrators;
};
#ifdef DEBUG_LSA_SANITIZER
class migrators : public migrators_base, public enable_lw_shared_from_this<migrators> {
private:
struct backtrace_entry {
saved_backtrace _registration;
saved_backtrace _deregistration;
};
std::vector<std::unique_ptr<backtrace_entry>> _backtraces;
static logging::logger _logger;
private:
void on_error() { abort(); }
public:
uint32_t add(const migrate_fn_type* m) {
_migrators.push_back(m);
_backtraces.push_back(std::make_unique<backtrace_entry>(backtrace_entry{current_backtrace(), {}}));
return _migrators.size() - 1;
}
void remove(uint32_t idx) {
if (idx >= _migrators.size()) {
_logger.error("Attempting to deregister migrator id {} which was never registered:\n{}",
idx, current_backtrace());
on_error();
}
if (!_migrators[idx]) {
_logger.error("Attempting to double deregister migrator id {}:\n{}\n"
"Previously deregistered at:\n{}\nRegistered at:\n{}",
idx, current_backtrace(), _backtraces[idx]->_deregistration,
_backtraces[idx]->_registration);
on_error();
}
_migrators[idx] = nullptr;
_backtraces[idx]->_deregistration = current_backtrace();
}
const migrate_fn_type*& operator[](uint32_t idx) {
if (idx >= _migrators.size()) {
_logger.error("Attempting to use migrator id {} that was never registered:\n{}",
idx, current_backtrace());
on_error();
}
if (!_migrators[idx]) {
_logger.error("Attempting to use deregistered migrator id {}:\n{}\n"
"Deregistered at:\n{}\nRegistered at:\n{}",
idx, current_backtrace(), _backtraces[idx]->_deregistration,
_backtraces[idx]->_registration);
on_error();
}
return _migrators[idx];
}
};
logging::logger migrators::_logger("lsa-migrator-sanitizer");
#else
class migrators : public migrators_base, public enable_lw_shared_from_this<migrators> {
std::vector<uint32_t> _unused_ids;
public:
uint32_t add(const migrate_fn_type* m) {
if (!_unused_ids.empty()) {
uint32_t idx = _unused_ids.back();
_unused_ids.pop_back();
_migrators[idx] = m;
return idx;
}
_migrators.push_back(m);
return _migrators.size() - 1;
}
void remove(uint32_t idx) {
_unused_ids.push_back(idx);
}
const migrate_fn_type*& operator[](uint32_t idx) {
return _migrators[idx];
}
};
#endif
static
migrators&
static_migrators() noexcept {
memory::scoped_critical_alloc_section dfg;
static thread_local lw_shared_ptr<migrators> obj = make_lw_shared<migrators>();
return *obj;
}
}
namespace debug {
thread_local migrators* static_migrators = &::static_migrators();
}
uint32_t
migrate_fn_type::register_migrator(migrate_fn_type* m) {
auto& migrators = *debug::static_migrators;
auto idx = migrators.add(m);
// object_descriptor encodes 2 * index() + 1
SCYLLA_ASSERT(idx * 2 + 1 < utils::uleb64_express_supreme);
m->_migrators = migrators.shared_from_this();
return idx;
}
void
migrate_fn_type::unregister_migrator(uint32_t index) {
static_migrators().remove(index);
}
namespace {
// for printing extra message in reclaim_timer::report() when stall is detected.
//
// this helper struct is deliberately introduced to ensure no dynamic
// allocations in reclaim_timer::report(), which is involved in handling OOMs.
struct extra_msg_when_stall_detected {
bool stall_detected;
saved_backtrace backtrace;
extra_msg_when_stall_detected(bool detected, saved_backtrace&& backtrace)
: stall_detected{detected}
, backtrace{std::move(backtrace)}
{}
};
}
template <>
struct fmt::formatter<extra_msg_when_stall_detected> {
constexpr auto parse(format_parse_context& ctx) { return ctx.begin(); }
auto format(const extra_msg_when_stall_detected& msg, fmt::format_context& ctx) const {
if (msg.stall_detected) {
return fmt::format_to(ctx.out(), ", at {}", msg.backtrace);
} else {
return ctx.out();
}
}
};
namespace logalloc {
// LSA-specific bad_alloc variant which allows adding additional information on
// why the allocation failed.
