forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstall_free.hh
293 lines (241 loc) · 8.02 KB
/
stall_free.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/*
* Copyright (C) 2020-present ScyllaDB
*/
/*
* SPDX-License-Identifier: LicenseRef-ScyllaDB-Source-Available-1.0
*/
#pragma once
#include <list>
#include <algorithm>
#include <seastar/core/thread.hh>
#include <seastar/core/future.hh>
#include <seastar/core/sharded.hh>
#include <seastar/core/when_all.hh>
#include <seastar/core/do_with.hh>
#include "utils/collection-concepts.hh"
using namespace seastar;
namespace utils {
// Similar to std::merge but it does not stall. Must run inside a seastar
// thread. It merges items from list2 into list1. Items from list2 can only be copied.
template<class T, class Compare>
requires LessComparable<T, T, Compare>
void merge_to_gently(std::list<T>& list1, const std::list<T>& list2, Compare comp) {
auto first1 = list1.begin();
auto first2 = list2.begin();
auto last1 = list1.end();
auto last2 = list2.end();
while (first2 != last2) {
seastar::thread::maybe_yield();
if (first1 == last1) {
// Copy remaining items of list2 into list1
list1.insert(last1, *first2);
++first2;
continue;
}
if (comp(*first2, *first1)) {
list1.insert(first1, *first2);
++first2;
} else {
++first1;
}
}
}
// The clear_gently functions are meant for
// gently destroying the contents of containers.
// The containers can be reused after clear_gently
// or may be destroyed. But unlike e.g. std::vector::clear(),
// clear_gently will not necessarily keep the object allocation.
template <typename T>
concept HasClearGentlyMethod = requires (T x) {
{ x.clear_gently() } -> std::same_as<future<>>;
};
template <typename T>
concept SmartPointer = requires (T x) {
{ x.get() } -> std::same_as<typename T::element_type*>;
{ *x } -> std::same_as<typename T::element_type&>;
};
template <typename T>
concept SharedPointer = SmartPointer<T> && requires (T x) {
{ x.use_count() } -> std::convertible_to<long>;
};
template <typename T>
concept StringLike = requires (T x) {
std::is_same_v<typename T::traits_type, std::char_traits<typename T::value_type>>;
};
template <typename T>
concept Iterable = requires (T x) {
{ x.empty() } -> std::same_as<bool>;
{ x.begin() } -> std::same_as<typename T::iterator>;
{ x.end() } -> std::same_as<typename T::iterator>;
};
template <typename T>
concept Sequence = Iterable<T> && requires (T x, size_t n) {
{ x.back() } -> std::same_as<typename T::value_type&>;
{ x.pop_back() } -> std::same_as<void>;
};
template <typename T>
concept TriviallyClearableSequence =
Sequence<T> && std::is_trivially_destructible_v<typename T::value_type> && !HasClearGentlyMethod<typename T::value_type> && requires (T s) {
{ s.clear() } -> std::same_as<void>;
};
template <typename T>
concept Container = Iterable<T> && requires (T x, typename T::iterator it) {
x.erase(it);
};
template <typename T>
concept MapLike = Container<T> && requires (T x) {
std::is_same_v<typename T::value_type, std::pair<const typename T::key_type, typename T::mapped_type>>;
};
template <HasClearGentlyMethod T>
future<> clear_gently(T& o) noexcept;
template <typename T>
future<> clear_gently(foreign_ptr<T>& o) noexcept;
template <SharedPointer T>
future<> clear_gently(T& o) noexcept;
template <SmartPointer T>
future<> clear_gently(T& o) noexcept;
template <typename T, std::size_t N>
future<> clear_gently(std::array<T, N>&a) noexcept;
template <typename T>
requires (StringLike<T> || TriviallyClearableSequence<T>)
future<> clear_gently(T& s) noexcept;
template <Sequence T>
requires (!StringLike<T> && !TriviallyClearableSequence<T>)
future<> clear_gently(T& v) noexcept;
template <MapLike T>
future<> clear_gently(T& c) noexcept;
template <Container T>
requires (!StringLike<T> && !Sequence<T> && !MapLike<T>)
future<> clear_gently(T& c) noexcept;
template <typename T>
future<> clear_gently(std::optional<T>& opt) noexcept;
template <typename T>
future<> clear_gently(seastar::optimized_optional<T>& opt) noexcept;
namespace internal {
template <typename T>
concept HasClearGentlyImpl = requires (T x) {
{ clear_gently(x) } -> std::same_as<future<>>;
};
template <typename T>
requires HasClearGentlyImpl<T>
future<> clear_gently(T& x) noexcept {
return utils::clear_gently(x);
}
// This default implementation of clear_gently
// is required to "terminate" recursive clear_gently calls
// at trivial objects
template <typename T>
future<> clear_gently(T&) noexcept {
return make_ready_future<>();
}
} // namespace internal
template <HasClearGentlyMethod T>
future<> clear_gently(T& o) noexcept {
return futurize_invoke(std::bind(&T::clear_gently, &o));
}
template <typename T>
future<> clear_gently(foreign_ptr<T>& o) noexcept {
return smp::submit_to(o.get_owner_shard(), [&o] {
return internal::clear_gently(*o);
});
}
template <typename... T>
requires (std::is_rvalue_reference_v<T&&> && ...)