class bad_alloc : public std::bad_alloc {
sstring _what;
public:
bad_alloc(sstring what) : _what(std::move(what)) { }
virtual const char* what() const noexcept override {
return _what.c_str();
}
};
#ifdef DEBUG_LSA_SANITIZER
class region_sanitizer {
struct allocation {
size_t size;
saved_backtrace backtrace;
};
private:
static logging::logger logger;
const bool* _report_backtrace = nullptr;
bool _broken = false;
std::unordered_map<const void*, allocation> _allocations;
private:
template<typename Function>
void run_and_handle_errors(Function&& fn) noexcept {
memory::scoped_critical_alloc_section dfg;
if (_broken) {
return;
}
try {
fn();
} catch (...) {
logger.error("Internal error, disabling the sanitizer: {}", std::current_exception());
_broken = true;
_allocations.clear();
}
}
private:
void on_error() { abort(); }
public:
region_sanitizer(const bool& report_backtrace) : _report_backtrace(&report_backtrace) { }
void on_region_destruction() noexcept {
run_and_handle_errors([&] {
if (_allocations.empty()) {
return;
}
for (auto [ptr, alloc] : _allocations) {
logger.error("Leaked {} byte object at {} allocated from:\n{}",
alloc.size, ptr, alloc.backtrace);
}
on_error();
});
}
void on_allocation(const void* ptr, size_t size) noexcept {
run_and_handle_errors([&] {
auto backtrace = *_report_backtrace ? current_backtrace() : saved_backtrace();
auto [ it, success ] = _allocations.emplace(ptr, allocation { size, std::move(backtrace) });
if (!success) {
logger.error("Attempting to allocate an {} byte object at an already occupied address {}:\n{}\n"
"Previous allocation of {} bytes:\n{}",
ptr, size, current_backtrace(), it->second.size, it->second.backtrace);
on_error();
}
});
}
void on_free(const void* ptr, size_t size) noexcept {
run_and_handle_errors([&] {
auto it = _allocations.find(ptr);
if (it == _allocations.end()) {
logger.error("Attempting to free an object at {} (size: {}) that does not exist\n{}",
ptr, size, current_backtrace());
on_error();
}
if (it->second.size != size) {
logger.error("Mismatch between allocation and deallocation size of object at {}: {} vs. {}:\n{}\n"
"Allocated at:\n{}",
ptr, it->second.size, size, current_backtrace(), it->second.backtrace);
on_error();
}
_allocations.erase(it);
});
}
void on_migrate(const void* src, size_t size, const void* dst) noexcept {
run_and_handle_errors([&] {
auto it_src = _allocations.find(src);
if (it_src == _allocations.end()) {
logger.error("Attempting to migrate an object at {} (size: {}) that does not exist",
src, size);
on_error();
}
if (it_src->second.size != size) {
logger.error("Mismatch between allocation and migration size of object at {}: {} vs. {}\n"
"Allocated at:\n{}",
src, it_src->second.size, size, it_src->second.backtrace);
on_error();
}
auto [ it_dst, success ] = _allocations.emplace(dst, std::move(it_src->second));
if (!success) {
logger.error("Attempting to migrate an {} byte object to an already occupied address {}:\n"
"Migrated object allocated from:\n{}\n"
"Previous allocation of {} bytes at the destination:\n{}",
size, dst, it_src->second.backtrace, it_dst->second.size, it_dst->second.backtrace);
on_error();
}
_allocations.erase(it_src);
});
}
void merge(region_sanitizer& other) noexcept {
run_and_handle_errors([&] {
_broken = other._broken;
if (_broken) {
_allocations.clear();
} else {
_allocations.merge(other._allocations);
if (!other._allocations.empty()) {
for (auto [ptr, o_alloc] : other._allocations) {
auto& alloc = _allocations.at(ptr);
logger.error("Conflicting allocations at address {} in merged regions\n"
"{} bytes allocated from:\n{}\n"
"{} bytes allocated from:\n{}",
ptr, alloc.size, alloc.backtrace, o_alloc.size, o_alloc.backtrace);
}
on_error();
}
}
});
}
};
logging::logger region_sanitizer::logger("lsa-sanitizer");
#else
struct region_sanitizer {
region_sanitizer(const bool&) { }
void on_region_destruction() noexcept { }
void on_allocation(const void*, size_t) noexcept { }
void on_free(const void* ptr, size_t size) noexcept { }
void on_migrate(const void*, size_t, const void*) noexcept { }
void merge(region_sanitizer&) noexcept { }
};
#endif
struct segment;
static logging::logger llogger("lsa");
static logging::logger timing_logger("lsa-timing");
static tracker& get_tracker_instance() noexcept {
memory::scoped_critical_alloc_section dfg;
static thread_local tracker obj;
return obj;
}
static thread_local tracker& tracker_instance = get_tracker_instance();
using clock = std::chrono::steady_clock;
class background_reclaimer {
scheduling_group _sg;
noncopyable_function<void (size_t target)> _reclaim;
timer<lowres_clock> _adjust_shares_timer;
// If engaged, main loop is not running, set_value() to wake it.
promise<>* _main_loop_wait = nullptr;
future<> _done;
bool _stopping = false;
static constexpr size_t free_memory_threshold = 60'000'000;
private:
bool have_work() const {
#ifndef SEASTAR_DEFAULT_ALLOCATOR
return memory::free_memory() < free_memory_threshold;
#else
return false;
#endif
}
void main_loop_wake() {
llogger.debug("background_reclaimer::main_loop_wake: waking {}", bool(_main_loop_wait));
if (_main_loop_wait) {
_main_loop_wait->set_value();
_main_loop_wait = nullptr;
}
}
future<> main_loop() {
llogger.debug("background_reclaimer::main_loop: entry");
while (true) {
while (!_stopping && !have_work()) {
promise<> wait;
_main_loop_wait = &wait;
llogger.trace("background_reclaimer::main_loop: sleep");
co_await wait.get_future();
llogger.trace("background_reclaimer::main_loop: awakened");
_main_loop_wait = nullptr;
}
if (_stopping) {
break;
}
_reclaim(free_memory_threshold - memory::free_memory());
co_await coroutine::maybe_yield();
}
llogger.debug("background_reclaimer::main_loop: exit");
}
void adjust_shares() {
if (have_work()) {
auto shares = 1 + (1000 * (free_memory_threshold - memory::free_memory())) / free_memory_threshold;
_sg.set_shares(shares);
llogger.trace("background_reclaimer::adjust_shares: {}", shares);
if (_main_loop_wait) {
main_loop_wake();
}
}
}
public:
explicit background_reclaimer(scheduling_group sg, noncopyable_function<void (size_t target)> reclaim)
: _sg(sg)
, _reclaim(std::move(reclaim))
, _adjust_shares_timer(default_scheduling_group(), [this] { adjust_shares(); })
, _done(with_scheduling_group(_sg, [this] { return main_loop(); })) {
if (sg != default_scheduling_group()) {
_adjust_shares_timer.arm_periodic(50ms);
}
}
future<> stop() {
_stopping = true;
main_loop_wake();
return std::move(_done);
}
};
class segment_pool;
struct reclaim_timer;
class tracker::impl {
std::unique_ptr<logalloc::segment_pool> _segment_pool;
std::optional<background_reclaimer> _background_reclaimer;
std::vector<region::impl*> _regions;
seastar::metrics::metric_groups _metrics;
unsigned _reclaiming_disabled_depth = 0;
size_t _reclamation_step = 1;
bool _abort_on_bad_alloc = false;
bool _sanitizer_report_backtrace = false;
reclaim_timer* _active_timer = nullptr;
private:
// Prevents tracker's reclaimer from running while live. Reclaimer may be
// invoked synchronously with allocator. This guard ensures that this
// object is not re-entered while inside one of the tracker's methods.
struct reclaiming_lock {
impl& _ref;
reclaiming_lock(impl& ref) noexcept
: _ref(ref)
{
_ref.disable_reclaim();
}
~reclaiming_lock() {
_ref.enable_reclaim();
}
};
friend class tracker_reclaimer_lock;
public:
impl();
~impl();
future<> stop() {
if (_background_reclaimer) {
return _background_reclaimer->stop();
} else {
return make_ready_future<>();
}
}
void disable_reclaim() noexcept {
++_reclaiming_disabled_depth;
}
void enable_reclaim() noexcept {
--_reclaiming_disabled_depth;
}
logalloc::segment_pool& segment_pool() {
return *_segment_pool;
}
void register_region(region::impl*);
void unregister_region(region::impl*) noexcept;
size_t reclaim(size_t bytes, is_preemptible p);
// Compacts one segment at a time from sparsest segment to least sparse until work_waiting_on_reactor returns true
// or there are no more segments to compact.
idle_cpu_handler_result compact_on_idle(work_waiting_on_reactor check_for_work);
// Releases whole segments back to the segment pool.