future<> clear_gently(T&&... o) {
return do_with(std::move(o)..., [](auto&... args) {
return when_all(clear_gently(args)...).discard_result();
});
}
template <SharedPointer T>
future<> clear_gently(T& o) noexcept {
if (o.use_count() == 1) {
return internal::clear_gently(*o);
}
return make_ready_future<>();
}
template <SmartPointer T>
future<> clear_gently(T& o) noexcept {
if (auto p = o.get()) {
return internal::clear_gently(*p);
} else {
return make_ready_future<>();
}
}
template <typename T, std::size_t N>
future<> clear_gently(std::array<T, N>& a) noexcept {
return do_for_each(a, [] (T& o) {
return internal::clear_gently(o);
});
}
// Trivially destructible elements can be safely cleared in bulk
template <typename T>
requires (StringLike<T> || TriviallyClearableSequence<T>)
future<> clear_gently(T& s) noexcept {
// Note: clear() is pointless in this case since it keeps the allocation
// and since the values are trivially destructible it achieves nothing.
// `s = {}` will free the vector/string allocation.
s = {};
return make_ready_future<>();
}
// Clear the elements gently and destroy them one-by-one
// in reverse order, to avoid copying.
template <Sequence T>
requires (!StringLike<T> && !TriviallyClearableSequence<T>)
future<> clear_gently(T& v) noexcept {
return do_until([&v] { return v.empty(); }, [&v] {
return internal::clear_gently(v.back()).then([&v] {
v.pop_back();
});
});
return make_ready_future<>();
}
template <MapLike T>
future<> clear_gently(T& c) noexcept {
return do_until([&c] { return c.empty(); }, [&c] {
auto it = c.begin();
return internal::clear_gently(it->second).then([&c, it = std::move(it)] () mutable {
c.erase(it);
});
});
}
template <Container T>
requires (!StringLike<T> && !Sequence<T> && !MapLike<T>)
future<> clear_gently(T& c) noexcept {
return do_until([&c] { return c.empty(); }, [&c] {
auto it = c.begin();
return internal::clear_gently(*it).then([&c, it = std::move(it)] () mutable {
c.erase(it);
});
});
}
template <typename T>
future<> clear_gently(std::optional<T>& opt) noexcept {
if (opt) {
return utils::clear_gently(*opt);
} else {
return make_ready_future<>();
}
}
template <typename T>
future<> clear_gently(seastar::optimized_optional<T>& opt) noexcept {
if (opt) {
return utils::clear_gently(*opt);
} else {
return make_ready_future<>();
}
}
namespace internal {
template <typename T>
concept gently_reservable = requires(T x) {
{ x.capacity() } -> std::same_as<size_t>;
{ x.reserve_partial(10) } -> std::same_as<void>;
};
} // namespace internal
// reserve_gently gently reserves memory in containers which support partial reserve.
future<> reserve_gently(internal::gently_reservable auto& container, size_t size) {
return seastar::do_until([&container, size] { return container.capacity() == size; }, [&container, size]() {
container.reserve_partial(size);
return seastar::make_ready_future();
});
}
}