// After the call, if there is enough evictable memory, the amount of free segments in the pool
// will be at least reserve_segments + div_ceil(bytes, segment::size).
// Returns the amount by which segment_pool.total_memory_in_use() has decreased.
size_t compact_and_evict(size_t reserve_segments, size_t bytes, is_preemptible p);
void full_compaction();
void reclaim_all_free_segments();
occupancy_stats global_occupancy() const noexcept;
occupancy_stats region_occupancy() const noexcept;
occupancy_stats occupancy() const noexcept;
size_t non_lsa_used_space() const noexcept;
// Set the minimum number of segments reclaimed during single reclamation cycle.
void set_reclamation_step(size_t step_in_segments) noexcept { _reclamation_step = step_in_segments; }
size_t reclamation_step() const noexcept { return _reclamation_step; }
// Abort on allocation failure from LSA
void enable_abort_on_bad_alloc() noexcept { _abort_on_bad_alloc = true; }
bool should_abort_on_bad_alloc() const noexcept { return _abort_on_bad_alloc; }
void setup_background_reclaim(scheduling_group sg) {
SCYLLA_ASSERT(!_background_reclaimer);
_background_reclaimer.emplace(sg, [this] (size_t target) {
reclaim(target, is_preemptible::yes);
});
}
// const bool&, so interested parties can save a reference and see updates.
const bool& sanitizer_report_backtrace() const { return _sanitizer_report_backtrace; }
void set_sanitizer_report_backtrace(bool rb) { _sanitizer_report_backtrace = rb; }
bool try_set_active_timer(reclaim_timer& timer) {
if (_active_timer) {
return false;
}
_active_timer = &timer;
return true;
}
bool try_reset_active_timer(reclaim_timer& timer) {
if (_active_timer == &timer) {
_active_timer = nullptr;
return true;
}
return false;
}
private:
// Like compact_and_evict() but assumes that reclaim_lock is held around the operation.
size_t compact_and_evict_locked(size_t reserve_segments, size_t bytes, is_preemptible preempt);
// Like reclaim() but assumes that reclaim_lock is held around the operation.
size_t reclaim_locked(size_t bytes, is_preemptible p);
};
tracker_reclaimer_lock::tracker_reclaimer_lock(tracker::impl& impl) noexcept : _tracker_impl(impl) {
_tracker_impl.disable_reclaim();
}
tracker_reclaimer_lock::~tracker_reclaimer_lock() {
_tracker_impl.enable_reclaim();
}
tracker::tracker()
: _impl(std::make_unique<impl>())
, _reclaimer([this] (seastar::memory::reclaimer::request r) { return reclaim(r); }, memory::reclaimer_scope::sync)
{ }
tracker::~tracker() {
}
future<>
tracker::stop() {
return _impl->stop();
}
size_t tracker::reclaim(size_t bytes) {
return _impl->reclaim(bytes, is_preemptible::no);
}
occupancy_stats tracker::global_occupancy() const noexcept {
return _impl->global_occupancy();
}
occupancy_stats tracker::region_occupancy() const noexcept {
return _impl->region_occupancy();
}
occupancy_stats tracker::occupancy() const noexcept {
return _impl->occupancy();
}
size_t tracker::non_lsa_used_space() const noexcept {
return _impl->non_lsa_used_space();
}
void tracker::full_compaction() {
return _impl->full_compaction();
}
void tracker::reclaim_all_free_segments() {
return _impl->reclaim_all_free_segments();
}
tracker& shard_tracker() noexcept {
return tracker_instance;
}
struct alignas(segment_size) segment {
static constexpr int size_shift = segment_size_shift;
static constexpr int size_mask = segment_size | (segment_size - 1);
using size_type = std::conditional_t<(size_shift < 16), uint16_t, uint32_t>;
static constexpr size_t size = segment_size;
uint8_t data[size];
segment() noexcept { }
template<typename T = void>
const T* at(size_t offset) const noexcept {
return reinterpret_cast<const T*>(data + offset);
}
template<typename T = void>
T* at(size_t offset) noexcept {
return reinterpret_cast<T*>(data + offset);
}
static void* operator new(size_t size) = delete;
static void* operator new(size_t, void* ptr) noexcept { return ptr; }
static void operator delete(void* ptr) = delete;
};
static constexpr size_t max_managed_object_size = segment_size * 0.1;
static constexpr auto max_used_space_ratio_for_compaction = 0.85;
static constexpr size_t max_used_space_for_compaction = segment_size * max_used_space_ratio_for_compaction;
static constexpr size_t min_free_space_for_compaction = segment_size - max_used_space_for_compaction;
struct [[gnu::packed]] non_lsa_object_cookie {
uint64_t value = 0xbadcaffe;
};
static_assert(min_free_space_for_compaction >= max_managed_object_size,
"Segments which cannot fit max_managed_object_size must not be considered compactible for the sake of forward progress of compaction");
// Since we only compact if there's >= min_free_space_for_compaction of free space,
// we use min_free_space_for_compaction as the histogram's minimum size and put
// everything below that value in the same bucket.
extern constexpr log_heap_options segment_descriptor_hist_options(min_free_space_for_compaction, 3, segment_size);
enum segment_kind : int {
regular = 0, // Holds objects allocated with region_impl::alloc_small()
bufs = 1 // Holds objects allocated with region_impl::alloc_buf()
};
struct segment_descriptor : public log_heap_hook<segment_descriptor_hist_options> {
static constexpr segment::size_type free_space_mask = segment::size_mask;
static constexpr unsigned bits_for_free_space = segment::size_shift + 1;
static constexpr segment::size_type segment_kind_mask = 1 << bits_for_free_space;
static constexpr unsigned bits_for_segment_kind = 1;
static constexpr unsigned shift_for_segment_kind = bits_for_free_space;
static_assert(sizeof(segment::size_type) * 8 >= bits_for_free_space + bits_for_segment_kind);
segment::size_type _free_space;
region::impl* _region;
segment::size_type free_space() const noexcept {
return _free_space & free_space_mask;
}
void set_free_space(segment::size_type free_space) noexcept {
_free_space = (_free_space & ~free_space_mask) | free_space;
}
segment_kind kind() const noexcept {
return static_cast<segment_kind>((_free_space & segment_kind_mask) >> shift_for_segment_kind);
}
void set_kind(segment_kind kind) noexcept {
_free_space = (_free_space & ~segment_kind_mask)
| static_cast<segment::size_type>(kind) << shift_for_segment_kind;
}
// Valid if kind() == segment_kind::bufs.
//
// _buf_pointers holds links to lsa_buffer objects (paired with lsa_buffer::_link)
// of live objects in the segment. The purpose of this is so that segment compaction
// can update the pointers when it moves the objects.
// The order of entangled objects in the vector is irrelevant.
// Also, not all entangled objects may be engaged.
std::vector<entangled> _buf_pointers;
segment_descriptor() noexcept
: _region(nullptr)
{ }
bool is_empty() const noexcept {
return free_space() == segment::size;
}
occupancy_stats occupancy() const noexcept {
return { free_space(), segment::size };
}
void record_alloc(segment::size_type size) noexcept {
_free_space -= size;
}
void record_free(segment::size_type size) noexcept {
_free_space += size;
}
};
using segment_descriptor_hist = log_heap<segment_descriptor, segment_descriptor_hist_options>;
class segment_store_backend {
protected:
memory::memory_layout _layout;
// Whether freeing segments actually increases availability of non-lsa memory.
bool _freed_segment_increases_general_memory_availability;
// Aligned (to segment::size) address of the first segment.
uintptr_t _segments_base;
public:
explicit segment_store_backend(memory::memory_layout layout, bool freed_segment_increases_general_memory_availability) noexcept
: _layout(layout)
, _freed_segment_increases_general_memory_availability(freed_segment_increases_general_memory_availability)
, _segments_base(align_up(_layout.start, static_cast<uintptr_t>(segment::size)))
{ }
virtual ~segment_store_backend() = default;
memory::memory_layout memory_layout() const noexcept { return _layout; }
uintptr_t segments_base() const noexcept { return _segments_base; }
virtual void* alloc_segment_memory() noexcept = 0;
virtual void free_segment_memory(void* seg) noexcept = 0;
virtual size_t free_memory() const noexcept = 0;
bool can_allocate_more_segments(size_t non_lsa_reserve) const noexcept {
if (_freed_segment_increases_general_memory_availability) {
return free_memory() >= non_lsa_reserve + segment::size;
} else {
return free_memory() >= segment::size;
}
}
};
// Segments are allocated from the seastar allocator.
// The entire memory area of the local shard is used as a segment store, i.e.
// segments are allocated from the same memory area regular objeces are.
class seastar_memory_segment_store_backend : public segment_store_backend {
public:
seastar_memory_segment_store_backend()
: segment_store_backend(memory::get_memory_layout(), true)
{ }
virtual void* alloc_segment_memory() noexcept override {
return aligned_alloc(segment::size, segment::size);
}
virtual void free_segment_memory(void* seg) noexcept override {
::free(seg);
}
virtual size_t free_memory() const noexcept override {
return memory::free_memory();
}
};
// Segments storage is allocated via `mmap()`.
// This area cannot be shrunk or enlarged, so freeing segments doesn't increase
// memory availability.
class standard_memory_segment_store_backend : public segment_store_backend {
struct free_segment {
free_segment* next = nullptr;
};
private:
uintptr_t _segments_offset = 0;
free_segment* _freelist = nullptr;
size_t _available_segments; // for fast free_memory()
private:
static memory::memory_layout allocate_memory(size_t segments) {
const auto size = segments * segment_size;
auto p = mmap(nullptr, size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
if (p == MAP_FAILED) {
std::abort();
}
madvise(p, size, MADV_HUGEPAGE);
auto start = reinterpret_cast<uintptr_t>(p);
return {start, start + size};
}
public:
standard_memory_segment_store_backend(size_t segments)
: segment_store_backend(allocate_memory(segments), false)
, _available_segments((_layout.end - _segments_base) / segment_size)
{ }
~standard_memory_segment_store_backend() {
munmap(reinterpret_cast<void*>(_layout.start), _layout.end - _layout.start);
}
virtual void* alloc_segment_memory() noexcept override {
if (_freelist) {
--_available_segments;
return std::exchange(_freelist, _freelist->next);
}
auto seg = _segments_base + _segments_offset * segment_size;
if (seg + segment_size > _layout.end) {
return nullptr;
}
++_segments_offset;
--_available_segments;
return reinterpret_cast<void*>(seg);
}
virtual void free_segment_memory(void* seg) noexcept override {
unpoison(reinterpret_cast<char*>(seg), sizeof(free_segment));
auto fs = new (seg) free_segment;
fs->next = _freelist;
_freelist = fs;
++_available_segments;
}
virtual size_t free_memory() const noexcept override {
return _available_segments * segment_size;
}
};
static constexpr size_t segment_npos = size_t(-1);
// Segments are allocated from a large contiguous memory area.
class contiguous_memory_segment_store {
std::unique_ptr<segment_store_backend> _backend;
public:
size_t non_lsa_reserve = 0;
contiguous_memory_segment_store()
: _backend(std::make_unique<seastar_memory_segment_store_backend>())
{ }
struct with_standard_memory_backend {};
contiguous_memory_segment_store(with_standard_memory_backend, size_t available_memory) {
use_standard_allocator_segment_pool_backend(available_memory);
}
void use_standard_allocator_segment_pool_backend(size_t available_memory) {
_backend = std::make_unique<standard_memory_segment_store_backend>(available_memory / segment::size);
llogger.debug("using the standard allocator segment pool backend with {} available memory", available_memory);
}
const segment* segment_from_idx(size_t idx) const noexcept {
return reinterpret_cast<segment*>(_backend->segments_base()) + idx;
}
segment* segment_from_idx(size_t idx) noexcept {
return reinterpret_cast<segment*>(_backend->segments_base()) + idx;
}
size_t idx_from_segment(const segment* seg) const noexcept {
const auto seg_uint = reinterpret_cast<uintptr_t>(seg);
if (seg_uint < _backend->memory_layout().start || seg_uint > _backend->memory_layout().end) [[unlikely]] {
return segment_npos;
}
return seg - reinterpret_cast<segment*>(_backend->segments_base());
}
std::pair<segment*, size_t> allocate_segment() noexcept {
auto p = _backend->alloc_segment_memory();
if (!p) {
return {nullptr, 0};
}
auto seg = new (p) segment;
poison(seg, sizeof(segment));
return {seg, idx_from_segment(seg)};
}
void free_segment(segment *seg) noexcept {
seg->~segment();
_backend->free_segment_memory(seg);
}
size_t max_segments() const noexcept {
return (_backend->memory_layout().end - _backend->segments_base()) / segment::size;
}
bool can_allocate_more_segments() const noexcept {
return _backend->can_allocate_more_segments(non_lsa_reserve);
}
};
#ifndef SEASTAR_DEFAULT_ALLOCATOR
using segment_store = contiguous_memory_segment_store;
#else
class segment_store {
std::unique_ptr<contiguous_memory_segment_store> _delegate_store;
std::vector<segment*> _segments;
std::unordered_map<segment*, size_t> _segment_indexes;
static constexpr size_t _std_memory_available = size_t(1) << 30; // emulate 1GB per shard
std::vector<segment*>::iterator find_empty() noexcept {
return std::find(_segments.begin(), _segments.end(), nullptr);
}
std::vector<segment*>::const_iterator find_empty() const noexcept {
return std::find(_segments.cbegin(), _segments.cend(), nullptr);
}
void free_segments() noexcept {
for (segment *seg : _segments) {
if (seg) {
seg->~segment();
free(seg);
}
}
}
public:
size_t non_lsa_reserve = 0;
segment_store() : _segments(max_segments()) {
_segment_indexes.reserve(max_segments());
}
void use_standard_allocator_segment_pool_backend(size_t available_memory) {
_delegate_store = std::make_unique<contiguous_memory_segment_store>(contiguous_memory_segment_store::with_standard_memory_backend{}, available_memory);
free_segments();
_segment_indexes = {};
llogger.debug("using the standard allocator segment pool backend with {} available memory", available_memory);
}
const segment* segment_from_idx(size_t idx) const noexcept {
if (_delegate_store) {
return _delegate_store->segment_from_idx(idx);
}
SCYLLA_ASSERT(idx < _segments.size());
return _segments[idx];
}
segment* segment_from_idx(size_t idx) noexcept {
if (_delegate_store) {
return _delegate_store->segment_from_idx(idx);
}
SCYLLA_ASSERT(idx < _segments.size());
return _segments[idx];
}
size_t idx_from_segment(const segment* seg) const noexcept {
if (_delegate_store) {
return _delegate_store->idx_from_segment(seg);
}
auto i = _segment_indexes.find(const_cast<segment*>(seg));
if (i == _segment_indexes.end()) {
return segment_npos;
}
return i->second;
}
std::pair<segment*, size_t> allocate_segment() noexcept {
if (_delegate_store) {
return _delegate_store->allocate_segment();
}
auto p = aligned_alloc(segment::size, segment::size);
if (!p) {
return {nullptr, 0};
}
auto seg = new (p) segment;
poison(seg, sizeof(segment));
auto i = find_empty();
SCYLLA_ASSERT(i != _segments.end());
*i = seg;
size_t ret = i - _segments.begin();
_segment_indexes[seg] = ret;
return {seg, ret};
}
void free_segment(segment *seg) noexcept {
if (_delegate_store) {
return _delegate_store->free_segment(seg);
}
seg->~segment();
::free(seg);
size_t i = idx_from_segment(seg);
_segment_indexes.erase(seg);
_segments[i] = nullptr;
}
~segment_store() {
free_segments();
}
size_t max_segments() const noexcept {
if (_delegate_store) {
return _delegate_store->max_segments();
}
return _std_memory_available / segment::size;
}
bool can_allocate_more_segments() const noexcept {
if (_delegate_store) {
return _delegate_store->can_allocate_more_segments();
}
auto i = find_empty();
return i != _segments.end();
}
};
#endif
// Segment pool implementation for the seastar allocator.
// Stores segment descriptors in a vector which is indexed using most significant
// bits of segment address.
//
// We prefer using high-address segments, and returning low-address segments to the seastar
// allocator in order to segregate lsa and non-lsa memory, to reduce fragmentation.